
Multi-Root Share of Single-Root I/O Virtualization (SR-IOV) Compliant
PCI Express Device

Jun Suzuki Yoichi Hidaka† Junichi Higuchi

Teruyuki Baba Nobuharu Kami Takashi Yoshikawa
System Platforms Research Laboratories, NEC Corporation

Kawasaki, Japan
IP Network Division, NEC Corporation

Abiko, Japan
{j-suzuki@ax, y-hidaka@bp, j-higuchi@ax, t-baba@ax, n-kami@ak, yoshikawa@cd}.jp.nec.com

Abstract—We have achieved sharing a single-root I/O
virtualization (SR-IOV) compliant PCI Express (PCIe) I/O
device among multiple computers.�A device share not only
inside a single computer among virtual machines, but also
among multiple computers attracts a great interest because it
provides efficient utilization of computer resources. Because
PCIe is originally a single-root system, realizing multi-root I/O
virtualization is much more difficult than SR-IOV. We allocate
virtual instances called VF of an SR-IOV-compliant I/O device
to an individual computer by virtualizing IOV configuration
and translating memory address of VF to that of the allocated
computer. With the FPGA implementation, we have achieved
sharing a commercially-available network interface card
among three computers without modification in OS/driver and
device itself. In addition, the performance reaches 99% of the
device in the best case whereas the implementation is in the
early stage, indicating this method provides not only MR
sharing but high performance at the same time.

Keywords-virtualization; resource share; Ethernet; I/O
device; PCI; SR-IOV

I. INTRODUCTION
Virtualization of computing resources is one of the key

technologies for efficiently using computing platforms by
sharing them among different system entities. Input/output
(I/O) devices are one of the main factors that constitute
computing platforms.

Recent advances in virtual machines (VMs) enable us to
share computer I/O devices with less performance
degradation and common interfaces [1-5]. Furthermore, the
advent of an input/output memory management unit
(IOMMU) [6] and PCI Express (PCIe) single-root I/O
virtualization (SR-IOV) [7] is expected to further reduce still
remaining performance degradation for I/O virtualization,
because they directly assign hardware resource of I/O
devices to a VM [8-10].

The above-mentioned technologies were developed for
sharing I/O devices among VMs inside a single computer. In
addition, sharing I/O devices among different computers
provides further efficient I/O device use. Previously

proposed methods, which have reported sharing I/O devices
among multiple computers, include one with a device
controller [11], and another with PCIe multi-root I/O
virtualization (MR-IOV) [12].

In the device controller method, a computer
accommodates I/O devices and provides I/O services to other
computers connected to it by a network. The method
provides common I/O interfaces and secures a computer
platform from device-driver bugs by encapsulating it into a
device controller. It enables device sharing without change to
the device and its driver. However, both the communication
process between a device controller and a client computer,
and software arbitration process for I/O requests at the
device controller lowers the shared I/O performance. The
study in [11] proposes interconnecting a client computer and
a device controller using Infiniband and implementing
special software stacks to provide a high-performance I/O
system.

 MR-IOV was recently standardized for I/O sharing
among multiple computers. It extends the conventional
specification of PCIe. The sharing efficiency of I/O devices
by MR-IOV is expected to be high, since it processes I/O
data traffic by hardware. However, its I/O system becomes
complex because each I/O device must adapt to the
specification of MR-IOV where the tree topology of an I/O
fabric of each computer must be individually managed over
the PCIe network interconnecting computers and I/O devices.

In this paper, we realize simultaneous sharing of an SR-
IOV-compliant PCIe I/O device among multiple computers.
We follow the approach that does not alter a device and its
driver used inside a single computer, to perform device
sharing among multiple computers. For interconnecting
computers and I/O devices, we use our Ethernet-based I/O
interconnection technology, ExpEther (Express Ether),
which we previously reported [13]. ExpEther allows multiple
computers and I/O devices to be connected using a standard
Ethernet. It constitutes a PCIe tree of individual computer
over an Ethernet. Its grouping mechanism enables non-IOV
I/O devices to be allocated to a certain computer and used
without modification to the device and its driver. The

2010 18th IEEE Symposium on High Performance Interconnects

978-0-7695-4208-9/10 $26.00 © 2010 IEEE

DOI 10.1109/HOTI.2010.21

25

allocation of an I/O device to a computer can be altered by
changing the computer-I/O grouping. The use of ExpEther
and an SR-IOV-compliant device realizes simultaneous I/O
device sharing among multiple computers in a simple way
without modification to an I/O device. The method is so
simple that it is implemented in a field programmable gate
array (FPGA) and realizes high-speed device sharing.

