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Abstract
A GPU cluster in which each node provides a few GPUs
connected with PCIe (PCI Express) is commonly used for
acceleration of a large application program requiring the per-
formance beyond a single GPU. However, in such a system,
programmers are required to describe two parallel program-
ming between nodes in MPIs or other message passing li-
brary as well as the fine grained parallel programming for
intra-GPUs. As a cost effective alternative of such clus-
ters, we propose a novel multi-GPU system with ExpEther,
a virtualization technique which extends PCIe of a host
CPU to Ethernet. All devices connected by ExpEther can
be treated as if they were directly connected to the host.
Evaluation with two application programs with and with-
out GPU-GPU communication revealed that the proposed
system with four GPUs achieved 3.88 and 3.29 times per-
formance improvement respectively compared with a single
GPU system. Compared with GPU cluster system in which
each node provides a GPU, the proposed system achieved
about 7% and 30% performance improvement, respectively.
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1. INTRODUCTION
In the field of high performance computing, acceleration

with GPUs has become popular. The growing GPU comput-
ing in recent years is supported by their rapid performance
improvement, higher energy efficiency than common multi-
core CPUs, and improved development environment such as
CUDA[7] and OpenCL[5].
When the performance supported by a single GPU is not

enough, acceleration using multiple GPUs is required. In
such cases, a cluster in which each node provides a few
GPUs connected with PCIe (PCI Express) is commonly

This work was presented in part at the international symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART2014),
Sendai, Japan, June 9-11, 2014.

used. Japanese Tsubame 2.5 [2] system is at the 11th place
in the Top500 of the world super computers ranking, and
Tsubame-KFC GCIC center won the top of Green500. Smaller
clusters using GPUs have been widely utilized in universities
or research laboratories as cost efficient supercomputers.

In such a system, as shown in Figure 1 (a), the number of
GPUs connected in a node is limited by the number of PCIe
ports of the host, power supply and cable length limitation
of PCIe. Thus, in most of such systems, two GPUs are
connected to a single host with PCIe, and such a node is
connected with each other by using Infiniband or Ethernet.

However, such a hierarchical structure introduces the fol-
lowing problems. First, the programming complexity of par-
allel processing is increased. In order to use such a cluster
efficiently, programmers are required to describe hierarchi-
cal parallel programming: that is, the coarse grained paral-
lel programming which controls the communication between
nodes in MPIs or other message passing library, and the fine
grained parallel programming for intra-GPUs in a special-
ized programming language such as CUDA and OpenCL.
Although some tools have been developed to reduce such
programming difficulty[11][1][9], they suffer a certain per-
formance overhead.

The second is the latency of communication between nodes
tends to be large. Since GPUs connected to the different
host must communicate via hosts, and it often stretches the
latency and limits the bandwidth when the number of nodes
becomes large.

The third is the cost of the hierarchical heterogeneous
architecture. Generally, most of host processors only man-
age the communication between GPUs during execution. It
means that computational power of powerful host CPUs is
mostly wasted.

In order to address such problems, we propose a novel
multi-GPU system with ExpEther, a virtualization tech-
nique[10] which extends PCIe of a host CPU to Ethernet.
All devices connected by ExpEther can be treated as if they
were directly connected to a host computer.

Figure 1 (b) shows an overview of the proposed system. A
number of GPUs can be easily connected to a single host di-
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Figure 1: Comparing typical and proposed systems

rectly by using ExpEther. This structure gives programmers
a flat view of multiple GPUs which enables programmers to
describe parallel programming without using MPI or other
message passing library for inter-node communication. Also,
the cost and power consumption of multiple host CPUs in
the traditional system shown in (a) are not needed.
In the proposed system (b), however, the latency of Ex-

pEther might degrade the performance, although the latency
through the host in (a) can be omitted. Thus, the perfor-
mance analysis of the real system using micro-benchmark
and practical application benchmarks are required.
The contribution of this paper is as follows:

• A prototype multi-GPU architecture using ExpEther
called GPU-BOX is proposed.

