
Accelerating Breadth First Search on GPUBOX

Takuji Mitsuishi
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

mits@am.ics.keio.ac.jp

Shimpei Nomura
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

nomura@am.ics.keio.ac.jp

Jun Suzuki
NEC Corporation

1753, Shimonumabe,
Nakaharaku, Kawasaki,

Kanagawa 2118666, Japan

jsuzuki@ax.jp.nec.com
Yuki Hayashi

NEC Corporation
1753, Shimonumabe,

Nakaharaku, Kawasaki,
Kanagawa 2118666, Japan

yhayashi@kv.jp.nec.com

Masaki Kan
NEC Corporation

1753, Shimonumabe,
Nakaharaku, Kawasaki,

Kanagawa 2118666, Japan

kan@bq.jp.nec.com

Hideharu Amano
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

asap@am.ics.keio.ac.jp

The graph analysis has been applied in various fields re-
lated to big-data processing and actively researched in re-
cent years. For processing a larger scale of graph, parallel
computing with multi-GPU system is paid attention as an
economical solution. Here, an efficient parallel method is
proposed to solve a typical graph analysis, Breadth First
Search (BFS) for multi-GPU systems. Our target system
is GPU-BOX, a prototype of multi-GPU system using Ex-
pEther which is a virtualization technology based on PCI
Express and Ethernet. Although many vertices between
GPUs must be exchanged to run BFS on multi-GPU sys-
tem, GPU-BOX provides only small communication perfor-
mance because of using Ethernet. Our parallel algorithm for
BFS is designed so as to reduce the traffic between GPUs as
possible. The proposed method reduced 30–40% traffic be-
tween GPUs and improved the traditional parallel method
by 10%.

Keywords
GPU, Cluster, ExpEther, Graph Algorithm, Scalability

1. INTRODUCTION
Graph analysis is a key processing in big data analy-

sis. It is frequently utilized in social networks, micro-blogs,
protein-protein interactions, and the connectivity of theWeb.
In such fields, large target graphs sometimes require a large
computation cost [15]. As a cost efficient solution, multi-
GPU systems which have been widely utilized in scientific
computing have been researched recently. Graph500, a bench-
mark with a graph analysis, was adopted as a target appli-
cation program for ranking supercomputers.
However, although supercomputers in which nodes pro-

viding a number of GPUs are connected with powerful in-
terconnection networks like Infiniband achieve a high per-
formance, they are not suitable for data-centers which work
mainly for non-numeric computing considering their cost.
As a cost-effective alternative, we have proposed a multi-

This work was presented in part at the international symposium on Highly
Efficient Accelerators and Reconfigurable Technologies (HEART2014),
Sendai, Japan, June 911, 2014.

GPU system connecting with ExpEther [14]. ExpEther is a
virtualization technique for extending PCI Express used in-
side a PC to Ethernet, and gives programmers a flat view of
network connecting various types of devices located at dis-
tant places. By using ExpEther, various number of GPUs
can be connected, and programmers can treat them as if
they were connected with a PCI Express bus of a node.
Various number of GPUs can be attached to a data-center
depending on the performance requirement.

However, a problem of multi-GPU system using ExpEther
is relatively poor communication performance between mul-
tiple GPUs. Although it allows direct data communication
between all GPUs, packets must be transferred on Gbit
Ethernet through two bridges; PCI Express to Ethernet
and Ethernet to PCI Express. The latency is stretched
compared with supercomputers connected with the power-
ful SANs (System Area Networks) like Infiniband. Some
Breadth First Search (BFS) algorithms which make the best
use of a single or multiple GPUs have been proposed [11]
[10]. Unfortunately, they require a large amount of commu-
nication which might degrade performance on multi-GPU
systems with ExpEther. Since communication amount is
increased as the size of graph and the number of GPUs, the
communication will become bottleneck when a large sized
graph is analyzed by a large number of GPUs in the future.

Here, a parallel BFS algorithm which reduces the com-
munication between GPUs as possible is proposed, imple-
mented and evaluated on a multi-GPU system with Ex-
pEther called GPU-BOX. The proposed algorithm mini-
mizes the communication of vertices between GPUs by set-
ting flags only on the active vertices.

The rest of paper is organized as follows: First, our tar-
get multi-GPU system is introduced in 2 as a cost efficient
method to provide multiple GPUs in a datacenter. Then,
the Breath First Search is introduced in 3, focusing on par-
allel processing of a level-synchronized BFS. After a related
BFS algorithm is explained in section 4, we propose our BSF
algorithm in 5.