The rest of the paper is organized as follows. We discuss
our design goals for I/O device sharing in Section 2. In
Section 3, we describe our proposed method and its
architecture. In Section 4, we show the implementation of
our prototype, and in Section 5, we present the evaluation
results. We conclude our study in Section 6.

II. DESIGN GOALS
When designing the method for sharing an I/O device,

we set the following design goals:
� I/O device should be shared among multiple

computers without modification to the device and its
driver which follow the SR-IOV specification.

� Sharing mechanism should be simple and be
implemented using hardware to provide high-
performance device sharing.

� Shared resources of an I/O device should be flexibly
allocated to a desired computer using a hot-plug and
remove mechanism.

III. ARCHITECTURE
In the PCIe technology, an I/O device is accommodated

in a single computer and used by a single entity. A device is
connected to a tree topology of PCIe bus. Its root is within an
I/O controller chipset of a CPU and leaves are I/O devices.

Our previous proposal of ExpEther connects multiple
computers and multiple I/O devices using a standard
Ethernet. The multi-computer topology is enabled by
transporting transaction layer packets (TLPs), which are
PCIe packets, using an Ethernet frames by encapsulation. A
non-IOV I/O device is allocated to a certain computer with
the grouping method. The allocation of an I/O device to a
computer can be flexibly altered by changing the computer-
I/O grouping.

The advent of SR-IOV equips an I/O device with
multiple virtual instances which are respectively allocated to
VMs. However, the device is supposed to use inside a single
computer. In our proposal, we allocate these virtual instances
to different computers by use of ExpEther and perform
device sharing among multiple computers without
modification to the driver and device itself.

In subsection 3.1, we describe how ExpEther
interconnects multiple computers and I/O devices, and
enables non-IOV I/O devices to be allocated to a certain
computer using a grouping method. It constitutes a virtual
PCIe switch over an Ethernet. In subsection 3.2, we explain
an SR-IOV-compliant I/O device. In subsection 3.3, we
propose simultaneous I/O sharing by ExpEther.

Figure 1. System with ExpEther. Virtual PCIe switch is configured within
grouping VLAN. For example, computer A has 1:2 switch and computer B

has one of 1:1.

A. Virtual PCIe Switch with I/O Device Grouping
ExpEther interconnects multiple computers and I/O

devices using a standard Ethernet. Figure 1 shows a system
with ExpEther. ExpEther bridges encapsulate TLPs into
Ethernet frames and transport them between a computer-side
and an I/O-side bridge over an Ethernet.

When multiple computers and I/O devices are connected
using a network method, the PCIe address space of each
computer needs to be separated to perform I/O processing
correctly. In ExpEther, we use VLAN grouping for address
separation. The individual computer to which a given I/O
device is to be connected is determined by the VLAN.
ExpEther bridges for I/O devices connected to the same
computer are assigned a VLAN number corresponding to
that computer.

An individual computer can use a grouped I/O device
without modification to the device and its driver, when an
Ethernet-connected I/O device is managed in the same way
as other devices within its PCIe tree, and when it does not
have to care the interconnecting Ethernet. We enable this
usage by configuring a virtual PCIe switch over an Ethernet.
The combination of ExpEther bridges in a computer side and
I/O sides and an Ethernet works as a single virtual PCIe
switch. It belongs to the PCIe tree of the computer. The
virtualization is performed by emulating the response of a
PCIe switch at ExpEther bridges to the system software. A
PCIe switch is a PCIe component specified in the PCIe
specification [14]. It divides a PCIe bus for connecting
multiple I/O devices to a computer. The virtual PCIe switch
enables each computer to extend its PCIe bus over an
Ethernet. An Ethernet-connected I/O device can be used as a
PCIe I/O device since the configured virtual PCIe switch
over an Ethernet is compliant to the PCIe specification.

