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Abstract

Recursive Diagonal Torus, or RDT consisting of recursively structured tori is an interconnection
network for massively parallel computers. By adding remote links to the diagonal directions of the torus
network recursively, the diameter can be reduced within logo N with smaller number of links than that
of hypercube.

For an interconnection network for massively parallel computers, a routing algorithm which can
bypass a faulty or congested node are essential. Although the conventional vector routing is a simple and
near-optimal method, it can only use a deterministic path. In this paper, adaptive routing algorithms
on RDT are proposed and discussed. The first algorithm is based on Duato’s necessary and sufficient
condition. With this method virtual channels are effectively used while paths with redundant routing
steps are prohibited. Another algorithm based on the turn model is proposed. By prohibiting certain
turns on RDT, it permits paths with additional hops. Both algorithms are proved to be deadlock free.

Interconnection Network, Adaptive Routing, Deadlock Avoidance, RDT



1 Introduction

Communication network is one of the critical components of a highly parallel multicomputer. Recently,
multicomputers providing more than a thousand computation nodes are commercially available, and efforts
have been exerted to implement Massively Parallel Computers (MPCs) with tens of thousands nodes. In
these systems, the connection topology often dominates the system performance.

Instead of hypercube used in first-generation multicomputers, most recent machines take the 2-D or 3-D
mesh (torus) network[1][2][3]. Although the diameter of a mesh network is large ( O(\/M) or O(W) for M
nodes), it only requires four or six links per node unlike the hypercube which requires log, M links per node.
Architectural supports for fine grain processing [2] and the wormbhole routing [4] enabled the use of networks
with large diameter. Moreover, mesh networks are suitable for most scientific calculations including flow
dynamics, QCD, and structural analysis.

However, in an MPC with more than ten thousands nodes, the large diameter of the mesh network is
intolerable. A lot of connection topologies ( De Bruijn[5], fat tree[6], Star graph[7] and others) have been
proposed for such MPCs. Although these networks support a small diameter with a small degree, emulation of
the mesh network is difficult. On the current machines with mesh structure, parallel computation algorithms
and message handling algorithms have been studied and refined. To make the best use of them, a network
including the mesh structure is advantageous even for future MPCs.

We proposed a novel class of networks called Recursive Diagonal Torus (RDT) [8], which consists of
recursively structured mesh (torus) connection. It supports a smaller diameter and degree than that of the
hypercube if the number of nodes is 1000-10000. Through the computer simulation, the bandwidth and
latency are greatly improved compared with 2-D/3-D tori [8].

A simple routing algorithm called the vector routing was proposed for RDT[8], and a technique based on
the e-cube routing[9] is applied for avoiding the deadlock[10]. The router chip providing the vector routing
algorithm with multicasting was implemented for a massively parallel machine JUMP-1[11].

However, with these deterministic routings, congested or faulty nodes cannot be bypassed although
such functions are essential in massively parallel machines. In this paper, deadlock-free adaptive routing
algorithms on RDT are proposed and discussed in order to cope with this problem. In Section 2, the structure
of RDT and the vector routing algorithm are introduced. An adaptive routing using minimal paths based
on Duato’s method is proposed in Section 3. More flexible routing algorithm based on the turn model is

also proposed in Section 4.

2 Interconnection Network: RDT

Recursive Diagonal Torus (RDT) is a novel class of networks which consists of recursively structured mesh
(torus) connections of meshes with different sizes in the diagonal directions. Here, interconnection structure

of RDT is introduced.



2.1 Definitions of RDT

First, a two-dimensional square mesh (torus) is defined as the basis of RDT.

