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Abstract— We describe a floating point arithmetic
unit(FPU) which supports static scheduling by auto-
matic parallelizing compiler. This FPU designed to
work with 50MHz clock with the assistance of EDA
synthesis and layout tools. Under the clock rate condi-
tion, it appears that this FPU requires about 120,000
gates and marks 8.2 MFLOPS with the clock level
simulation.

I. INTRODUCTION

Although it is easy to enhance the peak performance
of the multiprocessor only by adding many processing u-
nits, it is difficult to exploit effective performance for
users without support of automatic parallelizing compil-
ers. However, such compilers have been tailored for ex-
isting multiprocessors which are designed without care of
them well. The multiprocessor system ASCA (Advanced
Scheduling oriented Computer Architecture) has been
proposed based on the idea that not the parallelizing
software is tailored for machines, but a multiprocessor
system should be designed to make the best use of par-
allelizing software. The goal of ASCA system is to ex-
ploit parallelism of the user program in various levels of
granularity by scheduling at compile time with automat-
ic multigrain parallelizing compiler and scheduler[1], and
the processor MAPLE(Multiprocessor system ASCA Pro-
cessing eLEment) is designed to support them over-all[2].
The pipeline structure and instruction set architecture of
MAPLE are similar to those of DLX][3], a simple but pow-
erful RISC model processor.

II. MAPLE FPU

A. Features

The key function of MAPLE is a high performance
floating point arithmetic unit since application field of
ASCA system mainly targets on scientific calculations.
The FPU conforms to the IEEE 754 floating point binary
arithmetic standard[4], and provides instructions of the
four fundamental rules of arithmetic in double precision,

floating point comparison, and format conversion between
integer and floating point number.

The FP execution stage is further divided into seven
pipelined functional units. Each functional unit is fully
pipelined except for divide instructions(figure 1).
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Fig. 1. Floating Point Execution Stage

Table I shows the required cycle time to complete each
operation at the FP-EX stage. Latency and throughput
for single precision data are the same as those for the
double precision.

TABLE 1
FP EXECUTION STAGE SPECIFICATION
| Operation | Algorithm [ 11 ] 12 ]
FP add/sub. - 3 1
Radix-4 Booth encode,
FP mult. Wallace tree compress 4 1
FP div. Radix-2 SRT 21 | 18
FP compare - 1 1
Format conv. - 2 1
Radix-4 Booth encode,
INT mult. Wallace tree compress 2 1
INT div. Radix-2 SRT 12 | 10

11: Latency [clock cycle], 72: Throughput [clock cycle]

Generally, floating point arithmetic instructions take a
long time to complete compared with integer instruction-
s. A common FPU integrated in an off-the-shelf general-
purpose processor returns the result as quick as possible
according to input values. For example, when executing
0.0 x 0.0, such FPUs return the result in a cycle. How-
ever, this method is not desirable for ASCA system, since



a compiler cannot predict the behavior of the processor.
That is, the MAPLE FPU should complete every instruc-
tion in a fixed cycle time.

However, such approach often degrades the perfor-
mance. MAPLE FPU is designed not to degrading it as
possible. In order to achieve high performance scientific
calculations even with such a restriction, the RTL design
of the FPU is highly timing aggressive. Figure 2 shows
an example of block diagram of floating point add mod-
ule. Two 53bit adders are parallelized for reducing the
latency. Moreover, the disadvantage is also recovered by
the ASCA parallelizing compiler using static scheduling
method which can make the best use of operation level
parallel processing.
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Fig. 2. Basic Pattern of Aggressive RTL Design
B. Performance

The performance of the MAPLE FPU with 50MHz
clock is evaluated with Mentor Graphics’ Quick HDL sim-
ulator. Figure 3 shows the reciprocal of FFT execution
time and performance (MFLOPS) of ‘FLOPS’ benchmark
program. The FFT processes double precision 22° data
and ‘FLOPS’ executes numerical integration and Maclau-
rin series expansion in double precision.
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Fig. 3. Evaluation of FFT and FLOPS Program
III. IMPLEMENTATION

The MAPLE FPU chip in this study has been fabri-
cated with the program of VLSI Design and Education
Center (VDEC), the University of Tokyo with the col-
laboration by Rohm Corporation and Toppan Printing
Corporation.

The synthesis result of the module using the Rohm
technology(table IT), shows that the hardware amount of
FPU module requires about 120,000 gates(table III).

TABLE II
THE SPECIFICATION OF MAPLE FPU
Technology Die size Package
CMOS 0.6pm Std.Cell 9 .
Metal 3, Poly 2, Vdd=5v | 79-39mm” | QFP 208pin
TABLE III

AMOUNT OF GATES OF MAPLE FPU

[ Block | #of cell [ NAND-gate eqv. |
Fp add/sub. 9,222 17,438
Fp mult. 21,728 41,086
Fp div. 10,184 19,258
Int mult. 6,484 12,261
Int div. 5,087 9,620
Rest of FPU 12,717 24,048

FPU total: 65,422 cells (123,712 gates)

Figure 4 shows the FPU cell layout and photograph.

Fig. 4. The MAPLE FPU Cell Layout and Chip
IV. CONCLUSIONS

We describe that the MAPLE FPU supports automatic
parallelizing compiler for effective performance. Although
the performance is lower than those of recent superscalar
processors, the gate number of MAPLE FPU is so smal-
1 that the cost/performance of the MAPLE cluster has
possibility to overcome that of recent high performance
processors in scientific calculations. The FPU chip will
be verified and evaluated with the logic tester system
(Schlumberger ITS 9000 EXa) installed in VDEC.

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to Mentor Graph-
ics Japan for providing design tools in the university program(HEP).
This study is supported by STARC (Semiconductor Technology A-
cademic Research Center, Japan) as the project “A processing el-

ement for static scheduling and compiler oriented multiprocessor.”

REFERENCES

[1] H.Kasahara, H.Honda, A.Mogi, A.Ogura, K.Fujiwara,
S.Narita, “A Multi-Grain Parallelizing Compilation Scheme for
OSCAR?”, 4th Workshop on Languages and Compilers for
Parallel Computing, 1991.

[2] T.Fujiwara, K.Sakamoto, T.Kawaguchi, K.Iwai, H.Kasahara,
“A Custom Processor for the Multiprocessor System AS-
CA”,Applied Informatics '98, 1998, pp258-261.

[3] J.L.Hennessy and D.A. Patterson, COMPUTER ARCHI-
TECTURE A QUANTITATIVE APPROACH SECOND
EDITION, Morgan Kaufmann Publishers, 1996.

[4] The Institute of Electrical and Electronics Engineers Inc.,
IEEE Standard for Binary Floating-Point Arithmetic, AN-
SI/IEEE Std 754-1985, 1985.