Computer
A

Computer
A

ExpEther
Bridge

ExpEther
Bridge

Computer
B

Computer
B

Computer
C

Computer
C

System
Manager
System

Manager

VLAN Grouping

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

I/O Device
A

I/O Device
A

I/O Device
B

I/O Device
B

I/O Device
C

I/O Device
C

EthernetEthernet

Virtual PCIe
Switch

PCIe Bus

PCIe Bus

VLAN 1 VLAN 2

Computer
A

Computer
A

ExpEther
Bridge

ExpEther
Bridge

Computer
B

Computer
B

Computer
C

Computer
C

System
Manager
System

Manager

VLAN Grouping

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

ExpEther
Bridge

I/O Device
A

I/O Device
A

I/O Device
B

I/O Device
B

I/O Device
C

I/O Device
C

EthernetEthernet

Virtual PCIe
Switch

PCIe Bus

PCIe Bus

VLAN 1 VLAN 2

26

Figure 2. SR-IOV-compliant I/O device used in Xen environment.

We also enable an I/O device to be hot-plugged and
removed among grouping VLANs without a halt of
computer operation. To change a connection for a given I/O
device, a system manager alters the VLAN number
assignment. To trigger PCIe-compliant hot-plug and removal
of an I/O device, ExpEther bridges periodically broadcast
keep-alive frames. When a frame broadcast by the ExpEther
bridge of a newly attached I/O device is received by a
computer-side ExpEther bridge, it interrupts a system and
triggers a hot-plug process. When no frame has been
received for a certain period of time, it starts a hot-remove
process.

When TLPs are transported over an Ethernet using
encapsulation, they should not be lost during transmission
and its transmission latency should be minimized not to
degrade I/O performance. We make ExpEther bridges
perform lossless transmission and congestion control within
an Ethernet protocol layer in an end-to-end (bridge-to-
bridge) manner [15].

By above mechanisms, a virtual PCIe switch within a
grouping VLAN separates the address space of each
computer, and extends a PCIe bus of each computer over an
Ethernet. An Ethernet connected I/O device can be used
without modification. An I/O device also can be hot-plugged
and removed among different computers.

B. SR-IOV-Compliant I/O Device
In our proposal, we share an SR-IOV-compliant I/O

device using ExpEther. In this subsection, we explain the
architecture of an SR-IOV-compliant I/O device. An SR-
IOV device has multiple virtual instances which are
individually allocated to VMs. By assigning hardware
instance to each VM, virtualization overhead of an I/O
device can be suppressed.

Figure 2 shows an SR-IOV-compliant I/O device used
inside a single computer with a Xen VM environment. An
SR-IOV-compliant I/O device is shared among two VMs
(DomU A and B). The I/O device has virtual instances called
virtual functions (VFs) and they are respectively allocated to
VMs. In a non-IOV environment, a privilege domain
(Dom0) arbitrates I/O requests of DomUs using software.
The software arbitration process is slow and it degrades the

Figure 3. SR-IOV-compliant I/O device shared among multiple

computers.

I/O performance. The PCIe SR-IOV was specified to
suppress the software overhead using hardware. It directly
accepts I/O requests from VMs and arbitrates accesses to the
I/O resources inside the I/O device.

As shown in Figure 2, an SR-IOV-compliant I/O device
has one physical function (PF) and the same number of VFs
as VMs. The PF is the interface for basic configuration of an
I/O device. Its configuration register is set by a PCI driver
and single-root PCI manager (SR-PCIM) in a Dom0. The
memory mapped region for the PF, which designated as
memory-mapped I/O (MMIO) in Figure 2, is accessed by a
PF driver. VFs are individually assigned to VMs and accept
their I/O requests. Its configuration register is set by a PCI
driver in a DomU, while its region for MMIO is accessed by
a VF driver. Each VF has its own resources for direct
memory access (DMA) and interrupt. The combination of an
SR-IOV-compliant I/O device and IOMMU at a host bridge
provides DMA access between the I/O device and the
memory region allocated to the VM without the
intermediation of Dom0. By this configuration, an SR-IOV-
compliant I/O device performs I/O processing of each VM
through a high-speed communication path individually
assigned to each VM. The I/O requests received from these
interfaces are arbitrated using hardware inside an I/O device.
This mechanism suppresses the software overhead regarding
I/O resource virtualization and provides fast I/O sharing
among multiple VMs.

C. Multi-Root Share of SR-IOV-Compliant I/O Device
Our proposal shares an SR-IOV-compliant I/O device

among multiple computers. However, an SR-IOV-compliant
device is designed for use not being shared among multiple
computers but inside a single computer. In our method, we
allocate virtual instances of an SR-IOV-compliant I/O device
to each computer by a virtual PCIe switch of ExpEther.

