
The multi-GPU System with ExpEther

Shimpei Nomura1, Tetsuya Nakahama1, Junichi Higuchi2
Jun Suzuki2, Takashi Yoshikawa2 and Hideharu Amano1

1Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi Kouhoku-ku
Yokohama, Kanagawa 223-8522, Japan

2System Platforms Research Laboratories, NEC Corporation 1753
Shimonumabe, Nakahara-Ku, Kawasaki, Kanagawa 211-8666, Japan

Email: cell@am.ics.keio.ac.jp

Abstract— Clusters using multiple GPUs have been already
widespread to build a high performance computer econom-
ically. However, since the number of plugged GPUs into
a CPU is limited, such clusters are consisting of multiple
host PCs each of which has a few GPUs. This conventional
multi-GPU cluster requires programmers to learn parallel
programming skills for controlling communication between
nodes as well as GPU programming.

In order to show the illusion that a large number of
GPUs to a single host, a multi-GPU system with ExpEther
is proposed. The multi-GPU system allows interconnecting
a single host PC and multiple GPUs by ExpEther which
extends PCIe interface to Ethernet.

Execution of the application program with two to six
GPUs achieved 1.99, 2.96, 3.92, 4.83 and 5.14 times speedup
at most, as those with a single GPU. Also, the influence of
the bandwidth of the network used in the multi-GPU system
is evaluated quantatively.

Keywords: Graphics processing unit, cluster, Parallel Computing,
Scalability

1. Introduction
The GPGPU (General Purpose Computing on Graphic

Processing Units) has become a major way for high per-
formance computing. Recent GPUs have multiple SIMD
(Single Instruction Multiple Datastreams) units each of
which provides more than hundreds processors, and support
thousands of concurrent threads. GPUs are much superior to
general purpose multi-core CPUs from the viewpoint of both
performance per cost and performance per power. Also, their
growth of performance per year is also much higher than that
of CPUs.

Although the programming of GPUs was difficult for
common programmers, it has been rapidly improved. For in-
stance, NVIDIA and AMD support c-like GPU programming
languages, Compute Unified Device Architecture (CUDA)

[1] and ATI Stream SDK [2], respectively. Open Comput-
ing Language (OpenCL) [3] has been widely spread as a
programming environment for various accelerators including
GPUs. Such programming environment lowers the barrier for
introducing of GPU in the many fields.

In order to obtain the performance beyond a single GPU,
clusters with GPUs are popularly used in the field of high
performance computing. Japanese Tsubame 2.0 [4] system,
a supercomputer using GPUs is in the Top500 of would su-
percomputers ranking. Generally, these multi-GPU systems
are consisting of a large number of network connected PCs
each of which provides a few GPUs plugged into each slot.
This structure comes from that the the GPU needs support
of CPU to control data transfer and kernel execution.

This conventional multi-GPU system cause two problems.
The first is an increase of the latency of the communication
between nodes. The communication between GPUs must be
done via its connected CPU, and it often stretches the latency
and limits the bandwidth. When the latency of the communi-
cation is large compared with the computation time of GPUs,
the time for communication can bottleneck the system, espe-
cially when the number of nodes becomes large. The second
is the programming complexity of parallel processing. In
order to use such a cluster efficiently, programmers are
required to describe hierarchical parallel programming: that
is, the coarse grained parallel programming which controls
the communication between GPUs in MPIs or other message
passing library and the fine grained parallel programming
for intra-GPUs in GPU specialized programming language
such as CUDA and OpenCL. Although some tools have been
developed to reduce the multi-GPU systems programming
difficulty[5][6], they require some performance overhead.

We address these problems by using ExpEther, the
Ethernet-based virtualization technology. ExpEther extends
PCI Express(PCIe), the standard interface used for con-
necting hosts and GPU devices to Ethernet. It provides a
transport function for PCIe packets by encapsulating them
within an Ethernet frame and tunneling between the con-

nected modules.
The proposed multi-GPU system with ExpEther, which

is called GPU-BOX, has only a single host PC connected
with a large number of GPUs by the Ethernet consisting of
conventional switches and cables. GPU-BOX provides PCIe
ports and power supply for GPUs together with the function
of ExpEther. This system releases programmers from the
requirement to learn communication programming between
nodes, and enables users to select the number of GPUs
independent of a host PC’s capacity. Moreover, the latency
for communication between GPUs is not so stretched, since
the data is communicated between GPUs without using
CPUs.

