Hierarchical bit-map directory schemes
on the RDT interconnection network
for a massively parallel processor JUMP-1

Takashi Matsumoto* Kei Hiraki*
Yasuhito Fukushimaj

Tomohiro Kudoh
Yulu Yang i

Hideharu Amanoi

Katsunobu Nishimuraj Koichi Yoshimuraj

iTokyo Engineering University
iKeio University
*The University of Tokyo

Abstract

JUMP-1 is currently under development by seven Japanese universities to establish tech-
niques of an efficient distributed shared memory on a massively parallel processor. It
provides a memory coherency control scheme called the hierarchical bit-map directory to
achieve cost effective and high performance management of the cache memory. Messages
for maintaining cache coherency are transferred through a fat tree on the RDT(Recursive
Diagonal Torus) interconnection network. In this report, we discuss on the scheme and

examine its performance. The configuration of the RDT router chip is also discussed.

1 Introduction

JUMP-1 is a massively parallel processor proto-
type developed by collaboration between 7 Japanese
universities[4]. The major goal of this project is to es-
tablish techniques for building an efficient distributed
shared memory on a massively parallel processor. For
this purpose, a sophisticated methodology called Strate-
gic Memory System (SMS) is proposed [11][4].

The cache directory and management scheme is one
of the most important issues in the SMS. In traditional
distributed memory systems, a directory entry is as-
sociated with every cache line. However, this requires
a large amount of memory for a massively parallel pro-
cessor which provides both a large number of processors
and a large amount of memory space. In the SMS, each
node processor shares a global virtual address space
with two-stage TLB implementation, and the directory
is attached not to every cache line but to every page,
while the data transfer is performed by a cache line.

For the directory entry associated with each
page, a hierarchical bit-map directory scheme was
introduced[10][11]. In addition, to reduce the size of
directory, a directory reduction scheme has been pro-
posed. However, the original scheme ! is built based on
a simple n-ary tree network, and some extensions are
required for the use in JUMP-1.

1The original scheme[10] is called the pseudo-fullmap directory
scheme consisting of the hierarchical multicast(directory) scheme
described here, local, and 1-to-1 communications.

In this paper, we extend the original hierarchical bit-
map directory scheme to apply on an interconnection
network RDT (Recursive Diagonal Torus) which is pro-
posed for JUMP-1. In addition to the original directory
reduction scheme, two other schemes are also proposed.
In Section 2, JUMP-1 and its interconnection network
RDT are briefly introduced. In Section 3, the hierarchi-
cal bit-map directory scheme and the directory reduc-
tion schemes are introduced. In Section 4, the imple-
mentation of the hierarchical bit-map directory schemes
on the RDT is described. These schemes are compared
with other directory schemes and the number of redun-
dant packets are evaluated in Section 5. Finally, the
implementation of the RDT router chip which enables
hierarchical bit-map directory schemes are described.

2 JUMP-1 and the RDT

2.1 Structure of JUMP-1

As shown in Figure 1[4], JUMP-1 consists of clusters
connected with an interconnection network RDT[14].
Each cluster also provides a high speed point to point
I/O network connected with disks and high-definition
video devices.

Each cluster is a bus-connected multiprocessor (Fig-
ure 2[4]) including 4 coarse-grained processors(CPU),
2 fine-grained processors (Memory Based Processor or
MBP) each of which is directly connected to a main

RDT Network

Cluster 1
Cluster 2
%

Cluster 0

Cluster 255

Extended

Link
FB FB FB
Pixel Bus
|

HDTV
CRT Controller

FB:(Distributed) Frame Buffer z

1/0 BOX: SPARCstation 5

Figure 1: Structure of JUMP-1

memory and the RDT router chip. A CPU is an off the
shelf RISC processor (SUN Super-Sparc+) which per-
forms the main calculation of the program. The MBP,
the heart of JUMP-1, is a custom designed fine-grained
processor which manages the distributed shared mem-
ory, synchronization, and packet handling. The first
prototype of JUMP-1 which is scheduled to be available
in this winter provides 256 clusters, thus, 1024 proces-

