
Breadth First Search on Costefficient MultiGPU Systems

Takuji Mitsuishi
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

mits@am.ics.keio.ac.jp

Jun Suzuki
NEC Corporation

1753, Shimonumabe,
Nakaharaku, Kawasaki,

Kanagawa 2118666, Japan

jsuzuki@ax.jp.nec.com

Yuki Hayashi
NEC Corporation

1753, Shimonumabe,
Nakaharaku, Kawasaki,

Kanagawa 2118666, Japan

yhayashi@kv.jp.nec.com
Masaki Kan

NEC Corporation
1753, Shimonumabe,

Nakaharaku, Kawasaki,
Kanagawa 2118666, Japan

kan@bq.jp.nec.com

Hideharu Amano
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

asap@am.ics.keio.ac.jp

ABSTRACT
A parallel Breadth First Search (BFS) algorithm is pro-
posed for cost-efficient multi-GPU systems without enough
memory amount or communication performance. By using
an improved data structure for the duplication elimination
of local nodes, both required memory amount and process-
ing time are reduced. By using Unified Virtual Addressing,
time for communication can be hidden with the computa-
tion. The proposed algorithm is implemented on two cost-
efficient multi-GPU systems: Express multi-GPU system
which has a full of flexibility but the communication latency
between GPU and host is limited, and a high-end gaming
machine whose memory is limited. Both systems achieve
good strong scaling with the proposed methods. On Ex-
press multi-GPU system, the communication overhead was
almost completely hidden, and the aggregate communica-
tion throughput reached 4.77 GB/sec (38.16 Gbps), almost
theoretical maximum.

Keywords
GPU, ExpEther, Breadth First Search, Scalability

1. INTRODUCTION
Big data processing has been applied in various fields from

social networks to biology. In such fields, the relationship
between data is often represented by large target graphs,
that require a large computation cost to analyze. As a
cost-efficient solution, multi-GPU systems which have been
widely utilized in scientific computing have been researched
recently. Graph500, a benchmark with a graph analysis, was
adopted as a target application program for ranking super-
computers.
Despite the high performance of supercomputers in which

nodes providing a number of GPUs are connected with pow-
erful interconnection networks like Infiniband, they are not
suitable for data-centers that work mainly for non-numeric
computing considering their cost. Cost-effective alternative

This work was presented in part at the international symposium on Highly
Efficient Accelerators and Reconfigurable Technologies (HEART2015)
Boston, MA, USA, June 12, 2015.

is introducing a small scale multi-GPU systems depending
on the performance demand. We proposed a Breadth First
Search (BFS) algorithm for such a cost-effective multi-GPU
system called GPU-BOX [6]. However, GPU-BOX which
requires a large cabinet for concentrating a large number of
GPUs is still an expensive solution.

Here, we picked up two cost-efficient solutions. One is
Express multi-GPU system based on ExpEther [9], a vir-
tualization technique for extending PCI Express. Express
multi-GPU system can be built just pushing GPUs into an
extension rack of ExpEther. Each rack can hold two GPUs,
and by connecting them with ExpEther, the programmers
can treat all GPUs as if they were connected with a PCI
Express bus of a single host node.

Another target is a high-end gaming machine just con-
necting four GPUs into PCI Express Gen3 bus of a host.
Although the number of GPUs is limited into four in this
approach, it is the most cost-efficient approach to get a pow-
erful multi-GPU system.

Both Express multi-GPU system and a high-end gaming
machine have a limitation on the memory amount or in-
terconnection network. However, traditional work for de-
veloping parallel BFS algorithms for GPUs mainly focuses
on a single GPU or a large scale GPU clusters with pow-
erful interconnection network. In this paper, we proposed
a parallel BFS algorithm for such cost-efficient multi-GPU
systems with memory and network limitation.

Here we introduced the following two methods: (1) For
eliminating duplication of neighboring vertices, combination
of queue-type and vector-type array is used instead of tra-
ditional queue-based algorithms, and we can save memory
usage also. (2) The communication is overlapped with the
computation by using Unified Virtual Addressing and Cir-
cular Left-Right approach. By combination of them, we
show that a high performance can be obtained even with
cost efficient multi-GPU systems through the evaluation.