The rest of this papers is organized as follows. We
introduce some related work about multi-GPU systems in
Section 2. The key technology, ExpEther is explained in
Section 3, and then a multi-GPU system by using GPU-
BOX is proposed in Section 4. In Section 5, our experimental
results are shown. Finally, we conclude this study with future
work in Section 6.

2. Related Works

There are some equipments to increase the number of
GPUs which a single host PC provide. PCI Express Switches
provided by some vendors such as IDT[7] increase PCIe
slots of the host PCs. They enable host PCs to connect GPUs
over the number of slots provided with host PCs. Also, PCI-
SIG announced the availability of the PCI Express External
cabling 1.0 specification[8]. It focuses on the implementation
of cabled PCIe. Based on the specification, there are external
expansion units of PCIe, for instance CONTEC provides
some of bus expansion units for PCI Express[9]. However,
compared with the system connected by network, extending
with these equipments has less flexibility and extensibility.

Some tools for reduction of the complexity of parallel
programming are also developed. Vegeta[5] and Hybrid
OpenCL[6] virtualize the communication between nodes. By
using them, programmers can use multi GPUs without de-
scribing communication program in message passing library,
but they require some performance overhead. FLAT[10] also
has the same policy, though the target program is described
in CUDA instead of OpenCL which is the target of Vegeta
and Hybrid.

Our proposed multi-GPU system has only a single host
and is connected by Ethernet. It doesn’t require to describe
communication program between nodes since a single host
is used. The flexibility and extensibility are not degraded
compared with conventional systems.

Application Application

OS

PCI Driver

EFI PCI BIOS

OS

NDIS BIOS
S/W

H/W TLP

DLP

PHY

Ether I/F Logic

MAC

PHY

PCI-Express Architecture Eternet Architecture

PEB

Fig. 1: Overview of PEB

3. ExpEther
ExpEther[11], a key technology of multi-GPU system, is

the Ethernet based Virtualization technology developed by
NEC[12]. It extends PCIe which is high performance I/O
network but limited to small area around the cabinet to much
wider area by using Ethernet. Various types of I/O devices
on distant location can be connected as if they were inside
the cabinet.

In this section, we describe the function of ExpEther,
PCI Express-to-Ethernet bridge (PEB) and and Ether-
Forwarding-Engine (EFE).

3.1 PEB
As Fig. 1 shows, PEB is the function of ExpEther to

bridge the TLP layer in PCIe and the MAC layer in Ethernet.
PEB encapsulates a PCIe packet, Transaction Layer Packet
(TLP) into Ethernet frame, and decapsulates it for extending
PCIe to Ethernet. Moreover, the target Ethernet is virtualized
so that the connected devices can be treated as if they were
plugged into host PCs without Ethernet. PEB is implemented
with a conventional operating system, device driver, PCIe
interface, Ethernet Switch and others. That is, the ExpEther
technology can be easily introduced into the systems only
with PCIe interfaces.

3.2 EFE
EFE is the delay-based protocol which supports repeat

and congestion control instead of TPC, the loss-based pro-
tocol. The congestion control system in EFE consists of the
following steps.

1) It sends a certain number of probe packets, when
communication starts.

2) It decides the initial transmission bandwidth based on
the acknowledging packets for the probe packets.

Root
Complex

CPU

Memory

PCIe
Switch

PCIe
Endpoint Root

Complex

CPU Memory

PCIe
Endpoint

PCIe
Endpoint

PCIe
Endpoint

ExpEther

ExpEther ExpEther

ExpEther

System
Manager

Ethernet

VLAN group2

VLAN group1

Fig. 2: Example of the System with ExpEther

3) After this, it adjusts the transmission bandwidth for
RTT.

EFE employs Go-back-N as a flow-control method. Com-
pared with Selective-Repeat, Go-back-N has the advantage
of hardware cost which does not need the reorder buffer.
Also, although a number of retransmitted packets are re-
quired in the environments of low round-trip propagation
delay which ExpEther targets, packet retransmission would
not frequently happen.

3.3 System Example using ExpEther
Fig. 2 shows an example of the basic system with Ex-

pEther. On the system of ExpEther, servers and PCIe end-
points are managed and grouped by VLAN ID, which each
server or endpoint has in the register of ExpEther bridges.
The VLAN ID group consists of a single server and multiple
PCIe endpoints. The system manager allocates servers and
endpoints the VLAN ID, and can flexibly constitute the
groups. On the data transfer, the Ethernet frame has the
VLAN ID tag which is referenced to distinguish the group
to which the frame belongs.