Finally, the evaluation results are shown in 6 and 7 con-
cludes this paper.

2. A MULTIGPU SYSTEM WITH EXPETHER

Figure 1: GPU-BOX

ExpEther [14] is an Ethernet based virtualization tech-
nique, which was developed by NEC [12]. It extends PCI
Express which is high performance I/O network but lim-
ited to small area around the cabinet to much wider area
by using Ethernet. Various types of I/O devices on distant
location can be connected as if they were inside the cabinet.
Now, a prototype multi-GPU system with ExpEther called

GPU-BOX is available. As shown in Figure 2, a ExpEther
NIC is connected to each PCI Express port of GPU. In the
NIC, PEB (PCI Express-to-Ethernet Bridge) is provided. It
encapsulates Transaction Layer Packet (TLP) used in PCI
Express into Ethernet frame, and decapsulates it for extend-
ing PCI Express to Ethernet. Multiple GPUs are connected
with a common Ethernet switch. A delay-based protocol
which supports repeat and congestion control is utilized in-
stead of TPC, the loss-based protocol. It also employs Go-
back-N flow-control instead of Selective-Repeat. By using
such a performance centric protocol for small area communi-
cation, ExpEther can support larger bandwidth and smaller
latency than common Ethernet even with common cables
and switches for Ethernet. A host can be connected through
ExpEther NIC, and all GPUs can be treated as if they were
connected to the PCI Express of the host.
Since ExpEther gives programmer a flat view of multi-

GPUs, the programming complexity is much reduced. Pro-
grammers do not have to care about the communication
between hosts which provide a number of GPUs.
Although the proposed system enables to treat a lot of

GPUs located in the distant places, as the first step of re-
search, here, multiple GPUs are implemented in a single
cabinet called GPU-BOX. As shown in Figure 1, GPU-BOX
provides multiple PCI Express slots with ExpEther NIC and
power supply. The target GPU-BOX in this paper has eight
slots. Through the ExpEther NIC implemented with an
FPGA, two 10Gb Ethernet ports (EFP+) are provided for
each slot, thus, 20Gbps bandwidth is available in total. The
power supply of the target GPU-BOX is up to 3000W which
is enough to connect eight GPUs. [13]

3. BREADTH FIRST SEARCH
Breadth-first search (BFS) is a typical graph analysis al-

●�✁

�P✂✄ ☎✆✝✞

✟✠✡☛ ☞✌✍✎✏✑

❋�●✒
✭✓✔✕✓✞✖✄✗✘

✶✙✚✛ ✜✢✣☛✤ ✶✙✚✛ ✜✢✣☛✤

☎❋�❙ ☎❋�❙

✳✳✳✳✳✳✳✳

✥✦✧★✩✪✫

●�✁

☎✆✝✞

✓✞✖✄✗❊✄✞
✂■❋

●�✁

☎✆✝✞

✓✞✖✄✗❊✄✞
✂■❋

●�✁

☎✆✝✞

✓✞✖✄✗❊✄✞
✂■❋

●�✁

☎✆✝✞

✓✞✖✄✗❊✄✞
✂■❋

Figure 2: Constitution of GPU-BOX

Figure 3: CSR

gorithm which visits every vertex in all levels of the graph
from a source vertex. Here, each vertex is labeled by the
parent number, and the result of the search is represented
by the label.

Undirected graphs generated for Graph500 benchmark are
used as target graphs. They are sparse graphs generated by
a Kronecker generator like the Recursive MATrix (R-MAT)
graph generation algorithm [2] [7] [9]. A generated graph
is represented by using an adjacency matrix A, whose rows
are corresponding to the adjacency lists Ai. The number of
edges M in generated graphs is constant multiplication (de-
fault: 16) of the number of verticesN . The graphs are trans-
formed into Compressed Sparse Row (CSR) sparse matrix
format constructed of two arrays C and R [11]. The column-
indices array C is a single array of M 64-bit integers that
have all adjacency lists Ai (0 ≤ i < N) successively. The
row-offsets array R is a single array of N +1 64-bit integers
whose the entry R[i] indicate the start of adjacency list Ai

in C. Figure 3 shows an example. The left side represents
the adjacency matrix, while the right side is corresponding
to the compressed CSR form.

Next, a level-synchronized BFS which is suitable for par-
allel computing is introduced [5] [4]. Most parallel BFS al-
gorithms are based on the level-synchronized BFS. It is con-
sisted of the following three steps. Here, the output is rep-
resented by the parent vertices of the searched result rather
than the distance between the source vertex.