• The performance analysis using micro-benchmark and
practical application programs are shown, and it is
demonstrated that GPU-BOX can achieve better per-
formance than a corresponding cluster for applications
which require a limited inter-GPU data exchange.

2. RELATED WORK
In order to reduce the load of programmers of GPU clus-

ters, tools[1][9] [11] to hide the communication between nodes
from programmers have been developed. They give pro-
grammers of GPU clusters flat vision like Figure 1 (b) by
software environment so that communication part using MPI
is not necessary. However, such an approach using software
tools suffer a certain performance degradation.
Extending PCIe also enables to build a flat multi-GPU

system. Although PCIe is commonly used in a cabinet of
computers, it can be extended using cables specified in PCIe
External Cabling Spec.2.0[8] and PCIe switches[4]. By us-
ing such PCIe equipments, a number of GPUs can be con-
nected with a single host. For example, in DEGIMA-2[3],
more than hundred FPGAs and GPUs are connected to a
single host by using original PCIe switches. Unlike software
approach, GPUs and host are tightly connected without per-
formance degradation. However, since PCIe is originally de-
signed as a standard interface inside the cabinet, there is a
limitation in a cable length which makes interconnection of
a large number of GPUs difficult. The cost of PCIe switches

is much higher than that for Ethernet, since they are not so
commonly used.

3. EXPETHER
ExpEther[10] is an Ethernet based virtualization tech-

nique, which is developed by NEC[6]. It extends PCIe which
is high performance I/O network but limited to small area
around the cabinet to much wider area by using Ethernet.
Various types of I/O devices on distant location can be con-
nected as if they were inside the cabinet.

In term of performance, DMA transfer based on PCIe
specification is available without modification for communi-
cation between a host and a device. A latency overhead for
communication via Ethernet is also decreased by using an
original protocol for retransmission and congestion control.

3.1 ExpEther NIC

3.1.1 PEB
ExpEther NIC is consisting of bridges (PEB :PCI Express-

to-Ethernet Bridge) between PCIe and Ethernet. PEB en-
capsulates Transaction Layer Packet (TLP) used in PCIe
into Ethernet frame, and decapsulates it for extending PCIe
to Ethernet. PEB is implemented with common hardware/software
components including a conventional operating system, de-
vice driver, PCIe interface, Ethernet cables and Ethernet
Switch.

3.1.2 Specialized Protocol for ExpEther
ExpEther uses delay-based congestion control on Ether-

net to reduce the latency of communication unlike TCP with
loss-based protocol. In this protocol, a certain number of
probe packets are sent, when communication starts. Then,
the initial transmission bandwidth is decided based on the
acknowledging packets for the probe packets. After this,
the transmission bandwidth is adjusted according to RTT
(Round Trip Time). EFE (Ether Forwarding Engine) im-
plemented in ExpEther NIC PEB manages the congestion
control.

EFE employs Go-back-N as a flow-control method. Com-
pared with Selective-Repeat, Go-back-N has the advantage
of hardware cost which does not need the reorder buffer.
Also, although a number of retransmitted packets are re-
quired in the environments of low round-trip propagation
delay which ExpEther targets, packet retransmission would
not frequently happen.

3.2 A system example using ExpEther
Figure 2 shows an example of the basic system with Ex-

pEther. It consists of servers and devices connected by Eth-
ernet. On systems with ExpEther, multiple computer sys-
tems can exist together on a single Ethernet. Servers and
PCIe endpoints are grouped by the GID (Group ID), and
it is registered in each ExpEther NIC. A system manager
can change GID in ExpEther NICs and flexibly constitute
the groups of computer systems. Other detail of ExpEther
is shown in [6].