Definition 1 : Base torus
The base torus is a two-dimensional square array of nodes each of which is numbered with a two-dimensional

number as follows:

(0,00  (1,0)  (2,0) .- (N-1,0)
0,1)  (L,1)  (2,1) - (N-1,1)
0,2) (L,2) (2,2) - (N-1,2)
(0,N—1) (1,N-1) (2,N-1) --- (N-1,N-1)

k

where N = n®. The n and k are natural numbers. The torus network is formed with four links between

node (z,y) and neighboring four nodes:
(mod(z £ 1, N), y) and (z, mod(y =+ 1, N))
This base torus is also called the rank-0 torus. O

In order to reduce the diameter, the best way for the torus network is to provide bypass links in the
diagonal direction. Assume that four links are added between a node (z,y) and nodes (z £ n,y £n). Then,
the additional links form a new torus-like network. The direction of the new torus-like network is at an angle
of 45 degrees to the original torus, and the grid size is v/2n times of the original torus. Here, this torus-like
network is called the rank-1 torus. On the rank-1 torus, another torus-like network (rank-2 torus) can be
made by providing four links in the same manner. Thus the rank-(:+1) torus can be formatted on the rank-i
torus in the same way. Figure 1 shows rank-1 and rank-2 tori when = is set to be 2. Our new network called
RDT consists of such recursively formed tori.

Each odd rank torus-like network is a 2:1 rectangle one which provides spiral circular links as shown in
Figure 2, while each even rank network is a common square nearest neighbor torus. Here, both types of

networks, are called the “torus” or “tori” uniformly.

Definition 2 : Upper rank torus

Assume that the rank-i torus satisfies the following condition:

Na:(r-l—l) X Ny(r+1) >2

here,
N,
N, =9
2(r+1) ged(Nyr,n)
N,
N. =T
u(r+1) 2gcd(Ny,,m)’
and, Nyp, Nyr, Ny(ri1) and Nyi1) are the sizes of the rank-r and rank-(r+1) in z and y azes.

n

Links between node (z,y) and nodes (z',y'), (z",y") on the rank-i torus form the rank-(i+1) torus where

' =(z+n) — (Nop — Nyr) le‘HIJ = Ner {MJ {NWJ

Nz’r‘ —2n Nzr N:E‘r‘
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Figure 1: Upper rank tori
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Nodes on the rank-(i+1) torus can be identified by another two-dimensional number (z;t1,yi+1). The

number is given in the following manner:
1. Let node (0,0) of the rank-i torus be (0,0) of the rank-(i+1).

2. For an even rank torus, the axis is set as the same direction of the base torus. For an odd rank, the

direction from (z,y) to (z',y') is set to be an z-azis of the rank-(i+1) torus.
3. Give a two-dimensional number to each node on the rank-(i+1) torus according to Definition 1.

The rank-(i+1) torus is called as upper rank torus based on the rank-i. n is called the cardinal number.

O

Note that there are several independent upper rank tori formed on a torus (This problem will be dis-
cussed in Section 2.2). By forming upper rank tori recursively on the base torus (Definition 1) according to

Definition 2, Recursive Diagonal Torus (RDT) is defined.
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Figure 2: Structure of the rank-1 torus

Definition 3 : Perfect RDT
Let upper rank tori form recursively according to Definition 2 on the base torus defined in Definition 1 as
many as possible. A network in which every node has links to form all possible upper rank tori is called the

perfect RDT (PRDT(n, R)) where n is the cardinal number and R is the mazimum rank. O

Although PRDT is unrealistic because of its large degree (4(R + 1)), it is important as the basis for
establishing message routing algorithms of RDT theoretically.

Definition 4 : RDT
Recursive Diagonal Torus RDT(n, R,m) is a class of networks in which each node has links to form the

base (rank-0) torus and m upper tori (the mazimum rank is R) with the cardinal number n. O

According to this definition, the degree of RDT(n, R,m) can be shown as: 4(m + 1).

2.2 Torus assignment

Various structures of RDT can be formed by changing n and m. Although large n is sometimes advantageous
in a large system, the cardinal number n is set to be 2 so as to enable easy implementation of algorithms
based on binary tree or cube. Since an upper torus requires four links, RDT with large m requires too much
hardware. Here, a system with ten thousand nodes (for example, array of 128 x 128 nodes or 256 X 256
nodes) is assumed, and m is set to be 1 (degree = 8). For this number of nodes, the maximum rank of upper
tori is 4. Thus, RDT(2,4,1) is mainly treated here.