The rest of paper is organized as follows: First, cost-
efficient multi-GPU systems are introduced in Section 2 as
an accelerators in a data-center. Then, the Breath First
Search is introduced in Section 3, focusing on parallel pro-
cessing of a level-synchronized BFS. After a related two dif-
ferent scale BFS algorithms are explained in Section 4, we

GPU

Slot

Ethernet
I/F

GPU

Slot

Ethernet
I/F

GPU

Slot

Ethernet
I/F

GPU

Slot

Ethernet
I/F

GPU

PCIe Slot

PCIe signal

FPGA
(ExpEther)

10Gb Ether 10Gb Ether

SFP+ SFP+
Ethernet switch

connected
to host

I/O expansion unit

Figure 1: Express multi-GPU system

propose our BFS algorithm in Section 5.
Finally, the evaluation results are shown in Section 6, and

Section 7 concludes this paper.

2. COST EFFICIENT MULTIGPU SYSTEMS
Here, our target multi-GPU systems are introduced.

2.1 Express multiGPU system
ExpEther [9] is an Ethernet based virtualization tech-

nique, which was developed by NEC [7]. It extends PCI
Express which is high performance I/O network but lim-
ited to small area around the cabinet to much wider area
by using Ethernet. Various types of I/O devices on distant
location can be connected as if they were inside the cabinet.
As shown in Figure 1, an ExpEther NIC is connected to

each PCI Express port of GPU. In the NIC, PEB (PCI
Express-to-Ethernet Bridge) is provided. It encapsulates
Transaction Layer Packet (TLP) used in PCI Express into
Ethernet frame, and decapsulates it for extending PCI Ex-
press to Ethernet. Multiple GPUs are connected with a
common Ethernet switch. A delay-based protocol which
supports repeat and congestion control is utilized instead
of TPC, the loss-based protocol. It also employs Go-back-
N flow-control instead of Selective-Repeat. By using such
a performance centric protocol for small area communica-
tion, ExpEther can support larger bandwidth and smaller
latency than common Ethernet even using common cables
and switches for Ethernet. A host can be connected through
ExpEther NIC, and all GPUs can be treated as if they were
connected to the PCI Express of the host.
Since ExpEther gives programmer a flat view of multi-

GPUs, the programming complexity is much reduced. Pro-
grammers do not have to care about the communication
between hosts which provide a number of GPUs.
Express multi-GPU system is built by using ExpEther I/O

expansion units. The I/O expansion unit provides two slots
to ExpEther NIC implemented with an FPGA. For each
slot, since two 10Gb Ethernet ports (SFP+) are provided,
thus, 20Gbps bandwidth is available in total. Express multi-
GPU system enables to treat a lot of GPUs located in the
distant places. Here, two I/O expansion units are used to
connect four GPUs in total. In Express multi-GPU systems,
data can be directly transferred between GPUs thorough
ExpEther. Considering the latency of the ExpEther NIC
and Ethernet, the latency between GPUs is short [8]. How-
ever, the communication latency between host and GPUs is
large and it sometimes bottlenecks the system.

2.2 Highend gaming machine

Algorithm 1 Level-synchronized BFS

CF/NF is current/next frontier.
V isited indicates whether the vertex has been visited.
Label is searching result.
src is source vertex.

/* Initialize part */
Initialize V isited to 0 and Label to -1
push(NF , src); V isited[src]← 1; Label[src]← src
/* BFS iteration */
while NF is not empty do

CF ← NF ; NF ← ϕ
for all u in CF in parallel do

u← pop(CF)
for v that is adjacent to u do

if V isited[v] is zero then
V isited[v]← 1
Label[v]← u
push(NF , v)

end if
end for

end for
end while

Table 1: Example of level-synchronized BFS: search
undirected graph in Fig 2 from vertex 0

BFS iteration CF NF Label

0 0 0,-1,-1,-1,-1,-1,-1,-1
1 0 1, 2, 4 0, 0, 0,-1, 0,-1,-1,-1
2 1, 2, 4 3, 6 0, 0, 0, 2, 0,-1, 1,-1
3 3, 6 5 0, 0, 0, 2, 0, 3, 1,-1
4 5 7 0, 0, 0, 2, 0, 3, 1, 5
5 7 0, 0, 0, 2, 0, 3, 1, 5

One of the best ways to get the high performance with
small amount of money is to use GPUs for gaming ma-
chines. Here, the target high-end gaming machine connects
four GeForce GPUs with PCIe Gen3 slots on a commod-
ity host CPU. Unlike Express multi-GPU systems, the scale
of the system is limited into four. However, the host and
four GPUs are connected tightly with PCIe Gen3 and so
the communication latency is short. Memory is limited due
to the GPUs for gaming machines.