4. MULTI-GPU SYSTEM WITH EXPETHER
In this section, a multi-GPU system with ExpEther is

proposed with its prototype called GPU-BOX.
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4.1 System Design
ExpEther enables to connect a single host node with a

large number of GPUs via Ethernet network switch and con-
trol them as if they were connected to PCIe of the host.
Figure 3 shows an overview of the multi-GPU system

with ExpEther. The host and GPUs are connected with
common Ethernet cables and switches by using ExpEther
NIC attached to their PCIe port. Data are transferred di-
rectly between GPUs without using host memory by using
GPUDirect in CUDA. Although the number of GPUs con-
nected with a single Ethernet switch is limited, the number
of GPUs can be increased by using a common extension
technique used in Ethernet, that is, a tree like hierarchi-
cal structure with multiple switches. Note that the original
low latency communication protocol is used in ”Ethernet”
shown in Figure 3, while it is built from common Ether-
net cables and switches. Since Ethernet can be much more
extendable than PCIe, GPUs located distant place can be
connected and treated together.
Although the proposed system much improves the pro-

grammability and flexibility of the traditional GPU clusters,
a certain overhead in ExpEther NIC will stretch the latency
between GPUs and the host. In order to make the influence
of using ExpEther clear, a comprehensive analysis is done
in this paper.
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Figure 4: Block Diagram of GPU-BOX

Table 1: Evaluation Environment

PCIe Direct GPU cluster Proposed

CPU Xeon E5-1650 @3.20 GHz
GPU NVIDIA Tesla C2050

Host Memory 16 GB
OS CentOS 6.0

Host Compiler gcc4.4
CUDA Toolkit 4.2
MPI × OpenMPI 1.6 ×

Network × 10GbE 10GbE x2
Switch × DELL Force10 S2410P

4.2 GPU-BOX
Before evaluation, the target prototype system called GPU-

BOX is introduced. Although the proposed system enables
to treat a lot of GPUs located in the distant places, as the
first step of research, here, multiple GPUs are implemented
in a single cabinet called GPU-BOX. As shown in Figure 4,
GPU-BOX provides multiple PCIe slots with ExpEther NIC
and power supply. The target GPU-BOX in this paper has
eight slots. Through the ExpEther NIC implemented with
an FPGA, two 10Gb Ethernet ports (EFP+) are provided
for each slot, thus, 20Gbps bandwidth is available in total.
The power supply of the target GPU-BOX is up to 3000W
which is enough to connect eight GPUs.

5. EVALUATION

5.1 Experimental Environment
GPU-BOX is evaluated and compared with traditional

multi-GPU systems in which each node provides a GPU
(GPU cluster). Also, a single node multi-GPU system (PCIe
Direct) connecting multiple GPUs with PCIe is evaluated
for measuring the overhead of ExpEther. Table 1 shows
the detail specification of multi-GPU systems used in the
evaluation. Of course, the same GPUs, host CPU, OS and
programming environment are used for fair evaluation.

5.2 Communication Performance
First, the communication performance between hosts and

devices of the proposed system is evaluated by measuring
small kernels described in CUDA. Transfer time from a host
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Table 2: Evaluation target in microbenchmark
target called function

HtoD Sync cudaMemcpy
HtoD Async cudaMemcpyAsync
DtoH Sync cudaMemcpy
DtoH Async cudaMemcpyAsync
DtoD Sync cudaMemcpyPeer
DtoD Async cudaMemcpyPeerAsync
Kernel Sync kernel + cudaThreadSynchronize
Kernel Async kernel

Table 3: Minimum latency
PCIe Direct (µs) Proposed (µs)

HtoD Sync 24.9 225
HtoD Async 2.79 14.2
DtoH Sync 26.8 223
DtoH Async 2.79 19.1
DtoD Sync 30.0 39.4
DtoD Async 23.3 57.8
Kernel Sync 22.8 184
Kernel Async 1.34 6.19

to a device (HtoD), that from a device to a host (DtoH), and
that from a device to another device (DtoD) were evaluated.
Also, by executing a tiny kernel function, the latency over-
head for calling kernel function was evaluated. Two cases:
synchronous calls(Sync) and asynchronous calls(Async) were
tried and compared. For asynchronous kernel call, calling
kernel function was substituted by cudaThreadSynchronize(),
so that the kernel was asynchronously launched. Evaluated
times are average of a large number of iterative executions.

