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fac=sqrt(-2.0xlog(rsq) /rsq);

Now make the Box-Muller transformation to get two normal deviates. Return one and
save the other for next time.

gset=vixfac;

iset=1; Set flag.
return v2*fac;
} else { We have an extra deviate handy,
iset=0; so unset the flag,
return gset; and return it.

}

See Devroye[1] and Bratley [2] for many additional algorithms.

CITED REFERENCES AND FURTHER READING:

Devroye, L. 1986, Non-Uniform Random Variate Generation (New York: Springer-Verlag), §9.1.
(1

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [2]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 116ff.

7.3 Rejection Method: Gamma, Poisson,
Binomial Deviates

The rgjection method is a powerful, genera technique for generating random
deviateswhosedistribution functionp(x)dx (probability of ava ueoccurring between
z and z + dz) is known and computable. The rejection method does not require
that the cumulative distribution function [indefinite integral of p(z)] be readily
computable, much less the inverse of that function — which was required for the
transformation method in the previous section.

The rgjection method is based on a simple geometrical argument:

Draw a graph of the probability distribution p(z) that you wish to generate, so
that the area under the curvein any range of x correspondsto the desired probability
of generating an x in that range. If we had some way of choosing arandom pointin
two dimensions, with uniform probability in the area under your curve, then the
value of that random point would have the desired distribution.

Now, on the same graph, draw any other curve f(x) which has finite (not
infinite) area and lies everywhere above your original probability distribution. (This
isaways possible, because your original curve encloses only unit area, by definition
of probability.) We will cdl this f(x) the comparison function. Imagine now
that you have some way of choosing a random point in two dimensions that is
uniform in the area under the comparison function. Whenever that point lies outside
the area under the origina probability distribution, we will reject it and choose
another random point. Whenever it liesinside the area under the original probability
distribution, we will accept it. It should be obvious that the accepted points are
uniform in the accepted area, so that their = values have the desired distribution. It
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Figure 7.3.1. Rejection method for generating arandom deviate = from a known probability distribution
p(x) that is everywhere less than some other function f(z). The transformation method is first used to
generate arandom deviate x of the distribution f (compare Figure 7.2.1). A second uniform deviate is
used to decide whether to accept or reject that «. If it isrejected, anew deviate of f isfound; and so on.
Therratio of accepted to rejected pointsis the ratio of the area under p to the area between p and f.

should aso be obvious that the fraction of points rejected just depends on the ratio
of the area of the comparison function to the area of the probability distribution
function, not on the details of shape of either function. For example, a comparison
function whose area is less than 2 will reject fewer than half the points, even if it
approximates the probability function very badly at some vaues of =, eg., remains
finite in some region where «x is zero.

It remains only to suggest how to choose a uniform random point in two
dimensions under the comparison function f(x). A variant of the transformation
method (§7.2) does nicely: Be sure to have chosen a comparison function whose
indefinite integral is known analytically, and is also anaytically invertibleto give x
as a function of “area under the comparison function to the left of z.” Now pick a
uniform deviate between 0 and A, where A isthe totd area under f(z), and use it
to get a corresponding . Then pick a uniform deviate between 0 and f(z) asthey
valuefor thetwo-dimensional point. You should be ableto convinceyoursef that the
point (x, y) isuniformly distributedin the area under the comparison function f(x).

An equivaent procedure is to pick the second uniform deviate between zero
and one, and accept or rgject according to whether it is respectively less than or
greater than the ratio p(x)/f(x).

So, to summarize, the rejection method for some given p(z) requires that one
find, once and for all, some reasonably good comparison function f(x). Thereafter,
each deviate generated requirestwo uniform random deviates, oneevaluation of f (to
get the coordinate i), and one evaluation of p (to decide whether to accept or reject
thepoint z, y). Figure7.3.1illustratesthe procedure. Then, of course, thisprocedure
must be repeated, on the average, A times before the final deviate is obtai ned.

Gamma Distribution

The gamma distribution of integer order ¢ > 0 is the waiting time to the ath
event in a Poisson random process of unit mean. For example, whena = 1, itisjust
the exponential distribution of §7.2, the waiting time to the first event.
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A gamma deviate has probability p,(z)dz of occurring with a value between
z and z + dzx, where

Pa(x)dr = ———dx x>0 (7.31)

To generate deviates of (7.3.1) for small values of a, it is best to add up a
exponentially distributed waiting times, i.e., logarithms of uniform deviates. Since
the sum of logarithmsis thelogarithm of the product, one really has only to generate
the product of a uniform deviates, then take the log.

For larger values of a, the distribution (7.3.1) has a typicaly “bell-shaped’
form, with a peak at = = a and a haf-width of about \/a.