3. BREADTH FIRST SEARCH
Breadth first search, BFS is a typical graph algorithm that

searches all linked vertices one after another from a source
vertex, that is root. Each visited vertex is labeled by its
parent identifier or distance from source vertex as searching
result. We use parent labeling in this paper since Graph500
benchmark [1] adopts it.

3.1 Levelsynchronized BFS
For solving BFS with parallel architecture like GPU, we

apply level-synchronized BFS as shown in Algorithm 1. The
frontiers CF/NF in Algorithm 1 is boundary between vis-
ited and unvisited vertices and plays a role in termination
condition of searching. Table 1 shows an example result.
We use this example to explain our algorithm in Section 5.

0

1

2

4

6

3

5

7

A =

0 1 1 0 1 0 0 0
1 0 1 0 1 0 1 0
1 1 0 1 1 0 0 0
0 0 1 0 1 1 0 0
1 1 1 1 0 0 1 0
0 0 0 1 0 0 1 1
0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0

C = { 1, 2, 4, 0, 2, 4, 6, 0, 1, 3, 4, 2, 4, 5, 0, 1, 2, 3, 6, 3, 6, 7, 1, 4, 5, 5 }
R = { 0, 3, 7, 11, 14, 19, 22, 25, 26 }

Figure 2: CSR

3.2 CSR
Graphs are represented by an adjacency matrix A which is

a sparse matrix. For saving memory usage, we transform an
adjacency matrix into Compressed Sparse Row, or CSR. It
is a sparse matrix format constructed of two arrays column-
indices C and row-offsets R [5]. As shown in Figure 2, C
has every adjacency lists successively and R points to start
of each adjacency list in C. The length of C is M , and the
length of R is N + 1, where M is the number of edges and
N is the number of vertices in the graph.

4. RELATED WORK
Several parallel BFS algorithms have been recently pro-

posed for various scale multi-GPU systems.
For example, Merrill et al. [5] proposed a BFS algorithm

for single host systems including four GPUs. They proposed
a technique for efficiently gathering neighbors by changing
methods in accordance with the task granularity. However,
large scale systems with a number of GPUs that cannot be
implemented in a machine cabinet are not considered. They
do not take into account communication between GPUs for
scalability.
In contrast, Ueno et al. [10] proposed a BFS algorithm

for TSUBAME2.0 supercomputer that has a large number of
(4096) GPUs. Each node of TSUBAME2.0 has three GPUs
and two CPUs, and eight CPU threads are assigned into
each GPU. The total processing is distributed into CPUs
and GPUs. To suppress the communication frequency, 2D
partitioning is adopted. Their algorithm is optimized to a
large scale cluster with a large number of GPUs and CPUs,
but it is not suitable for our target machines with relatively
poor communication performance.

5. ALGORITHM AND IMPLEMENTATION

5.1 Overview of algorithm
Algorithm 2 shows a pseudo code of our parallel BFS al-

gorithm for cost-efficient multi-GPU systems. We exchange
vertices at GatherNeighbors phase to hide communication as
much as possible for Express multi-GPU system since Gath-
erNeighbors occupies the most part of computation time.
Before going into detail, we explain the data structure

used in the algorithm. Label is an 8-byte array whose in-
dices correspond to the vertex identifier. We call this data
structure vector-type array. It holds parent vertex identifiers
and returned search results. V ector is an 8-byte vector-type

Algorithm 2 Overview of proposed BFS on each GPUi

/* Initialize part */
Initialize Labeli to -1, V isitedi to 0 on each GPUi

if the GPUi has source vertex then
Enqueue(Queuei, src)
Labeli[src]← src
V isitedi[src]← 1

end if
/* BFS iteration */
while any Queuei is not empty do

Initialize V ectori to -1
// GatherNeighbors
for all j (0 ≤ j < NumGPUs) do

for all u in Queuej in parallel do
u← Dequeue(Queuej)
for all offset (R[u] ≤ offset < R[u+ 1]) do