5.2.1 Latency
Figure 5 shows the execution time of the data transfer

in GPU-BOX with ExpEther. The execution time is kept
constant until a certain size of data transfer, and this time
is considered as the minimum latency required for set up
the data transfer. It depends on the type of data transfer
as shown Table 3.
In GPU-BOX, synchronous data transfer between a host

and a device requires about ten times minimum latency com-
pared with the asynchronous transfer. Also, kernel execu-
tion time of the host-device communication is largely in-
creased because of the synchronization. It is considered that
synchronizing a host and a device needs relatively long time,
about 200µs.
Table 3 also compares PCIe direct and the proposed sys-

tem. Because of the overhead using ExpEther, the mini-
mum latency is increased from 1.3 times to 9 times. The
difference is large for the communication between host and
devices, while the difference in DtoD Async and DtoD Sync
communication is 1.3 and 2.48, respectively. This evaluation
results suggest that in multi-GPU system with ExpEther,
the communication between GPUs must be done directly as
possible.

5.2.2 Maximum Throughput
Figure 5 shows that more than 1MB sized data, the la-
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Figure 5: Latency of data transfer in the proposed
system

Table 4: Maximum throughput
PCIe Direct (Gbps) Proposed (Gbps)

HtoD Sync 48.8 10.6
HtoD Async 48.4 10.7
DtoH Sync 52.1 10.8
DtoH Async 52.6 10.9
DtoD Sync 47.1 10.7
DtoD Async 47.1 10.7

tency of all methods is almost the same depending on the
maximum throughput in the system. The measured values
of maximum throughput on each type of data transfer are
shown in Table 4.

The throughput of PCIe direct is, of cause, larger than
the proposed system, by about 5 times. However, consider-
ing that the maximum throughput of GPU-BOX is 20Gbps
(10Gbps × 2) at maximum, the proposed system could make
well use of the bandwidth of Ethernet.

5.3 Application Performance
For performance evaluation, we implemented two appli-

cation programs, the simulation of particles motion and the
calculation of advection term. The former has no commu-
nication between devices, while the latter includes a con-
siderable amount of communication between devices. They
are mainly consisting of following three parts; (1) comput-
ing in GPUs, (2) data transfer between host and GPU, and
(3) data exchange between GPUs. The former, the calcula-
tion of particle has only two of them, while the latter, the
calculation of advection term includes all of them. In the
programs for GPU-BOX, the communication between GPUs
are described using memory copy APIs shown in Table 2 in
GPU-BOX. Synchronization of multiple GPUs are done us-
ing cudaThreadSynchronize API in CUDA. In contrast, in
the programs for GPU cluster, MPI functions (MPI Send,
MPI Recv, MPI Isend, and MPI Irecv) are used for data
communication as well as a barrier synchronization function
(MPI Barrier).

5.3.1 Target Application
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Figure 6: Performance of calculating particle motion

5.3.1.1 Particle Motion Simulation by the Runge-
Kutta Method.
This application simulates particle motion when initial

particle distribution and velocity field are given and there is
no interference between particles. It divides time into several
steps, and on each step, each particle position is updated
with the velocity field by the Runge-Kutta method. Since
the motion of each particle is independent from the other,
it is possible to perform every particle motion computation
in parallel, and there is no communication between GPUs
in multi-GPU environment. The computational complexity
is O(N) where N is the number of particles.

5.3.1.2 Advection term by Cubic Lagrange Interpo-
lation.
Calculation for advection term of Cartesian grid method

is a kind of fluid dynamics computation. It simulates the
movement of ink when initial concentration, distribution,
and velocity field are given. On this calculation, it sepa-
rates the entire surface into grids and updates each value
of the grid using values of the surrounding grids in a cer-
tain time step. On each step, updating of the grid value is
independent from other computations. However, in case of
computing with multiple GPUs, we have to exchange data
around memory-boundary between GPUs. The computa-
tional complexity is O(M×N) where M and N are the num-
ber of grids for x and y direction, respectively. The commu-
nication amout becomes O(M).