SOors.
RISC RISC RISC RISC
Processor Processor Processor Processor
| [1_Cache’ 7‘ | [1_Cache’ 7‘ [[1_Cache 7‘ [[1_Cache 7‘
| | | |
‘ L2_Cache ‘ ‘ L2_Cache ‘ ‘ L2_Cache ‘ ‘ L2_Cache ‘
I I I I
| Shared Bus’ |
Cluster Cluster
TAXI MBP Memory MBP Memory
Bank Bank
(L3_Cache) (L3_Cache)
1/0 link NIP NIP
to Disks
RDT router
L
<4/J \\%>
= / \ ~
/ N\
RDT Network

Figure 2: Structure of a JUMP-1 cluster

2.2 Interconnection network RDT

The RDT is a network consists of recursively formed
two-dimensional square diagonal toruses. In order to
reduce the diameter, preparing bypass links for the di-
agonal direction is the best way for the torus network.
Assume that four links are added between a node (z,¥)

and nodes (z £ n,y £ n). Here, n is called the cardinal

number. Then, the additional links form a new torus-
like network. The direction of the new torus-like net-
work is at an angle of 45 degrees to the original torus,
and the grid size is v/2n times of the original torus.
Here, we call the torus-like network the rank-1 torus.
On the rank-1 torus, we can make another torus-like
network (rank-2 torus) by providing four links in the
same manner. Figure 3 shows rank-1 and rank-2 toruses

when n is set to be 2. The RDT consists of such recur-
sively formed toruses.

AN
NS
L 5 3/ON,
N

AN

5

>
I
O
5
5
1]
N
L
=
%
I

L
N,
R

<]
/]

i)
5
%
9

[
o
[]
N
[
[

e
o
[]
N
D

o
o
;‘5

A
b
o
&
o
e
o
0=

{
%
O
9

)
/]

8O .“\‘
V2SS 20BN 700

L ENG 8 BN & N L
DB BAND BN 2
SONSSCNE FENRS AN

LING K

(99

L3
&L
L L
i
!
>

I\,

)
)

Figure 3: Upper rank toruses

Recursive Diagonal Torus RDT(n,R,m) can be de-
fined as a class of networks in which each node has
links to form base (rank-0) torus and m upper toruses
(the maximum rank is R) with the cardinal number n.
Note that, each node can select different rank of upper
toruses from others.

The RDT in which every node has links to form
all possible upper toruses is called the perfect RDT
(PRDT(n,R)) where n is the cardinal number (usually,
2) and R is the maximum rank. Although PRDT is
unrealistic because of its large degree (4(R+1)), it is
important as a basis for establishing routing algorithm,
broadcasting/multicasting, and other message transfer
algorithms.

The JUMP1 must be scalable to the system with ten
thousand nodes. In this case, m is set to be 1 (degree
= 8). For this number of nodes, the maximum rank
of upper toruses is 4. Thus, the RDT(2,4,1) is treated
here.

In the RDT, each node can select different rank
toruses from others. Thus, the structure of the
RDT(2,4,1) also varies with the rank of toruses which
are assigned to each node. This assignment is called the
torus assignment. Various torus assignment strategies
can be selected considering the traffic of the network.
If the local traffic is large, the number of nodes which
have low ranks should be increased. However, compli-
cated torus assignment introduces difficulty to the mes-
sage routing algorithm and implementation. For the
JUMP-1, we selected a relatively simple torus assign-
ment shown in Figure 4.

In this assignment, a node has eight links, four for the
base (rank-0) torus and four for rank (1-4) torus (Most
of links for upper rank toruses are omitted in Figure 4).
Note that a node with a rank torus has neighboring

@ rank-1

(O rank-1

Orank-2
1 Orank-2
2 @rank-3
3 @Drank-3
) Orank-4
. Orank-4

(1,0) Torus

(0,0)(1,0) Torus

Figure 4: Torus assignment used in the JUMP-1

nodes with toruses of other three ranks. Therefore, any
rank torus can be used with a single message transfer
between neighboring nodes. This property reduces the
diameter and average distance between nodes.