V ectori[C[offset]]← u
end for

end for
end for
// UpdateLabels
for all id that is id for vector-type array in parallel do

if V ectori[id] is not negative value then
if V isitedi[id] is one then

V ectori[id]← −1
end if

else
Labeli[id]← V ectori[id]
V isitedi[id]← 1

end if
end for
// ConvertVtoQ
for all id that is id for vector-type array in parallel do

if V ectori[id] is not negative value then
Enqueue(Queuei, id)

end if
end for

end while

array that holds parent vertex identifiers like Label and is
initialized to a negative one at every BFS iteration. V isited
is a 1-byte vector-type array that represents whether the
vertex has been visited; zero for unvisited and one for vis-
ited. Queue is an 8-byte array that has vertex identifiers in
the current frontier. The length of Queue is variable, and
we call this data structure queue-type array. Each array is
allocated {8 or 1}-byte ×N/p bytes on each GPU memory,
where N is the number of vertices and p is the number of
GPUs.

5.2 Costefficient GatherNeighbors
Here, we explain implementation of gathering and scat-

tering neighbors, which prunes efficiently duplicate vertices
and saves memory usage.

We use Merrill et al.’s gathering method [5] which selects
an approach corresponding to the task granularity since [5]
is sophisticated for GPU architecture.

However, the naive implementation of the method pro-
duces a lot of duplicate vertices. In this case, we have
to prune duplications for reducing communication. Mer-
rill et al. do not consider pruning duplications so much
since they can use fast PCI Express bus for communication

2 41

GatherNeighbors kernel

neighbors

input Queue (as current frontier)

output Vector

(1) Gather neighbors from column-indices

(2) Scatter parents into Vector

0 2 4 6 0 1 3 4 0 1 2 3 6

-11-122441
0 1 2 3 4 5 6 7

-11-122441
0 1 2 3 4 5 6 7

1 2 4

parents CUDA thread

Figure 3: GatherNeighbors: This situation is same
with iteration 2 at Table 1 on single GPU

GPU 0 GPU 1 GPU 2 GPU 3

Ethernet Switch

Stride 1. Right stage:

Left stage: Src: GPU (i + 1)%4, Dst: GPU i

Src: GPU i, Dst: GPU (i + 1)%4

Stride 2. Right stage:

Left stage: If NumGPUs is even, not perform

Src: GPU i, Dst: GPU (i + 2)%4

GPU 0 GPU 1 GPU 2 GPU 3

Ethernet Switch

Right stage Left stage

Figure 4: Circular Left-Right approach with four
GPUs

between GPUs. Mastrostefano and Bernaschi prune dupli-
cations completely with a Sort-Unique method [4] to reduce
communication overhead between inter node. However, it is
a large task that can dominate the total execution time.
Here, we propose scattering parents method for pruning

duplications without time-consuming filter processing. Fig-
ure 3 shows our scattering method. Parents of gathered
neighbors are scattered into vector-type array instead of en-
queuing neighbors to the queue. If we gather duplications,
parents of them are stored in the same place like Figure 3.
Moreover, global memory usage on each GPU is reduced

(M −N)/p× 8 bytes by replacing the queue to vector-type
array. For example, M is edgefactor times N at Graph500
benchmark, and default edgefactor is 16. To handle large
graphs by the high-end gaming machine without enough
memory, work storage size should not depend on M cor-
responding to several times of N .

5.3 Hiding communication with Circular Left
Right approach

We hide communication efficiently by GatherNeighbors

phase using Unified Virtual Addressing (UVA) and Circular
Left-Right approach.

Hiding inter node communication has been a common
technique used in [10]. On the other hand, intra node com-
munication has not been considered thoroughly, since it does
not affect performance seriously. However, we have to care
about it because Express multi-GPU systems don’t have suf-
ficient communication bandwidth.