Table 1: Level-synchronized BFS
BFS i Current F Next F Label

0 2 – -1, -1, 2, -1, -1, -1, -1, -1
1 2 0, 4 2, -1, 2, -1, 2, -1, -1, -1
2 0, 4 1, 3, 5, 6, 7 2, 0, 2, 4, 2, 4, 4, 0
3 1, 3, 5, 6, 7 – 2, 0, 2, 4, 2, 4, 4, 0

1. Add source vertex vs into the current frontier, and give
label vs by its own vertex number s. We call this step
BFS iteration 0 in this paper.

2. Add neighbors vi which have not been visited in the
current frontier into the next frontier. Give label vi by
its parent vertex number pi.

3. If the next frontier is not empty, swap current frontier
with next frontier then repeat step 2. Otherwise, finish
searching and output labels.

The frontiers in the above steps are the sets of active vertices
on that level, and they are used to judge the end of searching.
We call the iteration of step 2 and step 3 BFS iteration.
Assuming that we search the graph of Figure 3 from v2 with
the source vertex, three BFS steps are iterated as shown in
Table 1.
Since the searching program is executed by using n GPUs,

we have to divide the graph into n pieces. Each GPU pro-
cessesN/n disjoint vertices and the corresponding adjacency
lists in parallel. However, each GPU has to exchange ver-
tices assigned into other GPUs in the frontier between all
GPUs in every BFS iteration.
By using a lot of GPUs, while the computation of BFS

can be accelerated, total amount of communication in the
system is increased. It enlarges the ratio of communication
time in the total execution time if the network with narrow
bandwidth is used. In order to cope with this problem, a
new method is proposed to reduce the number of vertices to
be exchanged so as to reduce the total amount of communi-
cation.

4. RELATED WORK
Recently, several parallel algorithms have been proposed

for a single or multi-GPU systems. Here, Mastrostefano’s
parallel BFS algorithm [10] for multi-GPU systems with
multiple nodes is introduced as our base.
This algorithm is queue-based algorithms. The BFS iter-

ations of this algorithms are consisting of the following three
steps.

1. Each GPU expands neighbors in current frontier into
an intermediate frontier.

2. Each GPU contracts the intermediate frontier.

3. Each GPU exchanges vertices in the contracted fron-
tiers between all GPUs to make the next frontier.

“Expand” in step 1 means gathering all neighbors of ver-
tices in the frontier. “Contract” in step 2 means removing
redundant vertices from the frontier. Here, redundant ver-
tices mean duplication in the frontiers. They are generated
as multiple CUDA threads gathering neighbors at the same
time, and different edges are connected to the same vertex.

Figure 4: Sort-Unique

In the common implementation, the computation order
becomes O(N2 +M) in worst case similar to Harish’s algo-
rithm [8]. Most of computation is spent for gathering neigh-
bors from the column-indices array C in the global memory.
That is, it is corresponding to neighbor expansion process
described above. However, the computation of neighbor ex-
pansion in this algorithm is suppressed to O(N + M) by
efficiently using the resource in GPUs.

In step 2 for frontier contraction, Mastrostefano removed
all duplicates from intermediate frontier completely by us-
ing Sort-Unique method. Sort-Unique is a simple method.
First, vertices in intermediate frontier are sorted by their
vertex identifier, then removed all but the first vertex in the
group of consecutive vertices with the same identifier, result-
ing a unique vertex. In this algorithm, “sort and unique” is
performed by Thrust library [3] developed for GPU. Figure 4
shows an example. In this example, a graph shown in Fig-
ure 3 is assumed as a target and expanded Current Frontier =
[1, 2, 4, 7]. Then, expanded frontier is contracted. The sub-
sets of Uniqued Frontier in Figure 4 is exchanged between
GPUs in the step 3.

Since a multi-GPU system with multiple nodes executes
this algorithm, Mastrostefano’s algorithm is written in the
MPI program for communication of multiple nodes in order
to exchange vertex data between GPUs.

5. PROPOSED METHOD
In order to make the best use of flexibility of ExpEther,

the parallel BFS algorithm must be scalable. For keeping
scalability with a relatively small bandwidth of ExpEther,
the traffic between GPUs should be reduced as possible. We
selected Mastrostefano’s algorithm as our base, since it was
designed for multi-GPU systems, and improved it so that
the traffic between GPUs is small as possible.