In RDT(2,4,1), one of upper rank tori is assigned to each node. Thus, the structure of RDT(2,4,1) also
varies with the rank of tori which is assigned to each node. This assignment is called the torus assignment.

Various torus assignment strategies can be selected considering the traffic of the network. If the local traffic
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Figure 3: Torus assignment for the RDT(2,4,1)/a

is large, the number of nodes which have low ranks should be increased. Figure 3 shows an assignment
adopted in a massively parallel machine JUMP-1[12].

In this assignment which is called RDT(2,4,1)/a a node has eight links, four for the base (rank-0) torus
and four for rank (1-4) torus (most links for upper rank tori are omitted in Figure 3). With the cardinal
number n = 2, 8 independent rank-1 tori can be formed on the base torus. Two tori are used directly as the
rank-1 torus, and other rank-2 tori are formed on two rank-1. Similarly, two rank-1 tori are used in forming

rank-3 tori, and two rank-2 tori for rank-4 tori.

2.3 The vector routing

The vector routing is an assignment independent of routing algorithm which represents the route of a message
with a combination of unit vectors each of which corresponds to each rank of tori. Although this routing
algorithm is proposed for PRDT, it can be applied to any assignment with a small modification[10].

On the torus structure, a vector from a source node to the destination node is represented with a vector
A= azy + by where 2 and g5 are unit vectors of the base (rank-0) torus. The goal of the routing algorithm
is to represent the vector A with a combination of vectors each of which corresponds to a unit vector of each
rank of torus (Figure 4(a)).

First, the direction of the unit vector corresponding to each rank torus must be defined. Here, the
direction of the unit vector for each rank torus is changed clockwise at an angle of 45 degrees as shown in
Figure 4(b). That is, the unit vectors of rank-(i+1) torus Z;11, #i+1 can be represented with the unit vectors

of rank-i 7}, ¥; as follows:

Ziv1 = nd; + ny; (1)

Yit1 = —NT; + nyY; (2)

First, the target vector azy + byg is represented with a combination of z1,y1,2p and 3 as follows:
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Figure 4: Directions or the coordinate axes

azo + byo = g1 + fy1 + jzo + ko (3)

Here, we select maximum g and f in order to use the upper torus as possible. From equations (1) and

(2), maximum integers for g and f are represented as follows:

_a+bf_ a—2>b
9= on T 2n

In order to minimize j and k corresponding to the remaining unit vectors of the rank-0 torus (thus, the
required message transfers using the rank-0 torus), the integer divisor used here is rounded to the nearest
whole number (If the remainder is greater than n, increment the divisor).

Thus, 7 and k are represented with ¢ and f:

azo + byo = g(nzo + nyo) + f(—nzo +nyo) + o + kyo
a=ng—nf+j,b=ng+nf+k

j=a—-ng+nfk=b—-—ng—nf

Then, gZ1 + fy1 are represented with a combination of vector =5, 5, £1, and 97 in the same manner. By
iterating this process to the maximum rank, vectors for message routing are obtained.
This algorithm is specified with a simple C program fragment as follows:

Algorithm A: The simple vector routing

for (rank=0; rank<MAX_RANK; rank++) {
g=div_(2n) (a+b); f=div_(2n)(-(a-b));
vector [rank] .x= a-(ng-nf);

vector [rank] .y= b-(ng+nf);



a=g; b=f;
b
vector [MAX_RANK] .x=g; vector [MAX_RANK] .y=f;

where div_(2n) means division with 2n rounding to the nearest integer. The routing vectors for each rank

are obtained in the array vector[rank].