Though ExpEther doesn’t support direct CPUs connec-
tion, it can be done by using Remote Direct Memory Access
(RDMA). By using the RDMA, CPUs can communicate
each other by accessing memory of another CPU directly. It
provides low latency and high throughput communications,
and suppresses the CPU workload.

4. Design and Implementation
In this section, we propose a multi-GPU system with

ExpEther, and show an implementation using GPU-BOX.

4.1 System Design
Fig. 3 shows an overview of the multi-GPU system with

ExpEther. It allows to interconnect a single host PC and
multiple GPU devices with a common Ethernet through the

CPU Memory

Chip Set

ExpEther

GPU

ExpEther

GPU

ExpEther

GPU

ExpEther

GPU

ExpEther

Ethernet

Fig. 3: Multi-GPU System with GPU-BOX

PEB. The network consists of the common Ethernet equip-
ments such as switches and cables. Programmers can treat
the multi-GPU system as if all of GPU devices were directly
ported into a single host PC, since the PEB encapsulates
communication for the control via the network. On the multi-
GPU system with only a single host, programmers can make
the use of computing power of multiple GPUs without learn-
ing programming skill of communication between nodes
such as MPI.

The following is a list of the benefits and advantages that
the multi-GPU system with ExpEther provides.

• Performance: Stretching the latency of communication
between GPUs is suppressed by using ExpEther.

• Programmability: Even programmers who can’t de-
scribe communication between GPUs can use the sys-
tem with multiple GPUs.

• Portability: The existing GPU program can run with
only a small change about the number of devices in
GPU programming language for instance CUDA.

• Flexibility: When the number of GPUs is changed,
the application on multiple GPUs can run with only
program modification of device size and extending
network with Ethernet switches.

• Compatibility: GPUs are accessible to a conventional
operating system, device driver, PCIe interface, and
Ethernet switch. Thus, they can be used without special
modification.

• Future Prospect: The proposed multi-GPU system can
receive the benefit of Ethernet technology improvement
which will constantly continue in future.

PCIe Slot

PCIe signal

GPU

10Gb Ether 10Gb Ether

FPGA
(ExpEther)

SFP+ SFP+

G
P

U

GPU-BOX

Ethernet
I/F

Slot
G

P
U

Ethernet
I/F

Slot

G
P

U

Ethernet
I/F

Slot

........ G
P

U

Ethernet
I/F

Slot

Fig. 4: Overview of GPU-BOX

4.2 GPU-BOX
Here, multi-GPUs with ExpEther is implemented in GPU-

BOX which provides PCIe ports and power supply together
with the function of ExpEther for extending PCIe interface
of GPUs to Ethernet network.

The target GPU-BOX in this paper has slots for eight
GPUs. That is, it provides the environment of eight GPUs
in term of PCIe slots, Ethernet interface, power supply and
space. The power supply of the GPU-BOX is up to 3000W.
The Ethernet interfaces are two SFP+ interfaces per a GPU,
thus 20 Gbps bandwidth is available in total. Each PCIe
in GPU-BOX is extended to Ethernet by ExpEther NIC
implemented on FPGAs.

5. Evaluation
In this section, we evaluate the performance of the multi-

GPU system with GPU-BOX by executing programs in
CUDA.

5.1 Experimental Environment
Table 1 shows the multi-GPU environment used in the

evaluation. The evaluated environment uses six GPUs, each
of which is NVIDIA Tesla C2050, while the number of slots
in the target GPU-BOX is eight.

5.2 Application
For performance evaluation, we implemented two appli-

cation programs, the simulation of particles motion and the
calculation of Advection term.

One has no communication between devices, while the
other needs a considerable amount of communication.

These application programs are mainly consisting of fol-
lowing three parts;

Table 1: Evaluation Environment
CPU Intel Core i7 (2.67 GHz)
GPU NVIDIA Tesla C2050 x6

Host Memory 16 GB
OS Scientific Linux 6.0

Host Compiler gcc4.4
CUDA Toolkit 4.0

Network 10Gb Ethernet x2
Switch Fulcrum Microsystems Monaco

Table 2: Problem Size of Particle Motion
Number Particles Steps

1 1x1024x1024 100
2 1x1024x1024 1000
3 10x1024x1024 1000
4 10x1024x1024 2000
5 10x1024x1024 4000

• computing in GPUs,
• data transfer between host and GPU, and
• data exchange between GPUs.

The calculation of particle has only two parts, computing and
data transfer between host and GPU, while the calculation
of Advection term includes all of them.