The RDT provides various advantages as an inter-
connection network of the JUMP-1. It includes two
dimensional mesh, and simple near-optimal routing al-
gorithm enables smaller diameter than that of the hy-
percube (11 for 216 nodes) with smaller degree (8 links
per node). Moreover, it includes the fat-tree of mesh
structure. Using this structure, hierarchical multicast
can be efficiently supported. This feature is important
to implement the hierarchical bit-map directory scheme
treated here.

3 Hierarchical bit-map direc-
tory scheme

Most of conventional non-bus based shared memory
multiprocessors equip a cache directory whose entries
are associated with cache lines. However, in a mas-
sively parallel machine both with a large number of
processors and a large address space, a large amount
of memory required for the directory will be unaccept-
able. In JUMP-1, directory entries are associated with
pages while the data are transferred by a cache line[11]
in order to reduce the required amount of memory for
the directory. Using this strategy, both the expansion
of the directory memory and the congestion of the net-
work caused by the large size message transfer can be
avoided.

However, in this case, number of destinations of the
coherence maintenance messages increases especially
when an update type protocol is used. If there are
considerable number of destinations, it will take a long
time to send a message if they are sent one after an-
other(sequentially).

To cope with this problem, the hierarchical bit-map
directory scheme transfers messages for different des-
tinations simultaneously (i.e. multicast) using a tree
structured multicasting paths (multicasting tree).

Figure 5 illustrates the concept of hierarchical bit-
map directory scheme. Leaves of the tree correspond to
the clusters of JUMP-1 and a message is first sent from

d ddd

d: destination

Figure 5: Hierarchical bit-map directory scheme

the root of the tree. Each node can multicast a message
to its multiple branches at a time. To specify the des-
tination leaves precisely, an n-bit bit-map is required
for each node when an n-ary tree is used. Thus, for m
height n-ary tree, total of 37~ n*bits are required for
each entry. Although the required amount of memory
is larger than that of the full-map directory scheme in
which n™ bits are required (since there are n™ leaves),
the message can be multicast using the tree structured
path in the hierarchical bit-map directory scheme.

3.1 Reduction of the directory length

Since JUMP-1 is a massively parallel processor, the
ZZL:1 nk bits directory entry (for m height n-ary tree)
is not feasible. Two ways of reducing the size of the
directory can be considered.

1. The bit-maps are stored and maintained at the
node. When a message comes from the upper level,
a bit-map stored at the node is accessed according
to the address (tag) of the message.

2. The bit-maps for a message are attached to the
message header and referred at the appropriate
nodes of the tree.

While the former scheme effectively reduces the size
of directories stored in the entire system, the overhead
caused by the accesses of the bit-maps will prevent quick
cache coherent management. Thus, the latter scheme is
mainly adopted for JUMP-1. However, in this method,
a large size of header is required if bit-maps for all level
of hierarchy are attached.

In order to reduce the size of bit-maps, a bit-map
is provided not for each node, but for each level of the
tree. Each node multicasts packets to its children either
according to the bit-map for the level or all children of
the node (thus, broadcasting).

Here, the LPRA which is the original scheme pro-
posed in [10][11], and two novel schemes, the SM and
LARP are introduced.

LPRA scheme: When the multicast is started, the
message is sent from the source cluster to the root

100

level 0: 100
011
level 1: 011
0 B level 2: 010
sd d (a) LPRA
100
level 0: 100
011
level 1: 011
10 0 level 2: 110
sd d (b) SM
100
level 0: 100
011
level 1: 011
B 0 level 2: 100
sd d (c) LARP
S SOUI‘_CE)
d: degtination
e. receiver

B: broadcast node

Figure 6: Hierarchical bit-map directory schemes

of the multicast tree. In the LPRA (Local Precise
Remote Approximate) scheme, the bit-map is used
only nodes which is the root of the subtree includ-
ing the source node. For nodes in other subtrees,
the message is broadcast to all children. Figure
6(a) shows an example of this scheme for the 3-ary
tree. In this figure, 's’ is the source cluster, and
’d’ is the destination to which packet is sent. e in-
dicates clusters which receive data. It is desirable
if the number of clusters which have e but with-
out 'd’ is small as possible. Using this scheme, the
bit-map is used for local nodes of the source node,
while the message is broadcast in the remote sub-
tree marked B. This scheme is advantageous when
a node send a message to a remote node group.