Figure 3 shows an SR-IOV-compliant I/O device shared
among multiple computers with the proposed method. We
designed three technologies to meet our design goals which
are mentioned in Section 2: (1) allocating I/O resources in
the VF unit to an individual computer by address translation.
This enables sharing of an I/O device, designed for use

VF A
Config. Reg.

VF B

Computer BComputer A

VF
Driver

PCI
Driver

VF
Driver

PCI
Driver

PF
Driver

PCI Driver,
SR-PCIM

PF
Config. Reg. MMIO

SR-IOV-Compliant I/O Device

Virtual
Config. Reg.

I/O Side ExpEther Bridge

(1)
VF Allocation

(2) Virtual I/O
Endpoint

(3) Hardware
Packet
Processing

Address
Translation

Virtual
Config. Reg.

Address
Translation

MMIO Config. Reg. MMIO
VF A

Config. Reg.
VF B

Computer BComputer A

VF
Driver

PCI
Driver

VF
Driver

PCI
Driver

PF
Driver

PCI Driver,
SR-PCIM

PF
Config. Reg. MMIO

SR-IOV-Compliant I/O Device

Virtual
Config. Reg.

I/O Side ExpEther Bridge

(1)
VF Allocation

(2) Virtual I/O
Endpoint

(3) Hardware
Packet
Processing

Address
Translation

Virtual
Config. Reg.

Address
Translation

MMIO Config. Reg. MMIO

VF A VF B

Dom0

DomU BDomU A

VF
Driver

PCI
Driver

VF
Driver

PCI
Driver

PF
Driver

PCI Driver,
SR-PCIM

PF

SR-IOV-Compliant I/O Device

Computer

Config. Reg. MMIO Config. Reg. MMIOConfig. Reg. MMIO
VF A VF B

Dom0

DomU BDomU A

VF
Driver

PCI
Driver

VF
Driver

PCI
Driver

PF
Driver

PCI Driver,
SR-PCIM

PF

SR-IOV-Compliant I/O Device

Computer

Config. Reg. MMIO Config. Reg. MMIOConfig. Reg. MMIO

27

Figure 4. Allocating VF to individual computer by address translation. VF
A is allocated to computer A as VF A’ and VF B is to computer B as VF B’.

inside a single computer, to be shared among multiple
computers and partitioning of I/O resources, (2) the virtual
I/O endpoint (VE) mechanism enables flexible assignment of
I/O resources and using them with an original device driver
without modification, and (3) hardware packet processing
enables efficient I/O resource sharing. In the following
subsection, we describe each of these three technologies in
detail.

1) Allocating VF to Individual Computer by Address
Translation

We share an SR-IOV-compliant I/O device among
multiple computers by allocating I/O resources in the VF
unit to individual computers. Because each VF in an I/O
device has an independent interface for receiving the control
for I/O processing and resources for DMA and interrupt, the
communication paths between computers and the I/O devices
are partitioned. Also, because many SR-IOV-compliant I/O
devices support the partition of its internal I/O resources,
such as bandwidth in a network-interface card (NIC) among
VFs, the internal resources of the I/O device can also be
partitioned along VFs. We can partition I/O resources among
computers sharing the device with this mechanism.

To share an I/O device in VF unit, we had to address the
difference in memory mapping. Because an SR-IOV-
compliant device is designed for use inside a single computer,
it is memory-mapped to a memory space of a single
computer. On the other hand, in our device-sharing
environment, the I/O resources which correspond to each VF
should be memory-mapped to the memory space to the each
allocated computer. For this purpose, we first create a device
address space to map the whole address region of the shared
device. Then, we remap the I/O resources which correspond
to each VF from the device address space to the address
space of the individual computer. When the TLPs traverse
the ExpEther bridge in an I/O side, their source and
destination addresses are translated between the address in
the address space of each computer sharing the device and
the one in the device address space.