We will be interested in severa probability distributions with this same qual-
itative form. A useful comparison function in such cases is derived from the
Lorentzian distribution

p(y)dy = ! ( ! )dy (7.3.2)

T \1+y?

whose inverse indefinite integral is just the tangent function. It follows that the
x-coordinate of an area-uniform random point under the comparison function

Co

x) = 7.33
f(z) 1+ (z —20)2/a2 ( )

for any constants ag, co, and xp, can be generated by the prescription
x = agtan(nU) + g (7.34)

where U isauniformdeviate between 0 and 1. Thus, for some specific “bell-shaped”
p(x) probability distribution, we need only find constants a, ¢, o, with the product
agco (Which determinesthearea) as small as possible, such that (7.3.3) iseverywhere
greater than p(x).

Ahrens has done this for the gamma distribution, yielding the following
algorithm (as described in Knuth[1]):

#include <math.h>

float gamdev(int ia, long *idum)
Returns a deviate distributed as a gamma distribution of integer order ia, i.e., a waiting time
to the iath event in a Poisson process of unit mean, using ranl(idum) as the source of
uniform deviates.
{

float ranl(long *idum) ;

void nrerror(char error_text[]);

int j;

float am,e,s,vl,v2,x,y;

if (ia < 1) nrerror("Error in routine gamdev");

if (ia < 6) { Use direct method, adding waiting
x=1.0; times.
for (j=1;j<=ia;j++) x *= ranl(idum);
x = -log(x);

} else { Use rejection method.
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do {
do {
do { These four lines generate the tan-
vi=ranl(idum) ; gent of a random angle, i.e., they
v2=2.0*ranl(idum)-1.0; are equivalent to
} while (vi*vi+v2*v2 > 1.0); y = tan(m * rani(idum)).
y=v2/v1;
am=ia-1;
s=sqrt(2.0*am+1.0);
xX=s*y+am; We decide whether to reject x:
} while (x <= 0.0); Reject in region of zero probability.
e=(1.0+y*y)*exp(am*log(x/am)-s*y) ; Ratio of prob. fn. to comparison fn.
} while (rani(idum) > e); Reject on basis of a second uniform
} deviate.
return x;

Poisson Deviates

The Poisson distribution is conceptually related to the gamma distribution. It
gives the probability of a certain integer number m of unit rate Poisson random
events occurring in agiven interval of time z, while the gamma distribution was the
probability of waiting time between = and x + dz to themth event. Notethat m takes
on only integer values > 0, so that the Poisson distribution, viewed as a continuous
distribution function p,(m)dm, is zero everywhere except where m is an integer
> 0. At such places, it isinfinite, such that the integrated probability over aregion
containing the integer is some finite number. Thetotal probability at an integer j is

J+e —x

Prob(j) = /_ pa(m)dm = 7 (7.35)

At first sight thismight seem an unlikely candidate distributionfor the rejection
method, since no continuous comparison function can be larger than the infinitely
tall, but infinitely narrow, Dirac delta functionsin p,.(m). However, thereis atrick
that we can do: Spread the finite area in the spike at j uniformly into the interval
between j and j 4 1. This defines a continuous distribution ¢,.(m)dm given by

¢z(m)dm = ——=——dm (7.3.6)

where [m] represents the largest integer less than m. If we now use the rgection
method to generate a (noninteger) deviate from (7.3.6), and then take the integer
part of that deviate, it will be asif drawn from the desired distribution (7.3.5). (See
Figure7.3.2.) Thistrick isgeneral for any integer-valued probability distribution.
For x large enough, the distribution (7.3.6) is qualitatively bell-shaped (albeit
with a bell made out of small, square steps), and we can use the same kind of
Lorentzian comparison function as was aready used above. For small x, we can
generate independent exponentia deviates (waiting times between events); when the
sum of these first exceeds x, then the number of events that would have occurred in
waiting time x becomes known and is one less than the number of termsin the sum.
These ideas produce the following routine:
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Figure 7.3.2. Rejection method as applied to an integer-valued distribution. The method is performed
on the step function shown as a dashed line, yielding a real-valued deviate. This deviate is rounded
down to the next lower integer, which is output.

#include <math.h>
#define PI 3.141592654

float poidev(float xm, long *idum)
Returns as a floating-point number an integer value that is a random deviate drawn from a
Poisson distribution of mean xm, using ranl(idum) as a source of uniform random deviates.
{

float gammln(float xx);

float ranl(long *idum) ;

static float sq,alxm,g,0ldm=(-1.0); oldm is a flag for whether xm has changed
float em,t,y; since last call.
if (xm < 12.0) { Use direct method.
if (xm !'= oldm) {
oldm=xm;
g=exp (-xm) ; If xm is new, compute the exponential.
}
em = -1;
t=1.0;
do { Instead of adding exponential deviates it is equiv-
++em; alent to multiply uniform deviates. We never
t *= rani(idum); actually have to take the log, merely com-
} while (t > g); pare to the pre-computed exponential.
} else { Use rejection method.
if (xm != oldm) { If xm has changed since the last call, then pre-
oldm=xm; compute some functions that occur below.