SM scheme: In the SM(Single Map) scheme, all nodes
at a level use a unique bit-map as shown in Figure
6(b), and thus, no broadcast is made (unless a bit-
map is all-1). This scheme is advantageous when
the number of destination is not so large.

LARP scheme: The LARP is a complimentary
scheme of the LPRA. In this scheme, broadcast
is done at nodes which are the root of the subtree
including the source node while a unique bit-map
is used in other subtrees like the SM scheme. Note
that the broadcast is started from children nodes
whose parent starts the multicasting. In the exam-
ple shown in Figure 6(c), since the multicast starts
at the level 1 (The top node (level 0) only sends
a message to a child.), the broadcast (marked B)

starts at the level 2 to the subtree which includes
the source node. In this case, the broadcast is done
for local nodes of the source node, while the bit-
map is used for remote nodes. This scheme is ad-
vantageous when the mapping can make the best
use of the locality of communication.

4 Fat tree on the RDT

In the original hierarchical bit-map directory scheme,
messages are transferred on a tree structured commu-
nication paths. However, if a simple n-ary tree is used,
following problems will bottleneck the performance.

o If multiple nodes multicast simultaneously, conges-
tion may be caused around the root node of the
tree.

e Depending on the location in the tree, some mes-
sages should have transferred through the very root
of the tree just to move to neighboring node.

o It takes a large latency if a sender node at a leaf
sends a message upstream to the root of tree.

N E W M S SESWSS
(M: Myself = SN)
bitmap: NEW S M SE SW SS

Figure 7: The 8-ary tree and bit-map pattern for mul-
ticast on the RDT

However, since the RDT involves a fat tree of
toruses with multiple root nodes, these problems can be
avoided. The pattern of message transfers for emulating
a fat tree is shown in Figure 7. Two steps are required:

1) each node transfers a message to four neighbors,
2) a neighbor transfers the message to three neigh-
bors. (South direction in this figure). As shown in Fig-
ure 7(b), the eight nodes which received the data does
not duplicated with node which received other nodes
(marked X in Figure 7(a)) on the same rank-i torus.
Thus, if all nodes with rank-i toruses executes this pat-
tern, the message is transferred to all nodes with rank-
(i-1) toruses. By the iteration of this data transfer from
the maximum rank to the rank-0, 8-ary tree in which
is formed on the RDT. In this case, a rank in the RDT

directly corresponds to the level of the tree. Moreover,

in the RDT, the upper rank torus can be used within
a step of message routing. Thus, the message can be
directly transferred from the sender node to the root
node without using the tree structure.

Figure 7 shows the 8-ary tree involved in the RDT,
and bit-map pattern for the hierarchical bit-map direc-
tory scheme. When schemes described in the previous
section are applied on this 8-ary tree on the RDT, fol-
lowings are advantageous:

e On the RDT, there are a number of nodes with the
maximum rank torus, and all of them are used as a
root node. Thus, the message multicast is almost
directly started from the root node without going
upstream on the tree.

e Since there are many upper rank toruses in the
RDT, the tree is a kind of ”fat-tree” which provides
many root nodes in each rank. Therefore, the con-
gestion of root nodes is relaxed even if many source
nodes multicast their data simultaneously and in-
dependently.

e In the RDT, nodes which receive the message
through the tree whose root rank is ’i’ are located
around the source node. For larger ’i’; the number
of such nodes becomes large, thus the area which
a message is multicast becomes wide. We call such
an area “territory” of a multicast. Figure 8 shows
territories of a multicast from rank-O and rank-1.
Since the territory of is always formed surrounding
a source node, message multicast to local nodes
are performed from a lower rank (thus, with only
a small territory).