The mechanism of address translation in more detail is
shown in Figure 4. VF A and B in an SR-IOV-compliant I/O
device are respectively allocated to computer A and B. All of
the I/O interfaces, i.e., the PF and VFs are memory-mapped
to the device address space. The mapped regions of VF A

and B are remapped as those of VF A’ and B’ which are
respectively located in the address space of each computer.
When a TLP is sent from computer A to VF A, the
destination address is translated using the deviation of the
base address of VFs A and A’. By way of contrast, when a
TLP is sent from VF A to the computer A, the destination
address is not translated but the source ID of the TLP is
translated to that of the VE. The VE is an I/O endpoint that is
detected by the computer A when it configures the assigned
VF A. We describe VE in the next section. The reason we do
not translates the destination address when TLPs are sent
from VF A to computer A is based on the DMA mechanism.
In DMA, a device driver in computer A sets DMA operation
to VF A using the address space of computer A. As a result,
the transmitted TLPs from VF A already have the address of
computer A as their destination address.

With these mechanisms, we can memory-map a VF to its
allocated computer. It enables an I/O device which is
designed for use inside a single computer to be accessed
from multiple computers. The allocation in the VF unit
partitions I/O resources among computers sharing the device.

2) Virtual I/O Endpoint
In I/O device sharing, we should be able to flexibly

assign and use partitioned I/O resources of the device
without interrupting other computers sharing the same device.
We should also be able to use partitioned I/O resources with
the device driver without software modification. However,
an SR-IOV-compliant I/O device is designed for use inside a
single computer, and it cannot accept separate controls from
multiple computers.

To flexibly assign and use the partitioned I/O resources,
and use them with its original device driver, we introduced a
VE into our method. As shown in Figure 3, VEs are
implemented in an ExpEther bridge in an I/O side and
realized by a virtual configuration register. They individually
correspond to the VFs in the I/O device. VE makes each
computer recognize the assigned VF as a non-IOV I/O
device. When a computer accesses its allocated I/O resources,
an ExpEther bridge forwards TLPs for configuration to a VE
and other TLPs to an assigned VF by address translation.
Therefore, in the boot process of a computer, the computer
recognizes assigned I/O resources as a non-IOV I/O device.

By the combination of the VE mechanism and hot-plug
and remove functions of ExpEther, we can flexibly assign
partitioned I/O resources to a computer as a non-IOV I/O
device over an Ethernet The hot-plug and remove do not
interrupt computers sharing the same device. The use of the
VE also allows computers to perform exclusive access to the
configuration register of an I/O device. Without VE, the
access of each computer to the configuration register of a
shared I/O device would interrupt the operation of other
computers sharing the same device. Moreover, the assigned
I/O resources can be used with its original device driver for a
VF.

3) Hardware Packet Processing
The process for routing accesses from computers to a

shared SR-IOV-compliant I/O device should be fast to
reduce the sharing overhead. We implement device sharing

Address Space

PF

VF A

VF B

VF A’

VF B’

Device Computer A Computer B
0x0

32 or
64 bit

Translation

Address Space

PF

VF A

VF B

VF A’

VF B’

Device Computer A Computer B
0x0

32 or
64 bit

Translation

28

Figure 5. Prototype for I/O device sharing. (a) ExpEther bridge in I/O

device side with functions for I/O sharing. (b) I/O box.

Figure 6. Block diagram of prototype. (a) ExpEther bridge in I/O device

side with functions for I/O sharing. (b) I/O box.

mechanism using hardware, and perform high-speed and
low-overhead device sharing. The hardware implementation
is possible because our method is simple using multiple
virtual instances of an SR-IOV-compliant I/O device to
perform device share among multiple computers. The
hardware TLP forwarding and address translation functions
of an ExpEther bridge in an I/O-side allocates each virtual
instance to each computer.

IV. IMPLEMENTATION
We have implemented the function for simultaneous I/O

sharing in an ExpEther bridge in an I/O device side. Figure 5
(a) shows a diagram of our ExpEther bridge prototype and
Figure 6 (a) is its block diagram. We have implemented the
bridge using an FPGA, Xilinx Virtex5. The bridge prototype
is a PCIe card and is inserted into an I/O box. The ExpEther
bridge card has a PCIe Gen1 x8 interface. It also has two
10GbE Ethernet interfaces for high throughput reliable data
transmission [16]. Figure 5 (b) shows the I/O box prototype
and Figure 6 (b) is its block diagram. It accommodates an
ExpEther bridge and an SR-IOV-compliant PCIe I/O device.
The bridge and the I/O device are connected with a PCIe bus
implemented at the board of the I/O box. With these
configurations, an ExpEther bridge connects an SR-IOV-
compliant I/O device to a standard Ethernet.

