17.1 The Shooting Method 757

17.1 The Shooting Method

In this section we discuss “pure” shooting, where theintegration proceeds from
x1 t0 2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots’
from both sides of the interval and trying to match continuity conditions at some
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphson (§9.7). It seeks to zero ns functions
of ny variables. The functions are obtained by integrating IV differential equations
from x; to z2. Let us see how this works:

At the starting point x; there are N starting values y; to be specified, but
subject to n; conditions. Thereforethereareny, = N — n; freely specifiable starting
values. Let usimagine that these freely specifiable values are the components of a
vector V that livesin a vector space of dimension ne. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a function that
generates a complete set of N starting valuesy, satisfying the boundary conditions
at x1, froman arbitrary vector value of V in which there are no restrictionson thens
component values. In other words, (17.0.2) convertsto a prescription

yi(z1) = yi(z1; Vi, - ., Vi) i=1,...,N (17.1.2)

Below, the function that implements (17.1.1) will be called 1oad.

Notice that the components of V might be exactly the values of certain “free”
components of y, with the other components of y determined by the boundary
conditions. Alternatively, the components of V might parametrize the solutionsthat
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose a gebraic rel ations among the y;, rather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier to
“solve” the boundary relations for a consistent set of y;’s. It makes no difference
which way you go, as long as your vector space of V's generates (through 17.1.1)
al allowed starting vectors y.

Given aparticular V, aparticular y(x;) isthus generated. It can then be turned
into ay(z2) by integrating the ODEs to x5 as an initia value problem (e.g., using
Chapter 16's odeint). Now, a z2, let us define a discrepancy vector F, also of
dimension ny, whose components measure how far we are from satisfying the no
boundary conditions at x5 (17.0.3). Simplest of al is just to use the right-hand
sides of (17.0.3),

Fy, = Bog(x2,y) k=1,...,n5 (17.1.2)

As in the case of V, however, you can use any other convenient parametrization,
as long as your space of F's spans the space of possible discrepancies from the
desired boundary conditions, with all components of F egua to zero if and only if
the boundary conditions at x5 are satisfied. Below, you will be asked to supply a
user-written function score which uses (17.0.3) to convert an N-vector of ending
values y(x2) into an no-vector of discrepancies F.

*(eollaWY YLION 3pISINO) N oe'wed dnao@apel) 0] [rewa puas Jo ‘(Ajuo ealswy YLON) £27/-228-008-T |[e2 10 Ju~/wo9’pis'pliom//:diny o1 ob
‘sanaysIp pue s$)00q sadiday [eauswnp Japio o) "panqiyosd Apouis si ‘1aindwod Jaaias Aue 0y (suo siyy Buipnjoul) saji ajgepeal-aulydew
Jo Buikdoo Aue Jo ‘uononpoidal Jayun4 "asn jeuosiad umo Jiay 1o} Adod Jaded suo axew 01 gaAA SPIA PIHOAA BU) JO SIasn Joj pajueld si
uoissiwlad "aremyos sadioay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuquwe) Aq z66T-886T (D) WbuUAdoD
(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

758 Chapter 17. Two Point Boundary Value Problems

Now, as far as Newton-Raphson is concerned, we are nearly in business. We
want to find a vector value of V that zeros the vector value of F. We do this
by invoking the globally convergent Newton's method implemented in the routine
newt oOf §9.7. Recall that the heart of Newton's method involves solving the set
of ny linear equations

J-6V = —F (17.1.3)
and then adding the correction back,
vrew — yeld 4 gy (17.1.4)

In (17.1.3), the Jacobian matrix J has components given by

OF;

Jij= 2t
J 8%

(17.15)

It is not feasible to compute these partial derivatives analytically. Rather, each
requires a separate integration of the N ODEs, followed by the evaluation of

OF; F(Vi,....Vi+ AV, ..)—F(WVi,....V;,..)
ov; AV

(17.1.6)

Thisis done automatically for you in the routine fd jac that comes with newt. The
only input to newt that you have to provide is the routine vecfunc that calculates
F by integrating the ODEs. Here is the appropriate routine, caled shoot, that is
to be passed as the actua argument in newt:

#include "nrutil.h"
#define EPS 1.0e-6

extern int nvar; Variables that you must define and set in your main pro-
extern float x1,x2; gram.
int kmax,kount; Communicates with odeint.

float *xp,**yp,dxsav;

void shoot(int n, float v[], float f[])
Routine for use with newt to solve a two point boundary value problem for nvar coupled ODEs
by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated from the n2
input coefficients v[1..n2], using the user-supplied routine 1oad. The routine integrates the
ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize h1, and minimum
stepsize hmin. At x2 it calls the user-supplied routine score to evaluate the n2 functions
f[1..n2] that ought to be zero to satisfy the boundary conditions at x2. The functions f
are returned on output. newt uses a globally convergent Newton’s method to adjust the values
of v until the functions £ are zero. The user-supplied routine derivs(x,y,dydx) supplies
derivative information to the ODE integrator (see Chapter 16). The first set of global variables
above receives its values from the main program so that shoot can have the syntax required
for it to be the argument vecfunc of newt.
{
void derivs(float x, float y[], float dydx[]);
void load(float x1, float v[], float y[1);
void odeint(float ystart[], int nvar, float x1, float x2,
float eps, float hl, float hmin, int *nok, int *nbad,
void (*derivs) (float, float [], float [1),
void (*rkqgs) (float [], float [], int, float *, float, float,

Jo Buikdoo Aue Jo ‘uononpoidal Jayun4 "asn jeuosiad umo Jiay 1o} Adod Jaded suo axew 01 gaAA SPIA PIHOAA BU) JO SIasn Joj pajueld si
uoissiwlad "aremyos sadioay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuquwe) Aq z66T-886T (D) WbuUAdoD

*(eollaWY YLION 3pISINO) N oe'wed dnao@apel) 0] [rewa puas Jo ‘(Ajuo ealswy YLON) £27/-228-008-T |[e2 10 Ju~/wo9’pis'pliom//:diny o1 ob
‘sanaysIp pue s$)00q sadiday [eauswnp Japio o) "panqiyosd Apouis si ‘1aindwod Jaaias Aue 0y (suo siyy Buipnjoul) saji ajgepeal-aulydew

(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

17.1 The Shooting Method 759

float [], float *, float *, void (*)(float, float []1, float [1)));
void rkgs(float y[], float dydx[], int n, float *x,
float htry, float eps, float yscall]l, float *hdid, float *hnext,
void (*derivs) (float, float [], float []1));
void score(float xf, float y[], float £[]);
int nbad,nok;
float h1l,hmin=0.0,x*y;

y=vector(1,nvar);

kmax=0;

h1=(x2-x1)/100.0;

load(x1,v,y);

odeint(y,nvar,x1,x2,EPS,hl,hmin, &nok,&nbad,derivs,rkqs) ;
score(x2,y,f);

free_vector(y,1,nvar);

For some problems the initial stepsize AV might depend sensitively upon the
initia conditions. It is straightforward to ater 1oad to include a suggested stepsize
h1 as another output variable and feed it to fdjac viaaglobal variable.

A complete cycle of the shooting method thus requires ny 4 1 integrations of
the N coupled ODEs. one integration to evauate the current degree of mismatch,
and ny for the partia derivatives. Each new cycle requires a new round of ns + 1
integrations. Thisillustrates the enormous extra effort involved in solving two point
boundary value problems compared with intia value problems.

If the differential equationsarelinear, then only one complete cycleisrequired,
since (17.1.3)—(17.1.4) should take us right to the solution. A second round can be
useful, however, in mopping up some (never al) of the roundoff error.

Asgiven here, shoot uses the quality controlled Runge-K uttamethod of §16.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just as
well be used.

You, the user, must supply shoot with: (i) afunction load (x1,v,y) which
calculates the n-vector y[1..n] (satisfying the starting boundary conditions, of
course), given the freely specifiable variables of v[1..n2] a theinitial point x1;
(if) afunction score (x2,y,f) which calculates the discrepancy vector £ [1. .n2]
of the ending boundary conditions, given the vector y[1..n] at the endpoint x2;
(iii) astarting vector v [1. .n2]; (iv) afunction derivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to use shoot.