ZN\P QNG !
0 00 O
o Sl Szl
0 RS oKL
N7 o

D O DT

SOLZ NN
DG

Q'
Ci
"

¢ O\
L
/

|r'A\4NV4mM'4
GO NG NGO

Figure 8: Territory of a multicast

5 Discussions

5.1 Comparison with other schemes

Three famous directory schemes for managing cache
have been tried in multiprocessors with distributed
shared memory. In the full map directory scheme which
is used in Stanford DASH][2], each entry of the directory
holds a bit map corresponding to each node of the mul-
tiprocessor. This scheme can be used only in a small
system since the required bit map for each entry is equal
to the number of processors.

In the limited pointer scheme[l] adopted in MIT
Alewife[6], each entry holds a limited number of point-
ers each of which indicates the processor which has the
copy of the line. Usually, the number of the pointers
is limited in two or three. If the number of the copy
is beyond to the number of pointers, the information
is broadcast to every node (broadcast) or copies exceed
the number of the pointers are invalidated (eviction).

In another scheme, the chained directory scheme[3][7]
which will be used in Stanford FLASHI5], a chained list
is used for holding node identifiers.

Both the limited pointer and chained directory will
work efficiently even in massively parallel processors if
the number of nodes which hold the copy of the same
cache line is small. In the limited pointer, if the number
of copies is large, it requires a large number of pointers,
or unnecessary broadcast or invalidation is required. In
the chained directory, it takes a long time to access the
chained directory if the number of nodes which hold the
copy is large. Through the simulation study, it appears
that the number of nodes which receive the invalidate
messages are one or two in most cases[12]. In this case,
both schemes will work efficiently.

However, this simulation is done under the following
conditions: (1) the entry of the directory is associated
with the cache line, and (2) only invalidation type pro-
tocols are used. In JUMP-1, the entry of the directory
is not associated with the cache line but with the page.
This strategy much reduces the required memory for a
directory of a large size of shared memory space that
is essential for massively parallel processors. Moreover,
in JUMP-1, update type protocols which are advanta-
geous in most scientific calculations can be used with
invalidation type protocols. In this case, as shown in
our initial estimations, the number of copies is further
increased.

Figure 9 shows the distribution of the number of
destinations of invalidation/update messages when an
invalidation type protocol and an update type proto-
col are used respectively. The bold line shows results
when an entry is associated with a cache line, and the
doted line shows ones with a page. Here, MP3D with
1024 molecules and water with 64 molecules from the
SPLASH]8] parallel programs for shared memory is ex-
ecuted with 256 processors and 32 processors respec-
tively. This result is generated from an address trace[9]
when the size of a cache line is 32 byte and the size
of a page is 4 Kbytes. The X axis corresponds to the
number of destination processors in logarithmic scale,
and the Y axis corresponds to the occurrence times.

While the bold line (entries are associated to cache

MP3D-Invalidate

MP3D-Update

Water-Invalidate

Occurrence Occurrence Occurrence
5500 . 5500
3500 1
5000 I 5000
|| o\
4500 3000 | 4500
4000 LINE \ LINE 4000 \ 7|_7|7'\7|7E”
1}
| ——— 2500 i — \ i PAGE
3500 PAGE ! \ H PAGE 3500 !
I
3000 \ : 2000 ” 3000 \
\ | 11 \ H
2500 " 1 I 2500 :
\ H 1| 1500 i \ H
2000 I | 11 2000 :
\ N | Il \ :
1500 Il + 1000 a 1 1500 :
1 H 7\ T M H
\ I ' AURYE \ : H
1000 | I 7 11 1000 : H
/\ 11 [500 \ 11 H H
500 AN ! \ BN 500 : ¥
3 \\\‘ PR L\,\Am '\ 0 v~ I /,,“4 ! &
0 ~_ W H J 0 AN 0 [*reeena e
1e+00 3 le+01 3 1e+02 3 1€+00 3 16+01 3 1e+02 3 16+00 2 5 16401 2

Number of Destinations

Number of Destinations

Number of Destinations

Figure 9: Distribution of number of destinations

lines) in the invalidation protocol demonstrates the
small number of copies in the traditional conditions,
other lines show that the number of copies exceeds
three. When an entry is associated with the page, two
peaks are shown. One is at 4-8 nodes and another is at
all nodes in both protocols.