V. EXPERIMENTAL EVALUATION
We performed the sharing of a 10-GbE NIC among

multiple computers using our FPGA prototype. Note that the
NIC was commercially available SR-IOV NIC from Exar
without modification to the device and its driver. We first
showed that a computer recognizes an allocated VF of an
SR-IOV-compliant NIC as a non-IOV I/O device, and is
used with its unmodified device driver for the VF. Next, we
performed simultaneous I/O sharing among multiple
computers and measured its performance.

Figure 7. Experimental setup.

TABLE I. SPECIFICATIONS OF COMPONENTS USED IN EXPERIMENT.

Component Specification
OS CentOS5.4(2.6.18-164.el5)

Server 1 Intel Core 2 Quad (2.83 GHz) / 8
GB

Server 2 Intel Core 2 Quad (2.83 GHz) / 8
GB

Server 3 Intel Core 2 Duo (3.16 GHz) / 8
GB

CPU /
Memory

Client Intel Core 2 (2.66 GHz) / 2 GB
 The experimental setup is shown in Figure 7. Three
servers shared an SR-IOV-compliant NIC. ExpEther bridges
in server sides were implemented as PCIe adapter cards and
inserted into the I/O slots of the servers. ExpEther bridges in
server sides and an I/O side were interconnected with a two
standard 10GbE switches. These two switches formed two
disjoint 10GbE networks to provide two paths. The prototype
of our ExpEther bridges can load-balance traffic between the
two networks and achieve 20 Gb/s [16]. We connected
shared NIC to an IP network. A client for measuring a
network performance was connected through the IP network.
Other specifications of the components used in the
experiment are listed in Table 1.

In the proposed method, a VE mechanism enables each
computer to use an allocated VF as a non-IOV I/O device.
Figure 8 shows the part of the output of �lspci” command
in server 1, which shows its PCI tree. The Exar (previously
Neterion) NIC was indicated as “Neterion Inc. X3100
Series”, which was the same result under a non-IOV
environment. The allocated VF was recognized as a non-IOV
NIC, and configured and used with its original vendor-
provided driver for the VF without any modification.

Next, we performed a network benchmark test using iperf
[17] in an I/O sharing environment. Figure 9 shows the
measured network bandwidth when the NIC was shared with
up to three servers. In the “send” case, the client performed
the iperf evaluation to the tested servers. On the other hand,
in the “receive” case, the servers simultaneously performed
the benchmark to the client. The aggregated bandwidths
when the NIC was shared among one, two, and three servers
were 8.9, 9.9, and 9.9 Gb/s in the send case, and 7.7, 6.1, and

(a) (b)

ExpEther
Bridge
FPGA

ExpEther
Bridge
FPGA

10GbE
XFP

10GbE
XFP

10GbE
XFP

10GbE
XFP

PCIe Gen1 x8

10GbE

10GbE

PCIe SlotPCIe Slot

PCIe Gen1 x8

PCIe SlotPCIe Slot

ExpEther
Bridge
FPGA

ExpEther
Bridge
FPGA

10GbE
XFP

10GbE
XFP

10GbE
XFP

10GbE
XFP

PCIe Gen1 x8

10GbE

10GbE

PCIe SlotPCIe Slot

PCIe Gen1 x8

PCIe SlotPCIe Slot

Server 1

SR-IOV
10GbE NIC

SR-IOV
10GbE NIC

10GbE
Switch

EE BridgeEE Bridge

Server 2

EE BridgeEE Bridge

Server 3

EE BridgeEE Bridge

EE Bridge
for Device Sharing

EE Bridge
for Device Sharing

Benchmark
ClientI/O Box

10GbE

PCIe

EE: ExpEther

IP Network

10GbE
Switch

Server 1

SR-IOV
10GbE NIC

SR-IOV
10GbE NIC

10GbE
Switch

EE BridgeEE Bridge

Server 2

EE BridgeEE Bridge

Server 3

EE BridgeEE Bridge

EE Bridge
for Device Sharing

EE Bridge
for Device Sharing

Benchmark
ClientI/O Box

10GbE

PCIe

EE: ExpEther

IP Network

10GbE
Switch

29

Figure 8. PCIe tree of server 1.

Figure 9. Measured network bandwidth in I/O sharing environment.