5.2.1 Simulation of Particle Motion by the Runge-Kutta
Method

This application simulates particle motion when initial
particle distribution and velocity field are given and there is
no interference between particles. It divides time into several
steps, and on each step, each particle position is updated
with the velocity field by the Runge-Kutta method. For the
motion of each particle is independent from another, it is
possible to perform every particle motion computation in
parallel, and there is no communication between GPUs in
multi-GPU environment.

Here, five combinations of parameters are executed for
evaluation. Table 2 shows the combinations of problem size
and steps.

5.2.2 Calculation of Advection term by Cubic Lagrange
Interpolation

Calculation for Advection term of Cartesian grid method
is a kind of fluid dynamics computation. It simulates the
movement of ink when initial concentration, distribution, and
velocity field are given. On this calculation, it separates the
entire surface into grid and updates each value of the grid
using values of the surrounding grids in a certain time step.
On each step, updating of the grid value is independent from
other computations. However, in case of computing with

Table 3: Problem Size of Advection Term
Number X Y Steps

1 256 256 1024
2 1024 1024 10280
3 4096 2048 10280

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

[s
]

the Number of devices

problem 1
problem 2
problem 3
problem 4
problem 5

Fig. 5: Execution Time of Calculation of Particle Motion

multiple GPUs, we have to exchange data around memory-
boundary between GPUs. Problem size of Cartesian grid
method on this evaluation is shown in Table 3.

5.3 Performance versus the number of GPUs

5.3.1 Simulation of Particle Motion

Fig. 5 shows relationship between execution time and the
number of GPUs when the particle motion simulation is
executed. It is found that the execution time decreases as
increasing the number of GPUs. However the execution of
the case with six GPUs in the GPU-BOX spent larger time
than one with five GPUs. That is caused by the EFE protocol
tuning which is not adequate for the system with more than
five GPUs.

Fig. 5 shows the performance speedup of the different
number of GPUs over a single device. Respectively, the
multi-GPU system provided speedup of 1.99, 2.96, 3.92,
4.83 and 5.14 times at most for execution on two to six
devices. While performance speedup is directly proportional
to the number of devices roughly in case of large problem
size, there are cases to get no performance improvement by
increasing the number of GPUs. It is mainly caused by the
overhead of data transfer between the host processor.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

 1 2 3 4 5

R
at

io

Problem

device=1
device=2
device=3
device=4
device=5
device=6

Fig. 6: Performance rate of Calculation of Particle Motion

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

[s
]

the Number of devices

problem 1
problem 2
problem 3

Fig. 7: Execution Time of Calculation of Advection term

5.3.2 Calculation of Advection term

Fig. 7 shows relationship between execution time and the
number of GPUs when the Advection term is calculated. In
the problem 1, the cases with five and six devices can’t be
evaluated, since the problem size is so small that there is
no data allocated to fifth and sixth device in this application
program.

Fig. 8 shows the performance enhancement of the different
number of GPUs over a single one. Respectively, the multi-
GPU system achieved speedup of 1.45, 1.85, 1.86, 1.40
and 1.41 times in problem 3 for execution with two to
six devices. On the other hand, we can see performance
degradation on calculating small size problems; problem
1 and 2. The performance degradation is caused by the
frequently executed data exchange part for the calculation of

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 1 2 3

R
at

io

Problem

device=1
device=2
device=3
device=4
device=5
device=6

Fig. 8: Performance Rate of Calculation of Advection term

Table 4: Data Transfer Bandwidth in CUDA
Ethernet 1 Gbps 20 Gbps
Host to Device 0.320 Gbps 7.66 Gbps
Device to Host 0.445 Gbps 9.86 Gbps
Device to Device 0.355 Gbps 7.92 Gbps

Advection term. The data exchange speed mainly depends
on the bandwidth of the network, while the exchanged data
amount in this application is proportional to the number of
GPUs. Although it is difficult to enhance performance in
such small problems, their execution time is not so large
and the effect of applying multi-GPU system is originally
limited. Improving the performance of Ethernet will stretch
the target which can be accelerated to smaller size problems.

5.4 Influence of the Network Performance
In this subsection, we evaluate the influence of the

network equipment in the GPU-BOX. Table 4 shows the
bandwidth of data transfer from the host to the GPU, from
the GPU to the host, and between GPUs in CUDA by using
Ethernet 1 Gbps and 20 Gbps.