When 6 pointers are required in the limited pointers,
the length of each directory entry becomes 6 x 14 =
84bit when 2'* = 16K nodes are used. For the same
size, the hierarchical directory schemes treated here re-
quire only 4(levels) x 8(number of branch) = 32bits.
When the size of a cache line is 32 byte and the size of a
page is 4 Kbyte, the total amount of required memory
can be reduced to 1/128 at maximum. Although ev-
ery cache of a page is not used in practice, usually the
usage ratio is quite high because of the locality of ref-
erence. This demonstrates that the required memory is
much reduced in the hierarchical directory schemes. Al-
though the chained directory scheme also can support a
small cost of memory, the access time for following the
directory may degrade the performance.

5.2 The number of unnecessary mes-
sages

The major disadvantage of hierarchical directory
schemes is that it requires unnecessary message multi-
cast since it only use a single multicast or broadcasting
in each level of the hierarchy. If destination nodes can
be mapped inside the territory, the number of unnec-
essary messages can be drastically reduced. However,
it depends not only on the mapping strategy but also
on the characteristics of application programs. Here,
we estimate the number of unnecessary messages with
a simple probabilistic models as the first evaluation.
The destinations are determined by a random num-
bers which follow a given distribution. In the follow-
ing graphs, average value calculated from 10,000 trials
based on the random number generation library of Sun

0S4.1.3 are shown.

Figure 10 shows number of receiving clusters when
the destinations (D) follow a normal distribution of vari-
ance 1 (here, unit is a link on the base torus and the
X and Y projections of the distance from the source
cluster to the receiving cluster follow the distribution
independently). This result represents the case which
the application program has a strong locality of com-
munication and well mapped. In this case, the number
of receiving clusters is 80 to 180 even when the num-
ber of destinations are 32, thus unnecessary messages
are not so many. The LARP is advantageous when the
number of destinations is large.

Figure 11 shows when the distribution (D) is 5 and
other parameters are unchanged. This case represents
that there are a lot of destination nodes which are not
local of the source node. The number of receiving clus-
ters is considerably large, thus, many unnecessary mes-
sages are generated. The SM is advantageous when the
number of receivers is small, and the LARP is advan-
tageous when it is large. This tendency is also among
other graphs, and the number of clusters when the per-
formance of the LARP overcomes that of the SM is
about 10. Although the LPRA cannot reduce the num-
ber of clusters compared with other schemes in these
estimation, it will be useful when there are group of
destination nodes distant from a source node.

As described earlier, when a directory entry is asso-
ciated with a page, the number of destinations is likely
to be at least 4. Figure 12 shows the number of av-
erage receivers when the number of destination is four
and the variance is changed. the SM always yield least
receivers, and the number is not more than around 120
even when the variance is large.

These results suggest that the hierarchical bit-map
directory scheme requires a lot of unnecessary messages
when the destination processes cannot be mapped into
local processors of the source nodes. However, if pro-
cesses which communicates each other can be locally

Number of Receiving Clusters

180 y4 1400

Number of Receiving Clusters

Number of Receiving Clusters

/
160 / ‘

R

* 1400

*
4
. /
00 1200

LPRA / 5 e I
1] mE ‘ : /
LARD /- - / e
120 SM / - / s 1000 =
(4 0 i
- /" 800 4 /l SM
Ve
80 '.‘....... o 600 /
? y A /
e
' : I
40 /’ ‘.' 400 S T,

200
20 /'.'o
L d
0 hd 0

200 /

0 10 _20 . 30 0
Number of Destinations

Figure 10: Number of receiving
nodes vs. number of destinations

(D =1) (D =5)

mapped, the number of unnecessary messages can be
not so large with using the SM, LPRA and the LARP
appropriately.