6.0 Gb/s in the receive case. The parameters of the maximum
transmission unit (MTU) and the txqueuelen of each
interface of each machine were set to 9000 and 12000,
respectively, to maximize the achieved bandwidth in all the
evaluations. The time for each measurement was 60s.

In the send case of three servers, the bandwidth resource
was unequally allocated to each server. This unbalance is
solved with the QoS control function of the NIC. At the time
of evaluation, we had not yet implemented the function to
control the QoS of the NIC to our ExpEther bridge.

In the receive case, there was overhead in the achieved
bandwidth. To evaluate the cause of this performance
overhead, we monitored traffic of TLPs between one of the
three servers and the shared NIC. Figure 10 shows the
monitored traffic. In the receive case, the NIC transmitted up
to “N” read requests to the server for DMA memory read.
Then, it waited to send the next request until it received the
completion of its previous requests. The limitation of the
number of read requests by which the NIC send to the server
at one time became the bottleneck when we placed the server
and the shared NIC apart using an Ethernet. The limitation of
read requests is the implementation matter of the NIC. By
increasing the number of read requests, we can solve the
performance overhead seen in the receive case of Figure 9.

The shared NIC can also be used for the communication
between the servers. A virtual Ethernet switch is
implemented inside a NIC. Figure 11 shows the evaluated
bandwidth when server 1 performed the benchmark with
server 2 and 3 through the shared NIC. The cause of the
bandwidth overhead seen in Figure 11 was the same for that
of the receive case in Figure 9. With this inter-server
communication function, we can reduce the total number of
the NIC in the system for both inter-server and external
communication.

Figure 10. TLP traffic between server and shared NIC.

Figure 11. Measured network bandwidth of inter-server communication.
SV is server.

These experimental results showed we can share a
standard PCIe SR-IOV-compliant NIC among multiple
computers without modification to the device and its driver.
We achieved the total bandwidth of 9.9 Gb/s in a device
sharing environment in the best case. The sharing efficiency
was as high as 99%, even using our FPGA prototype. This
shows our method realizes high-performance I/O device
sharing by implementing its simple method using hardware.
The proposed method is applicable to various kinds of SR-
IOV-compliant I/O device.

VI. CONCLUSION
We have achieved the sharing of a PCIe SR-IOV-

compliant I/O device among multiple computers. Our
method connects computers and an I/O device using our
Ethernet-based I/O interconnection technology, ExpEther. It
enables an I/O device, which is designed for use inside a
single computer, to be shared among multiple computers. By
allocating an individual VF to each computer, an I/O device
is shared without modification to the device and its driver.
The proposed simple sharing mechanism enables its
hardware implementation, and we can perform efficient and
high-speed I/O sharing among multiple computers.

We have implemented three technologies in the ExpEther
bridge in an I/O side for simultaneous I/O sharing: (1) the
address translation mechanism enables allocating partitioned
I/O resources in the VF unit to each computer; (2) the VE
mechanism enables using allocated I/O resources as a non-

Server

Up to N Memory
Read Requests

Shared NIC

Completion w/ Data

Server

Up to N Memory
Read Requests

Shared NIC

Completion w/ Data

�
�
�
�
�
�
�
	

�

��

�
����
�
�

�
����
�
�������

�
�������
����
�

���� �������

�������������������

�
�
��

��
��

��
�
��

�
��
��

�
!
"#

$%

��������

��������

[root@**** ~]# lspci -vt
-[0000:00]-+-00.0 Intel Corporation 82X38/X48 Express DRAM

 Controller
 +-01.0-[0000:01]----00.0 Neterion Inc. X3100 Series 10

Gigabit Ethernet PCIe
 +-06.0-[0000:02]--+-00.0 Intel Corporation 82571EB

 Gigabit Ethernet Controller
 | \-00.1 Intel Corporation 82571EB

 Gigabit Ethernet Controller
 +-19.0 Intel Corporation 82566DM-2 Gigabit

 Network Connection

�
�
�
�
�
�
�
	

�

��

� � � � � �

���� �������

&�'"����(�������$�����������")�*�����������+��������
��!"��&,*

*
���

��
��

��
�
�
��
��

�
!
"#

$%

��������

��������

��������

30

IOV I/O device with its device driver provided by the
device’s vendor; and (3) the hardware forwarding of TLPs
enables efficient sharing of an I/O device. The experimental
results showed that the sharing efficiency of a 10-GbE NIC
was 99% in the best case, which is high enough to efficiently
use I/O resources among multiple computers.