The frequent communication between GPUs is caused by
the frontier contraction (step 2) and exchange vertices (step
3). Thus, we focus on them without touching other parts
(step 1).

5.1 Frontier contraction
Mastrostefano removed only duplicates in the intermedi-

ate frontier by Sort-Unique method in the step of frontier
contraction. Our main idea is to remove the vertices which
each GPU has visited locally as well as duplicates.

We propose the method which reduces traffic between
GPUs by removing also the vertices which each GPU has
visited locally. Vertices which all GPUs have visited glob-
ally cannot be removed since it might increase the traffic
for exchanging the information obtained by visit between

Figure 5: Proposed method

GPUs.
As Mastrostefano pointed out [10], in this method, all

GPUs must save the information about visiting vertices in
global memory. Since the information cannot be distributed
for GPUs, the global memory is occupied by the visiting
information when the number of graphs becomes large. On
the other hand, if a large graph is treated by a log of GPUs,
communication will occupy a large part of execution time.
Especially, in multi-GPU systems which use ExpEther,

the communication is more likely to be a bottleneck because
of its limited throughput between GPUs. Thus, we adopted
to reduce the communication, while the visiting information
requires a certain amount of global memory.
Figure 5 explains the proposed method. The same condi-

tion assumed for Sort-Unique is used in Figure 4.

(1) Similar to Sort-Unique, sort the vertices in Frontier.

(2) If the vertex in Sorted Frontier is valid, that is not
duplicated and not has been visited, set a V alid flag
for each vertex in Sorted Frontier.

(3) Perform a prefix sum with the V alid flag to calculate
offset for storing the valid vertices into Compacted Frontier.

(4) Store the valid vertices into Compacted Frontier us-
ing V alid flag and Offset for Frontier.

The visiting information of every vertex for each GPU is
recorded in V isited array on each GPU memory which con-
tains N bytes. For easy implementation, visiting informa-
tion is represented by the byte data rather than bit-vector.
We can judge whether the vertex has been visited by V isited
array at (2). This method requires more amount of mem-
ory in each GPU for storing V isited array than Sort-Unique
method.
The proposed method can be implemented by four kernels

corresponded to (1) – (4) in Figure 5. CUB library [1] which
Merrill et al. developed to (1) sort and (3) prefix sum can
be used. The CUB library has a benefit of stability of the
performance compared with Thrust library. Also, it allows

●�✁ ✂ ●�✁ ✄ ●�✁ ☎

❊✆✝✞✟✠✞✆

●�✁ ✂ ●�✁ ✄ ●�✁ ☎

❊✆✝✞✟✠✞✆

✭✡☛ ☞✌✍✎ ✏✑ ✒✓✔✕✏

✭✖☛ ☞✌✍✎ ✏✑ ✗✌✘✏

✭✙☛ ☞✚✍✖✕✒✑✍✓✛✌

☞✚✍✖✕✒✑✍✓✛✌

☞✚✍✖✕✒✑✍✓✛✌

s✜✢✣ ✤✥✦ ✧

❞s★✣ ✤✥✦ ✧ ✩ ✪

s✜✢✣ ✤✥✦ ✧

❞s★✣ ✤✥✦ ✧ ✩ ✫

✭✡☛ ☞✌✍✎ ✏✑ ✒✓✔✕✏

✭✖☛ ☞✌✍✎ ✏✑ ✗✌✘✏

✭✙☛ ☞✚✍✖✕✒✑✍✓✛✌

●�✁ ✬

●�✁ ✬

●�✁ ✂ ●�✁ ✄ ●�✁ ☎

❊✆✝✞✟✠✞✆s✜✢✣ ✤✥✦ ✧

❞s★✣ ✤✥✦ ✧ ✩ ✮

✭✡☛ ☞✌✍✎ ✏✑ ✒✓✔✕✏

✭✖☛ ☞✌✍✎ ✏✑ ✗✌✘✏

✭✙☛ ☞✚✍✖✕✒✑✍✓✛✌

●�✁ ✬

Figure 6: Communication between four GPUs

to allocate and free temporary memory for library explic-
itly unlike Thrust library. A V alid flag is set when the
vertex identifier is not equal to immediate left. Also, the
flag is set when the vertex is the most left side element in
Sorted Frontier. V isited array is updated as shown in (4)
of Figure 5.