sq=sqrt (2.0%xm) ;

alxm=log(xm) ;

g=xm*alxm-gammln (xm+1.0) ;

The function gammln is the natural log of the gamma function, as given in §6.1.
}
do {

do { y is a deviate from a Lorentzian comparison func-

y=tan(PI*ranl(idum)) ; tion.
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em=sq*y+xm; em is y, shifted and scaled.
} while (em < 0.0); Reject if in regime of zero probability.
em=floor (em) ; The trick for integer-valued distributions.

t=0.9%(1.0+y*y) *exp(em*alxm-gammln (em+1.0)-g) ;
The ratio of the desired distribution to the comparison function; we accept or
reject by comparing it to another uniform deviate. The factor 0.9 is chosen so
that t never exceeds 1.
} while (rani(idum) > t);
}

return em;

Binomial Deviates

If an event occurs with probability ¢, and we make n trials, then the number of
times m that it occurs has the binomia distribution,

/Jj+6pn,q(m)dm _ (7;) ¢ (1— g (7.3.7)

| —€

The binomia distribution is integer vaued, with m taking on possible values
from O to n. It depends on two parameters, n and ¢, so is correspondingly a
bit harder to implement than our previous examples. Nevertheless, the techniques
already illustrated are sufficiently powerful to do the job:

#include <math.h>
#define PI 3.141592654

float bnldev(float pp, int n, long *idum)
Returns as a floating-point number an integer value that is a random deviate drawn from
a binomial distribution of n trials each of probability pp, using ranl(idum) as a source of
uniform random deviates.
{

float gammln(float xx);

float ranl(long *idum) ;

int j;

static int nold=(-1);

float am,em,g,angle,p,bnl,sq,t,y;

static float pold=(-1.0),pc,plog,pclog,en,oldg;

p=(pp <= 0.5 ? pp : 1.0-pp);
The binomial distribution is invariant under changing pp to 1-pp, if we also change the
answer to n minus itself; we'll remember to do this below.

am=n*p; This is the mean of the deviate to be produced.
if (n < 25) { Use the direct method while n is not too large.
bnl=0.0; This can require up to 25 calls to rani.

for (j=1;j<=n;j++)
if (rani(idum) < p) ++bnl;
} else if (am < 1.0) { If fewer than one event is expected out of 25
g=exp (-am) ; or more trials, then the distribution is quite

t=1.0; accurately Poisson. Use direct Poisson method.

for (j=0;j<=n;j++) {
t *= ranl(idum);
if (t < g) break;
}
bnl=(j <=n ? j : n);
} else { Use the rejection method.
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296 Chapter 7. Random Numbers

if (n != nold) { If n has changed, then compute useful quanti-
en=n; ties.
oldg=gammln(en+1.0);
nold=n;

} if (p !'= pold) { If p has changed, then compute useful quanti-
pc=1.0-p; ties.

plog=log(p);
pclog=log(pc);

pold=p;
}
sq=sqrt (2.0*am*pc) ; The following code should by now seem familiar:
do { rejection method with a Lorentzian compar-
do { ison function.
angle=PI*ranl (idum) ;
y=tan(angle);
em=sqQ*y+am;
} while (em < 0.0 || em >= (en+1.0)); Reject.
em=floor (em); Trick for integer-valued distribution.
t=1.2%sq*(1.0+y*y) *exp(oldg-gammln (em+1.0)
-gammln (en-em+1.0)+em*plog+(en-em) *pclog) ;
} while (rani(idum) > t); Reject. This happens about 1.5 times per devi-
bnl=em; ate, on average.
}
if (p !'= pp) bnl=n-bnl; Remember to undo the symmetry transforma-
return bnl; tion.

See Devroye|[2] and Bratley [3] for many additional algorithms.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 120ff. [1]

Devroye, L. 1986, Non-Uniform Random Variate Generation (New York: Springer-Verlag), §X.4.
[2

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [3].

7.4 Generation of Random Bits

TheC languagegivesyou usef ul accessto somemachine-level bitwiseoperations
such as<< (left shift). Thissectionwill show you how to put such abilitiesto good use.

The problem is how to generate single random bits, with 0 and 1 equaly
probable. Of course you can just generate uniform random deviates between zero
and one and use their high-order bit (i.e., test if they are greater than or less than
0.5). However thistakes alot of arithmetic; there are special-purpose applications,
such as red-time signa processing, where you want to generate bits very much
faster than that.

One method for generating random bits, with two variant implementations, is
based on “primitive polynomials modulo 2.” The theory of these polynomiasis
beyond our scope (although §7.7 and §20.3 will give you small tastes of it). Here,
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