The proposed method enables the sharing of not only
interface cards, which we have shown, but also various kinds
of SR-IOV-compliant I/O device.

ACKNOWLEDGEMENT
We thank people who supported and collaborated on this

work. Masahiko Takahashi gave us many technical
comments and helpful suggestions. This project was led by
Yukiko Yano and Toshiyuki Kanoh. We discussed together
with the People in Exar, Leonid Grossman and Arpit Patel on
the implementation matters on both their SR-IOV NIC
“X3100” and ExpEther. Hiroki Iwasaki helped us a lot in the
implementation of the FPGA prototype. Kota Marusero
Fujita helped us evaluate the prototype.

A part of this work is supported by National Institute of
Information and Communication Technology (NICT).

REFERENCES
[1] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M.

Williamson, “Safe Hardware Access with the Xen Virtual Machine
Monitor”, 1st Workshop on Operating System and Architectural
Support for the On-Demand IT Infrastructure (OASIS 2004), Oct.
2004.

[2] R. Russell “virtio: Towards a De-Facto Standard For Virtual I/O
Devices”, ACM SIGOPS Operating System Review, vol. 42, issue 5,
pp95-103, Jun. 2008.

[3] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt, “Bridging the
Gap between Software and Hardware Techniques for I/O
Virtualization”, 2008 USENIX Annual Technical Conference, 2008.

[4] K. K. Ram, J. R. Santos, Y Turner, A. L. Cox and S. Rixner,
“Achieving 10 Gb/s using Safe and Transparent Network Interface
Virtualization”, The 2009 ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environment (VEE 2009), March
2009.

[5] J. Liu and B. Abali, “Virtualization Polling Engine (VPE): Using
Dedicated CPU Cores to Accelerate I/O Virtualization”, 23rd
International Conference on Supercomputing (ICS’09), June 2009.

[6] � Intel Virtualization Technology for Directed I/O Architecture
Specification”, Sep. 2008.

[7] �Single Root I/O Virtualization and Sharing Specification Revision
1.1”, PCI-SIG, Jan. 2010.

[8] J. Liu, W. Huang, B. Abali, D. K. Panda, “High Performance VMM-
Bypass I/O in Virtual Machines”, 2006 USENIX Annual Technical
Conference, 2006.

[9] H. Raj and K. Schwan, “High Performance and Scalable I/O
Virtualization via Self-Virtualized Devices”, IEEE International
Symposium on High Performance Distributed Computing (HPDC’07),
June 2007.

[10] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A. L. Cox, W.
Zwaenepoel, “Concurrent Direct Network Access for Virtual
Machine Monitors”, IEEE 13th International Symposium on High-
Performance Computer Architecture (HPCA-13), Feb. 2007.

[11] J. Satran, L. Shalev, M. B. Yehuda, Z. Machulsky, “Scalable I/O – a
Well-Architected Way to Do Scalable, Secure and Virtualized I/O”,
USENIX First Workshop on I/O Virtualization (WIOV’08), Dec.
2008.

[12] �Multi-Root I/O Virtualization and Sharing Specification Revision
1.0”, PCI-SIG, May 2008.

[13] J. Suzuki, Y. Hidaka, J. Higuchi, T. Yoshikawa, and A. Iwata,
“ExpressEther – Ethernet-Based Virtualization Technology for
Reconfigurable Hardware Platform”, the 14th IEEE Symposium on
High-Performance Interconnects (HOTI’06), pages 45-51, Aug. 2006.

[14] �PCI Express Base Specification Revision 2.1”, PCI-SIG, March
2009.

[15] H. Shimonishi, J. Higuchi, T. Yoshikawa, and A. Iwata, “A
Congestion Control Algorithm for Data Center Area
Communications”, 2008 International CQR Workshop, April 2008.

[16] N. Enomoto, H. Shimonishi, J. Higuchi, T. Yoshikawa, and A. Iwata,
“High-speed, Short-latency Multipath Ethernet Transport for
Interconnections”, the 16th IEEE Symposium on High Performance
Interconnects(HOTI’08), pages 75-84, Aug. 2008.

[17] iperf. http://sourceforge.net/projects/iperf/

31