When we implement (2) – (4) in Figure 5 by one ker-
nel, we can write the V alid flag data into registers, so that
memory usage is reduced. However, this method requires
synchronization between thread blocks in kernel, and intro-
duces implementation difficulty. So, multiple kernels are
used here.

5.2 Exchange vertices
Since multi-GPU systems with ExpEther can support a

system consisting of multiple GPUs connected to a single
host, vertices in each GPU can be gathered by Unified Vir-
tual Addressing (UVA). UVA supported over CUDA 4.0 en-
ables to use a unify address spaces for integrating memories
of all CPUs and GPUs into a single address space virtually.
We can copy data directly between two different GPU mem-
ory modules without copying data in CPU memory tem-
porarily.

We apply Left-Right approach [6] for each GPU to com-
municate with all GPUs. Since multiple GPUs send and
receive at the same time, we can achieve large aggregate
throughput. Figure 6 shows the communication between
four GPUs. GPU i communicates with GPU i + j (0 ≤
i < # of GPUs − 1, where j is a variable for iteration
(1 ≤ j < # of GPUs) by cudaMemcpyPeerAsync). Each
GPU executes the following three steps for a peer GPU;
(a) GPU i (i | i + j < # of GPUs) sends data to GPU
i+ j, (b) synchronizes by stream, and (c) GPU i+ j sends
data to GPU i, then synchronizes. Repeat this process
of GPUs− 1 times.

6. EVALUATION

Table 2: Evaluation Environment
CPU Intel Xeon E5-1650 @ 3.20GHz
GPU NVIDIA Tesla C2050 ×4
Host Memory 16GB
OS CentOS 6.3
Host Compiler gcc4.4
CUDA Toolkit 5.5
CUB library v1.2.3
Network 10Gb Ethernet ×2

Table 3: The specification of NVIDIA Tesla C2050
CUDA cores 448
Processor Clock 1.15 GHz
Double Precision Performance 515 Gflops
Single Precision Performance 1.03 Tflops
Dedicated memory 3GB GDDR5
Memory Clock 1.5 GHz
Memory Bandwidth 144 GB/sec
System Interface PCI Express ×16 Gen2

Here, the proposed BFS and Mastrostefano’s BFS are im-
plemented on GPU-BOX, a prototype of multi-GPU systems
with ExpEther.
For implementing Mastrostefano’s algorithm on GPU-BOX,

the followings were changed for fair evaluation. First, for
Sort-Unique, CUB library was used instead of the old Thrust
library that had been used in Mastrostefano’s algorithm.
The second is that the frontier exchange was implemented
with the same method as the proposed one. These modifica-
tions improved the performance of Mastrostefano’s method
for evaluating the effect of traffic reduction by the proposed
method on GPU-BOX.
The specification of GPU-BOX used in the evaluation is

shown in Table 2 and the specification of NVIDIA Tesla
C2050 is shown in Figure 3. The target application is Graph500
benchmark [2] with edgefactor, which represents the num-
ber of edges in the graph, is fixed to be the default number:
16.

6.1 The reduction of traffic between GPUs
Figure 7 shows the total amount of communication be-

tween all GPUs when base BFS and proposed BFS are exe-
cuted on GPU-BOX. The number of vertex N corresponding
to the size of the graph is changed as N = 218, 219, 220. As
expected, the amount of traffic is increased when the size of
graph becomes large and the number of GPUs is increased.
The proposed BFS achieved 30-40% reduction independent
from the size of the graph, that is, the amount of reduced
communication becomes large for the large target graph.
Figure 8 shows the summary of result by NVIDIA profiler

of the execution time when graphs with N = 218, 219, 220

vertices were searched 64 times with 2-4 GPUs. We can see
from results of base BFS of Figure 8 that computation time
increases about two times and communication time increases
about 1.8 times as the size of graph becomes twice. Also,
communication time increases more than twice as a GPU
is added to the system. It can be seen from Figure 8 that
we can reduce 30-40% of communication time by using the
proposed method independent of the size of graph. This

Figure 7: The amount of communication for a BFS

Figure 9: TEPS

fact is also shown in Figure 7. Although the reduction rate
of communication time decreases 2-3% when the number of
GPU is increased, the total amount of communication time
becomes large. Thus, the effect of our method becomes large
when the size of the system is increased more than four
GPUs.

6.2 The performance of BFS algorithms
Figure 9 shows Traversed Edges Per Second (TEPS), a

performance measure in the execution of two BFS algo-
rithms with different number of GPUs. It shows that the
proposed method is efficient when the number of GPUs
becomes large by reduction of the traffic between GPUs.
About 10% performance improvement was achieved.