UVA enables to use a unified address space by virtually in-
tegrating memories of a CPU and GPUs. We can copy data
directly between two different GPU memories without copy-
ing data in CPU memory temporally, and a GPU can di-
rectly access the memory of other GPUs in kernels. We call
the former function UVA Memory Copy Peer (UVA-MCP)
and the latter UVA Memory Access Peer (UVA-MAP). Us-
ing UVA-MCP, we can control communication and compu-
tation flexibly, but receiving buffer is required on each GPU.
On the other hand, we can implement easily and need not
additional buffer with UVA-MAP.

The circular left-right approach is our proposed communi-
cation method applied left-right approach [2] for each GPU
to communicate with all GPUs efficiently. Our previous
work presents improved method of [2] for all-to-all commu-
nication. We can achieve large aggregate throughput fur-
thermore since all GPUs send and receive at the same time
without contention at each stage. Figure 4 shows the com-
munication between four GPUs. GPU i (0 ≤ i < p) commu-
nicates with GPU (i+ j)%p, where j is a variable for stride
(1 ≤ j ≤ ⌊p/2⌋). If the number of GPUs p is even, the left
stage communication at the last stride is omitted since it is
the same.

When we perform the GatherNeighbors phase with UVA-
MCP and the circular left-right approach, first, GPU i pro-
cesses its own Queuei at the kernel, while it receives peer
Queuej from GPU j by cudaMemcpyPeerAsync. Then GPU
i processes Queuej received just before, receives Queuek,
and iterates until each GPU processes all Queue similarly.
We create two CUDA streams for the kernel and copy, and
synchronize both streams by cudaStreamSynchronize, at the
end of each kernel and copy. By UVA-MAP, GPU i accesses
Queuej on GPU j in the kernel in accordance with the cir-
cular left-right approach.

In this paper, we only use UVA-MCP because we can not
control communication explicitly by using UVA-MAP. On
conventional single host multi-GPU system such as gaming
machine in the next section, there are almost no performance
difference between UVA-MCP and UVA-MAP. On the other
hand, the performance of UVA-MCP is better than one of
UVA-MAP on Express multi-GPU system.

5.4 Other implementation issues

5.4.1 UpdateLabels
When V ector[id] is not negative and V isited[id] is zero

meaning that the vertex is gathered at the BFS iteration
but unvisited, the vertex’s Label[id] and V isited[id] are up-
dated. If V ector[id] value is not negative and V isited[id]
value is one, the vertex’s V ector[id] is initialized to a nega-
tive one to avoid enqueuing visited vertices to Queue[id] at
ConvertVtoQ.

5.4.2 ConvertVtoQ
Valid vertices in V ector are enqueued to Queue as the

Table 2: Evaluation Environment (Express system)
CPU Intel Xeon E5-1650 @ 3.20GHz
Host Memory 16GB
OS CentOS 6.3
CUDA Toolkit 5.5

GPU NVIDIA Tesla K20 ×4
ExpEther board NEC N8007-104
I/O expansion unit NEC N8000-1005 ×2
Switch Mellanox SX1012 ×2
Network 10Gb Ethernet ×2

Table 3: Evaluation Environment (Gaming)
CPU Intel Core i7-4770K @ 3.50GHz
Host Memory 16GB
OS Ubuntu 14.04
CUDA Toolkit 5.5
GPU NVIDIA GeForce GTX 660 ×4
Motherboard ASUS Maximus VI Extream
PCI Express Generation 3.0
SLI adapter Not use

Table 4: TEPS with Merrill’s BFS (SCALE=20,
edgefactor=96)

Merrill Gaming Express

GPUs GTEPS Speedup GTEPS Speedup GTEPS Speedup

1 3.1 - 0.14 - 0.32 -
2 4.4 1.4 0.81 5.7 1.13 3.5
4 6.2 1.4 1.62 2.0 1.99 1.8

next frontier. We use scan operation to calculate offsets for
enqueuing to Queue. [6] describes this method in detail.

6. EVALUATION

6.1 Evaluation environment
We evaluated our proposed parallel BFS algorithm on two

systems. Both systems have a single CPU and four homoge-
neous GPUs. One is the Express multi-GPU system shown
in Table 2. It consists of two NEC N8000-1005 expansion
units and two switches. Each GPU can use bidirectional
10 Gbps (1.25 GB/sec) transfer capability. The other is a
high-end gaming machine shown in Table 3. All GPUs are
inserted into PCI Express Gen3 slots of the host mother-
board.
Graph500 benchmark is used as target graphs in the eval-

uation. It generates Kronecker graph [3] decided by pa-
rameters including SCALE and edgefactor (N = 2SCALE ,
M = N × edgefactor). We used default parameters with-
out SCALE and edgefactor in evaluations. Here, searched
graph data (CSR) were stored into GPU memories before
searching.