CITED REFERENCES AND FURTHER READING:
Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

*(eollaWY YLION 3pISINO) N oe'wed dnao@apel) 0] [rewa puas Jo ‘(Ajuo ealswy YLON) £27/-228-008-T |[e2 10 Ju~/wo9’pis'pliom//:diny o1 ob
‘sanaysIp pue s$)00q sadiday [eauswnp Japio o) "panqiyosd Apouis si ‘1aindwod Jaaias Aue 0y (suo siyy Buipnjoul) saji ajgepeal-aulydew
Jo Buikdoo Aue Jo ‘uononpoidal Jayun4 "asn jeuosiad umo Jiay 1o} Adod Jaded suo axew 01 gaAA SPIA PIHOAA BU) JO SIasn Joj pajueld si
uoissiwlad "aremyos sadioay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuquwe) Aq z66T-886T (D) WbuUAdoD
(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

760 Chapter 17. Two Point Boundary Value Problems

17.2 Shooting to a Fitting Point

The shooting method described in §17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initia solution can’t even get from x; to x5 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a sguare root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such casesitis
feasible to integrate in the direction away from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usualy not feasible to integrate into
a singular point, if only because one has not usually expended the same analytic
effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficulties is shooting to a fitting point.
Instead of integrating from z; to 2, we integratefirst from x; to some point z that
is between z, and z»; and second from x5 (in the opposite direction) to « ;.

If (as before) the number of boundary conditionsimposed at x; isn1, and the
number imposed at x5 is no, then there are ny freely specifiable starting values at
x1 and ny freely specifiable starting values a z». (If you are confused by this, go
back to §17.1.) We can therefore define an no-vector V() of starting parameters
at x1, and a prescription load1 (x1,v1,y) for mapping V() into ay that satisfies
the boundary conditions at x,

yi (1) Zyi($1;V(1)1,---,V(1)n2) i=1,....N (17.2.1)
Likewise we can define an n;-vector V(y) of starting parameters at 2, and a
prescription 1load2(x2,v2,y) for mapping V 2y into ay that satisfies the boundary
conditions at s,

yi (z2) zyi(xz;‘/(z)l,...,v(z)nl) i=1,....N (17.2.2)

We thus have atotal of IV freely adjustable parameters in the combination of
V(1) and V(). The N conditionsthat must be satisfied are that there be agreement
in NV components of y at «; between the values obtained integrating from one side
and from the other,

yl-(xf;V(l)) zyi(xf;V(z)) i=1,....N (17.2.3)
In some problems, the N matching conditions can be better described (physically,

mathematically, or numerically) by using N different functionsF;, i = 1... N, each
possibly depending on the N components y;. In those cases, (17.2.3) isreplaced by

F; [y(xf; V(l))] =F; [y(xf; V(2))] i=1,....,N (17.2.4)

*(eollaWY YLION 3pISINO) N oe'wed dnao@apel) 0] [rewa puas Jo ‘(Ajuo ealswy YLON) £27/-228-008-T |[e2 10 Ju~/wo9’pis'pliom//:diny o1 ob
‘sanaysIp pue s$)00q sadiday [eauswnp Japio o) "panqiyosd Apouis si ‘1aindwod Jaaias Aue 0y (suo siyy Buipnjoul) saji ajgepeal-aulydew
Jo Buikdoo Aue Jo ‘uononpoidal Jayun4 "asn jeuosiad umo Jiay 1o} Adod Jaded suo axew 01 gaAA SPIA PIHOAA BU) JO SIasn Joj pajueld si
uoissiwlad "aremyos sadioay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuquwe) Aq z66T-886T (D) WbuUAdoD
(S-80TEY-TZS-0 NESI) ONILNINOD DIHILNIIOS 40 1V IHL :D NI STdIOTH TvIIHIANNN wouy abed sjduwres gapn apIm PHOM