6 The RDT router chip

An LSI router chip which supports all hierarchical bit-
map directory schemes discussed here has been imple-
mented for JUMP-1. The structure of this RDT router
chip is shown in Figure 13. The core of the chip is a
10 x 11 crossbar which exchanges packets from/to 10
18-bits-width links, that is, four for the rank-0 torus,
four for the upper rank torus, and two for the MBPs
which manage the distributed shared memory of JUMP-
1. In JUMP-1, two RDT router chips are used in the
bit-sliced mode to form 36 bits width for each link.

All packets are transferred between router chips syn-
chronized with a unique 60MHz clock. In order to
maximize the utilization of a link, packets are bi-
directionally transferred. Maximum packets length is
16flits (36 bits-width 16flits-length) so as to carry a line
of the cache. 3 flits header which carries the bit-map
of the hierarchical bit-map are attached to all packets,
but the length of the body is variable.

The virtual cut-through flow control is adopted to
cope with frequent multicasting. Two packet buffers
each of which can hold the maximum size packet form
two virtual channels. In the RDT, the deadlock is
avoided with the modified e-cube routing method using
two virtual channels [13]. Using this technique, every
1-to-1 packet transfer or multicast is performed without
deadlock. Since the route of the multicast is fixed, the
FIFO assumption is ensured.

Two bits in the packet header are used for selec-
tion of three hierarchical bit-map directory schemes,
the LPRA, SM and LARP. Thus, three schemes are se-

10 ?0 .
Number of Destinations

Figure 11: Number of receiving
nodes vs. number of destinations

0. O
30
00 1000 2000 3000 4000 50.00
Variance
Figure 12: Number of receiving
clusters vs Variance
18bits width at 66MHz
J—
L ‘ To/From
Other nodes (x8)

MBP (x2)

18bits width 16 flits

Handshake
Controller

10x11 Crossbar

-

Output buffer

Packet Buffer

| |

Counter

Ack packet combining
Cache

Figure 13: The structure of the RDT router

lectable for each packet, and the mixture of packet with
different schemes are allowed. Moreover, the packet is
forced to transfer to the MBP at any node of each hier-
archy that multicast is started. In this case, the MBP
re-makes the new bit-map for each hierarchy, and start
multicast again. Although this scheme requires the la-
tency to re-make the bit-map, unnecessary packets mul-
ticast can be reduced.

0.5pum Hitachi BICMOS SOG which provides 125K
gates in maximum is utilized. Lines are directly driven
with ECL interface of this chip. Using the dual port
RAM, packet buffers allow to push and pull a flit of the

packet simultaneously. The required number of gates
are 90522 gates. Random logics require 50000 gates
in total while areas corresponding to about 4000 gates
are required for the dual-port RAM. The crossbar body
and arbiter, which are simple but high performance is
required, are designed in the logic level, while the com-
plicated controllers are described in the VHDL.

7 Conclusion

Hierarchical bit-map directory schemes on the Re-
cursive Diagonal Torus are proposed and discussed.
Through a simple estimation, a small memory require-
ment of these schemes is demonstrated when a direc-
tory entry is associated with a page or update pro-
tocols are used on massively parallel processors. The
problem of these schemes is congestion of the network
with unnecessary multicast packets. Since the eval-
uation shown here is based on a simple probabilistic
model, precise evaluations under practical conditions
are required. However, it is difficult with simulations
as a large number of processors must be simulated with
practical application programs and mapping strategies.

A high speed RDT router which supports all schemes
discussed here is available. Using these chips, JUMP-1
will start its operation on the next spring. A precise
evaluation of these schemes will be done on this proto-

type.