5.3.2 Evaluation of execution time

5.3.2.1 Simulation of Particle Motion.
Figure 6 shows the performance on simulating particle

motion in three systems, a single GPU system, proposed
system with four GPUs, and a GPU cluster with four node
in which each node has a GPU. Table 5 shows the size of
each problem used in evaluation.
The performance was improved with multiple GPUs for

enough large size problem. Compared with a single GPU,
proposed system with four GPUs achieved 3.88 times per-

Table 5: Problem Size of Particle Motion
Number Particles Steps

1 1x1024x1024 100
2 1x1024x1024 1000
3 10x1024x1024 1000
4 10x1024x1024 2000
5 10x1024x1024 4000
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Figure 7: Performance of calculating advection
terms

formance improvement.
On the other hand, computing the small size problem

(number 1 and 2), both proposed system and GPU cluster
could not achieve the performance proportional to the num-
ber of GPUs. In the case of small problems, the parallelism
is not enough for the number of core, and the performance
is influenced strongly by host-device data transfer.

However, the proposed system achieves better performance
than GPU cluster especially for small sized problem. In term
of execution time, the difference is almost a constant corre-
sponding to the initialization of communication. Even in a
large sized problem, the performance of the proposed system
is about 7% better than that of GPU cluster.

5.3.3 Calculation of Advection Term
Figure 7 shows the performance on computing advection

term in three systems. Table 6 shows the size of each prob-
lem used in evaluation.

The proposed system achieved 3.29 times performance at
most compared with a single GPU system, for enough size
of problem.

Similar to the case of particle motion simulation, the per-
formance improvement by multiple GPUs could not be ob-
tained for computing small problems. In calculating advec-
tion term, the communication overhead between GPUs also
causes the performance degradation as well as communica-
tion overhead between host and GPUs.

Compared with GPU cluster, the proposed system also
achieved higher performance. Even for a large size prob-
lem, the performance of the proposed system is about 30the
case of particle motion simulation, since advection term re-
quires a lot of GPU-GPU communications. As shown in the
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Table 6: Problem Size of Advection Term
Number X Y Steps

1 1024 1024 1024
2 2048 2048 1024
3 4096 4096 1024
4 8192 8192 1024
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Figure 8: Performance versus Data transfer

previous evaluation results, the minimum latency of DtoD
communications is small in the proposed method. Since the
ExpEther supports an original low latency protocol, the la-
tency of communication is shorter than that of GPU cluster
which requires the communication through the host.

5.4 Performance versus arithmetic intensity
Figure 8 shows the performance versus arithmetic inten-

sity measured by executing simulation of particle motion.
In the simulation, GPUs send host locations of particles

represented with 8 byte data in every fixed number of steps.
The arithmetic intensity can be computed as follows.

(numberofsteps/(8× numberofdatatransfer)

Theoretical performance and data transfer lines are also
shown in the graph. The actual performance is evaluated
with computing large size (1024x1024 particles) problem and
small size (32x1024 particles) problem.
Computing the large size problem, the proposed system

achieves performance close to two theoretical performance.
Data transfer becomes bottleneck in the case of low com-
putation ratio and computation becomes bottleneck in the
case of high computation ratio. Figure 8 shows that the
bottleneck of the system can be estimated based on a single
GPU performance, data transfer throughput and the ratio
of computation and data transfer in the application.
However, computing the small size problem, performance

in the system is lower than theoretical, especially at high
computation ratio. It occurs because of lack of the paral-
lelism which cannot be estimated in the graph.

6. CONCLUSION

A multi-GPU system with ExpEther is proposed and eval-
uated. It allows to interconnect a single host PC and mul-
tiple GPU devices with ExpEther which extends PCIe bus
to Ethernet.

Through the evaluation with micro-benchmarks, host-device
communication of the proposed system requires up to 9
times minimum latency compared with the case only PCIe
bus is used. On the other hand, the minimum latency for
communication between devices did not increase greatly. In
every data transfer, the maximum throughput is about 11
Gbps showing that it makes well use of 20 Gbps Ethernet
bandwidth.

Evaluation with two application programs with and with-
out GPU-GPU communication appeared that the proposed
system with four GPUs achieved 3.88 and 3.29 times per-
formance improvement respectively compared with a single
GPU system. Compared with GPU cluster system in which
each node provides a GPU, the proposed system achieved
about 7% and 30% performance improvement, respectively.
Now, the system with evaluation provides only four GPUs.
Evaluating larger size system is our fugure work.
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