6.2 Achieved TEPS
Here, we show Traversed Edges Per Second (TEPS), a

performance measure of graph search algorithms, in the ex-
ecution of two systems with different numbers of GPUs.
Figure 6 and Figure 7 show TEPS with edgefactor = 16

of the gaming machine and the Express multi-GPU system
respectively. Those figures show TEPSs are improved as
graph size and the number of GPUs grow larger on both
systems.

We can bring near the performance on Express multi-GPU
system to one on gaming machine because about 85 % and
80 % of communication time are hided by computation time
with two GPUs and four GPUs respectively.

Each vertical line in both figures shows strong scaling
at each SCALE. At SCALE = 22 line, TEPS of gam-
ing machine is almost proportional to the number of GPUs.
While, TEPS of Express multi-GPU system is not propor-
tional between two and four GPUs. The reason why is
the device-to-host transfer of output result, that is Label.
Figure 8 shows Label transfer times and search times that
do not include Label transfer times at searching graph of
SCALE = 22, edgefactor = 16 on both systems with some
GPUs. On both systems, search times decrease as the num-
ber of GPUs grows. However, Label transfer times are con-
stant since we can not transfer data from devices to a host in
parallel. As shown in Figure 5, the constant time of Express
multi-GPU system becomes longer than one of gaming ma-
chine. Therefore, the strong scaling of Express multi-GPU
system is inferior to one of gaming machine.

6.3 Peertopeer communication
Here, we evaluated maximum aggregate throughput of

both systems. Figure 10 shows maximum throughput on
the Express multi-GPU system with four GPUs at the Gath-
erNeighbors phase when SCALE = 24 in the fourth BFS
iteration. We can achieve 4.77 GB/sec (38.16 Gbps) in this
situation (each GPU sends about 12.9 MB data) on the
Express multi-GPU system. On gaming machine, we can
achieve 24.04 GB/sec (192.32 Gbps) in the same situation.
According to the evaluation of the theoretical maximum
shown in [8], the aggregate throughput on both systems are
almost at the theoretical maximum.

6.4 Comparison with related work
Here, we compare the proposed BFS with our previous

work [6] and one by Merrill et. al. [5].
Our previous BFS improved the BFS by Mastrostefano

et. al. [4] on the data transfer size. Figure 9 shows av-
erage CUDA kernel execution times with the previous and
proposed BFS on gaming machine with a GPU. We can see
kernel times of our proposed BFS is about five times faster
than those of the previous BFS because of eliminating sort
processing. Moreover, the proposed BFS is superior to the
previous one on data communication. While the previous
BFS can reduce 30 % transfer size than Mastrostefano’s one,
the proposed BFS can hide 80 % of communication by the
computation.

Table 4 shows TEPS values by Merrill’s and the proposed
BFS with SCALE = 20, edgefactor = 96. This shows
TEPS of Merrill’s BFS is about 3.8 and 3.1 times as the
proposed BFS with four GPUs on gaming machine and Ex-
press system. However, strong scaling of the proposed BFS
on both systems is better than that by Merrill’s BFS. When
the system size grows, the proposed BFS has a possibility to
overcome the Merill’s one by using a large number of GPUs.

Most of kernel time of proposed BFS is the time of scatter-
ing neighbors into V ector at GatherNeighbors, that CUDA
threads write data to global memory at random. The ran-
dom accesses cause difference of performance between Mer-
rill’s BFS and our proposed BFS. However, the number of
times of random accesses can be divided by GPUs. The
graphs (adjacency matrices) generated by Graph500 have

 0

 1

 2

 3

 4

 5

 6

 7

100 101 102 103 104 105 106 107 108

T
hr

ou
gh

pu
t [

G
B

/s
ec

]

Data Size [Bytes]

Gaming HtoD
Gaming DtoH
Gaming PtoP
Express HtoD
Express DtoH
Express PtoP

Figure 5: Throughput

 0

 200

 400

 600

 800

 1000

 15 16 17 18 19 20 21 22 23 24

M
T

E
P

S

SCALE (N = 2SCALE)

Single
2GPUs
4GPUs

Figure 6: TEPS on Gaming machine

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 15 16 17 18 19 20 21 22 23 24

M
T

E
P

S

SCALE (N = 2SCALE)

Single
2GPUs
4GPUs

Figure 7: TEPS on Express

0!