The figure also shows that the grow of peak performance
is degraded with the increasing number of GPUs. It comes
from the fact that the size of graph cannot be increased by
the limitation of the global memory when the number of
GPUs is more than three.

This memory shortage was serious in the proposed method,
since the array V isited must be stored in the global memory
and V alid flag is also stored in the global memory instead
of registers for easiness of implementation. Of course, this
problem can be solved by using recent GPUs with more
amount of memory, but improvement of the algorithm for
memory usage reduction is our future work. For example, in

Figure 8: Execution time when 64 BFS

the current implementation the visiting information is rep-
resented by byte data, but using the bit-vector, the memory
requirement can be one eighth. Application of such memory
saving technique is our future work.

7. CONCLUSION
Multi-GPU systems using ExpEther, a virtualization tech-

niques for extending host PCI but to Ethernet is a cost-
efficient candidate to accelerate the big data processing in a
data center.
In this paper, a parallel BFS algorithm which reduces the

traffic between GPUs is proposed and evaluated on GPU-
BOX, a prototype of multi-GPU systems with ExpEther,
in order to avoid communication bottleneck which will be
caused by growing graph size and the number of GPUs.
The evaluation result shows that the proposed algorithm
can reduce the traffic between GPUs by 30-40% when BFS
in Graph500 benchmark is executed with 4 GPUs. Also,
the performance was improved by 10% compared with Mas-
trostefano’s algorithm.
Here, only 4 GPUs are evaluated because of the available

resource limitation, since GPU-BOX is under development.
Evaluation with a system with more number of GPUs is
our future work. Also, reducing memory requirement in the
implementation is another future work.

8. ADDITIONAL AUTHORS

9. REFERENCES
[1] CUB library. http://nvlabs.github.io/cub/index.html.

[2] Graph 500. http://www.graph500.org/.

[3] Thrust library. http://thrust.github.io/.

[4] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader.
Scalable graph exploration on multicore processors. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC’10, pages 1–11,
Washington, DC, USA, 2010. IEEE Computer Society.

[5] D. A. Bader and K. Madduri. Designing multithreaded
algorithms for breadth-first search and st-connectivity
on the cray mta-2. In Proc. The 35th International
Conference on Parallel Processing (ICPP).

[6] L. Barnes. Multi-gpu programming, 2013. http://on-
demand.gputechconf.com/gtc/2013/presentations/S3465-
Multi-GPU-Programming.pdf.

[7] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A
recursive model for graph mining. In Computer
Science Department. Paper 541.

[8] P. Harish and P. J. Narayanan. Accelerating large
graph algorithms on the gpu using cuda. In
Proceedings of the 14th International Conference on
High Performance Computing, HiPC’07, pages
197–208, Berlin, Heidelberg, 2007. Springer-Verlag.

[9] J. Leskovec, D. Chakrabarti, J. Kleinberg,
C. Faloutsos, and Z. Ghahramani. Kronecker graphs:
An approach to modeling networks. J. Mach. Learn.
Res., 11:985–1042, Mar. 2010.

[10] E. Mastrostefano. Large Graphs on multi-GPUs. PhD
thesis, Spienza University of Roma, 2013.

[11] D. Merrill, M. Garland, and A. Grimshaw. Scalable
gpu graph traversal. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, pages 117–128,
New York, NY, USA, 2012. ACM.

[12] NEC Corporation. http://www.nec.co.jp.

[13] S. Nomura, T. Nakahama, J. Higuchi, J. Suzuki,
T. Yoshikawa, and H. Amano. The multi-gpu system
with expether. In International Conference on Parallel
and Distributed Processing Techniques and
Applications, PDPTA’12, July 2012.

[14] J. Suzuki, Y. Hidaka, J. Higuchi, T. Yoshikawa, and
A. Iwata. Expressether - ethernet-based virtualization
technology for reconfigurable hardware platform. In
Proceedings of the 14th IEEE Symposium on
High-Performance Interconnects, HOTI ’06, pages
45–51, Washington, DC, USA, 2006. IEEE Computer
Society.

[15] T. Suzumura, K. Ueno, H. Sato, K. Fujisawa, and
S. Matsuoka. Performance characteristics of graph500
on large-scale distributed environment. In Proceedings
of the 2011 IEEE International Symposium on
Workload Characterization, IISWC ’11, pages 149–158,
Washington, DC, USA, 2011. IEEE Computer Society.