5.4.1 Influence to Application performance

Fig. 9 shows performance of Advection term calculation
the case when 20 Gbps and 1 Gbps Ethernet are used with
a single and two GPUs. When a single GPU is used for
calculation, the difference of the execution time with 1 Gbps
and 20 Gbps Ethernet is small. However, 1 Gbps Ethernet
increases the execution time on calculating with two GPUs,
while 20 Gbps Ethernet can decrease it.

Fig. 10 shows the speedup with two GPUs normalized to
that with a single GPU. As the problem size becomes larger,

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3

E
xe

cu
tio

n
T

im
e

[s
]

Problem

bandwidth=1Gbps device=1
bandwidth=1Gbps device=2

bandwidth=20Gbps device=1
bandwidth=20Gbps device=2

Fig. 9: Relationship between Network and Execution Time

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3

R
at

io

Problem

bandwidth=1Gbps
bandwidth=10Gbps

Fig. 10: Relationship between Network and Performance
Improvement

the difference of achieved speedup becomes large between
two Ethernets, although the multi-GPU system provides
more performance in both. As a result, the speedup of the
multi-GPU system is 0.86 with 1 Gbps network, and 1.45
with 20 Gbps network. These results indicate that the multi-
GPU system with GPU-BOX obtains benefits of developing
Ethernet technology, and GPU-BOX enables user to select
network construction according to the application.

6. Conclusion
In this study, we proposed and evaluated multi-GPU

system with ExpEther. It allows to interconnect a single host
PC and multiple GPU devices with ExpEther which extends
PCIe interface to Ethernet.

For evaluating the multi-GPU system, two application
programs are used. First, we evaluated performance on the
different number of devices. For the program without inter-
GPU communication, a system with six GPUs achieved 5.14
times performance as that with a GPU.

On executing the application including data exchange
between GPUs, the largest performance improvement was
1.86 times with four GPUs. Then, we evaluated performance
using the different networks. From the results, it appears that
the bandwidth of network used in GPU-BOX greatly affects
the performance of the multi-GPU system.

The following is a list of future work:
• The performance of multi-GPU system with ExpEther

must be compared with conventional multi-GPU clus-
ters,

• The performance must be evaluated with the other
applications and more number of GPU.

• A larger system which uses multiple switches must be
evaluated.

References
[1] NVIDIA, “NVIDIA CUDA Compute Unified Device Architecture,”

http://developer.nvidia.com/object/cuda.html.
[2] A. M. Devices, “Ati stream sdk getting started guide

(v2.3),” http://developer.amd.com/GPU/ATISTREAMSDK/
DOCUMENTATION/Pages/default.aspx.

[3] NVIDIA, “The OpenCL Specification Version: 1.0,” 09.
[4] T. I. of Technology Global Scientific Information and C. Center,

“Tsubame2,” http://www.gsic.titech.ac.jp/tsubame2.
[5] A. Shitara, T. Nakahama, M. Yamada, T. Kamata, Y. Nishikawa,

M. Yoshimi, and H. Amano, “Vegeta: An implementation and eval-
uation of development-support middleware on multiple opencl plat-
form,” in The Second International Conference on Networking and
Computing, November 30 - December 2, 2011.

[6] R. Aoki, S. Oikawa, T. Nakamura, and S. Miki, “Hybrid opencl: En-
hancing opencl for distributed processing,” in Parallel and Distributed
Processing with Applications (ISPA), 2011 IEEE 9th International
Symposium on, 26-28 May 2011, pp. pp.149 – 154.

[7] Integrated Device Technology, “Pci express switches,”
http://www.idt.com/products/interface-connectivity/pci-express-
solutions/pci-express-switches.

[8] PCI-SIG, “Pci express external cable 1.0 specification.”
[9] CONTEC, “PCI Express External Cabling (PCISIG) Compliant Ex-

pansion Units,” http://www.contec.com/products/bus_exp/pcie.php.
[10] T. Miyoshi, H. Irie, K. Shima, H. Honda, M. Kondo, and T. Yoshinaga,

“Flat: a gpu programming framework to provide embedded mpi,”
in GPGPU-5 Proceedings of the 5th Annual Workshop on General
Purpose Processing with Graphics Processing Units, 2012, pp. pp.
20–29.

[11] J. Suzuki, Y. Hidaka, J. Higuchi, T. Yoshikawa, and A. Iwata, “Expres-
sether - ethernet-based virtualization technology for reconfigurable
hardware platform,” in High Performance Interconnects, 2006, pp.
pp.45–51.

[12] NEC Corporation, http://www.nec.co.jp.