50!

100!

150!

200!

250!

300!

p=1! p=2! p=4! p=1! p=2! p=4!

Gaming machine! Express system!

m
illi

se
co

nd
s�

Label transfer!
search!

Figure 8: Profiling at SCALE =
22, edgefactor = 16

 0

 20

 40

 60

 80

 100

 120

 15 16 17 18 19 20 21

m
ill

is
ec

on
ds

SCALE (N = 2SCALE)

Previous
Proposed

Figure 9: Kernel times

Figure 10: Overlapping communi-
cation and computation with four
GPUs on Express system

vertices that are relatively evenly spread [5]. Accordingly,
each GPU performs almost the same times of random ac-
cess. Moreover, the more system has GPUs, the range of
global memory that can be accessed is the smaller. Thus,
the spatial locality will be improved. From the above, we
can achieve good strong scaling with the proposed BFS.

7. CONCLUSION
We implemented and evaluated a parallel BFS algorithm

on two economical multi-GPU systems, the Express multi-
GPU system and the high-end gaming machine. We saved
memory usage by combining queue-type and vector-type ar-
ray. For hiding communication, we used UVA and circular
left-right approach to improve aggregate throughput. We
can hide about 85 % and 80 % of communication time by
computation with two and four GPUs respectively on Ex-
press multi-GPU system. Moreover we can achieve good
strong scaling with our proposed gathering neighbors method
on both systems. Techniques for saving memory and hiding
the communication overhead will be useful for other cost-
efficient multi-GPU systems which can be easily introduced
in data centers.
Our future work is solving bottleneck of transferring com-

putation results to bring performance of the Express multi-
GPU system to that of the gaming machine.

8. REFERENCES
[1] Graph 500. http://www.graph500.org/.

[2] L. Barnes. Multi-gpu programming, 2013. http://on-
demand.gputechconf.com/gtc/2013/presentations/S3465-
Multi-GPU-Programming.pdf.

[3] J. Leskovec, D. Chakrabarti, J. Kleinberg, and
C. Faloutsos. Realistic, mathematically tractable

graph generation and evolution, using kronecker
multiplication. In PKDD, pages 133–145. Springer,
2005.

[4] E. Mastrostefano and M. Bernaschi. Efficient breadth
first search on multi-gpu systems. Journal of Parallel
and Distributed Computing, 73(9):1292 – 1305, 2013.

[5] D. Merrill, M. Garland, and A. Grimshaw. Scalable
gpu graph traversal. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, pages 117–128,
New York, NY, USA, 2012. ACM.

[6] T. Mitsuishi, S. Nomura, J. Suzuki, Y. Hayashi,
M. Kan, and H. Amano. Accelerating breadth first
search on gpu-box. In International symposium on
Highly Efficient Accelerators and Reconfigurable
Technologies, HEART’14, July 2014.

[7] NEC Corporation. http://www.nec.co.jp.

[8] S. Nomura, T. Mitsuishi, J. Suzuki, Y. Hayashi,
M. Kan, and H. Amano. Performance analysis of the
multi-gpu system with expether. In International
symposium on Highly Efficient Accelerators and
Reconfigurable Technologies, HEART’14, July 2014.

[9] J. Suzuki, Y. Hidaka, J. Higuchi, T. Yoshikawa, and
A. Iwata. Expressether - ethernet-based virtualization
technology for reconfigurable hardware platform. In
Proceedings of the 14th IEEE Symposium on
High-Performance Interconnects, HOTI ’06, pages
45–51, Washington, DC, USA, 2006. IEEE Computer
Society.

[10] K. Ueno and T. Suzumura. Parallel distributed
breadth first search on gpu. In High Performance
Computing (HiPC), 2013 20th International
Conference on, pages 314–323, Dec 2013.