Acknowledgment

The authors would like to express their sincere grat-
itude to the members of the Joint-University project
for their valuable advice and discussion. The authors
also express their thanks to Professor Takuya Terasawa,
Mr. Osamu Gotoh, Mr. Kazuhito Kanda, and Mr. Hi-
romitsu Ueda of Tokyo Engineering University for sup-
porting the environment of the multiprocessor instruc-
tion level simulator MILL.

A part of this research was supported by the
Grant-in-Aid for Scientific Research on Priority Areas,
#04235130, from the Ministry of Education, Science
and Culture.

References

[1] Agarwal A., Simoni R., Hennessy J., and Horowitz
M. An evaluation of directory schemes for cache co-
herence. In Proc. of the 15th Annual International
Symposium on Computer Architecture, 1988.

[2] D.Lenoski, J.Laudon, K.Gharachorloo,
W.-D.Weber, A.Gupta, J.Hennessy, M.Horowitz,
and M.S.Lam. The stanford dash multiprocessor.
IEEE Computer, 1992.

[3] James D.V., Laundrie A. T., Gjessing S., and
Sohi G. S. Distributed-directory scheme: Scalable
coherent interface. IEEE Computer, 1990.

[4] K. Hiraki, Hideharu Amano, Morihiro Kuga,
Toshinori Sueyoshi, Tomohiro Kudoh, Hiroshi
Nakashima, Hironori Nakajo, Hideo Matsuda,
Takashi Matsumoto, and Shin ichiro Mori.
Overview of the jump-1, an mpp prototype for
general-purpose parallel computations. In Proc. of
the International Symposium on Parallel Architec-
tures, Algorithms and Networks (ISPAN’94), 1994.

[5] J.Kuskin, D.Ofelt, M.Heinrich, J.Heinlein,
R.Simoni, K.Gharachorloo, J.Chapin, D.Nakahira,
J.Baxter, M.Horowitz, A.Gupta, M.Rosenblum,
and J.Hennessy. The stanford flash multiprocessor.
In Proc. of the 21st Annual International Sympo-
sium on Computer Architecture, 1994.

[6] K.Kurihara, D.Chaiken, and A.Agarwal. La-
tency tolerance through multithreading in large-
scale multiprocessors. In Proc. of International
Symposium on Shared Memory Multiprocessing

(ISSMM), 1991.

[7] Thapar M. and Delagi B. Distributed-directory
scheme: Stanford distributed-directory protocol.
IEEE Computer, 1990.

[8] J.P. Singh, W. Weber, and A. Gupta. Splash:
Stanford parallel applications for shared-memory.
In Tech. Report, Computer System Laboratory,
Stanford University, 1992.

[9] T. Terasawa and H. Amano. Performance evalu-
ation of the mixed-protocol caches with instruc-
tion level multiprocessor simulator. In Proc.
of IASTED International Conference of MOD-
ELLING AND SIMULATION, 1994.

[10] T.Matsumoto and K.Hiraki. A shared-memory ar-
chitecture for massively parallel computer systems.
In IEICE Japan SIG Reports, Vol. 92, No. 173,
CPSY 92-26 (in Japanese), 1992.

T.Matsumoto and K.Hiraki. Distributed shared-
memory architecture using memory-based proces-
sors. In Proc. of Joint Symp. on Parallel Process-
ing’93 (in Japanese), 1993.

[11]

[12] W.D.Weber and A.Gupta. Analysis of cache in-

validation patterns in microprocessors. In Proc. of

ASPLOS III, 1989.

Y. Yang and H. Amano. Message transfer algo-
rithms on the recursive diagonal torus. In Proc. of
the International Symposium on Parallel Architec-
tures, Algorithms and Networks (ISPAN’94), 1994.

Y. Yang, H. Amano, H. Shibamura, and
T.Sueyoshi. Recursive diagonal torus: An inter-
connection network for massively parallel comput-
ers. In Proc. of 1993 IEEE Symposium on Parallel
and Distributed Processing, 1993.

[13]

[14]