Step 1 Step 2 Step 3
. (1.2) (1,2) 1,2)
, _7\‘
5,9 (5.9)
—>—Z—>—A (5,9) ( )

9=11/4=3, f=3/4=1 g=(3+1)/4=1,f=-(3-1)/4=0
a=5-1=4, b=9-2=7 - - x1=3-2(1-0)=1
x0=4-2(3-1)=0
y0=7-2§3+1))=-1 y1=1-2(1+0)=-1

Figure 5: An example of the vector conversion

Figure 5 shows an example of a vector from (1,2) to (5,9) converted into a combination of unit vectors
of rank-0, rank-1, and rank-2.

The vector routing is useful for bypassing a faulty or congested node, as alternative routes can be easily
obtained by changing the order of vectors. Since this routing is deterministic, the bypassing path must be
calculated with the knowledge on the location of faulty or congested node. However, it is difficult to know
the location of congested nodes for other distant nodes.

Adaptive routing is a technique to select the route of packet dynamically. When a packet encounters
a faulty or congested node, the packet can select another bypassing route. However, we must not forget
that adaptive routing have a possibility of deadlock. There are a lot of researches on deadlock free adaptive
routing techniques[4]. These techniques are classified into two methods: using only minimal paths, and using
alternative paths with additional routing steps. The former method does not require extra routings while
the latter can use alternative routes more flexibly. Here, both methods on RDT are discussed.

First, deadlock free adaptive routings with minimal routes are proposed for RDT based on Duato’s
protocol. Then, another algorithm which permits redundant routing steps is proposed based on the turn

model.



3 Adaptive routing with minimal paths

3.1 Duato’s protocol in the k-ary n-cube

Duato states a general theorem defining a criterion for deadlock freedom and then uses the theorem to
propose a fully adaptive, profitable, progressive protocol[13], called Duato’s protocol (DP). The theorem
states that by separating virtual channels on a link into restricted and unrestricted partitions, a fully adaptive
routing can be performed and yet be deadlock-free. This is not restricted to a particular topology or routing
algorithm. Cyclic dependencies between channels are allowed, provided that there exists a connected channel
subset free of cyclic dependencies.

Simple description of Duato’s protocol is as follows.

a. Provide that every packet can always find a path toward its destination whose channels are not involved

in cyclic dependencies(escape path).

b. Guarantee that every packet can send to any destination node using escape path and the other path

which cyclic dependency is broken by escape path.

By selecting these two routes a. and b. adaptively, it can prevent deadlocks.

Cho
No n;
Cao
Cas Ca1| [CH1
Ca2
n3 n2
Ch2

Figure 6: Example network for deadlock-free adaptive routing.

With the following steps, Duato achieved a deadlock-free adaptive routing algorithms for k-ary n-cube[14].
Theorem 1 The adaptive routing algorithm using Duato’s protocol for k-ary n-cube is deadlock-free. O

Proof

1. First, consider a unidirectional ring(Figure6) with four nodes. Cy; channels can be used to forward
packets to all the destinations, but C'g; channels can only be used if the destination is higher than the

current node. This routing algorithm is deadlock-free, as shown in [13].

2. Second, let this routing algorithm extend for bidirectional rings. When a packet starts crossing channels

in one direction following a minimal path, it cannot turn and continue in the opposite direction. Thus,



the use of bidirectional channels does not introduce any additional channel dependency and the routing

algorithm is deadlock-free.

Third, for k-ary n-cubes, channels can only be used crossing dimensions in ascending order. Inside
each dimension, the algorithm for bidirectional rings is used. Like the e-cube routing[9], dimensions
are crossed only in ascending order. This means that there is no additional cyclic dependency and this

routing algorithm is also deadlock-free.

By these steps, escape path C; is provided.

. Then, add a new virtual channel Cy(Fully adaptive) which is used for fully adaptive routing, crossing

dimensions in any order following a minimal path. There are two methods for providing fully adaptive

virtual channel Cp:

In this algorithm, only minimal paths can be used in order to satisfy the second step.

3.2

Applying Duato’s protocol on PRDT

Here, we apply this routing algorithm for PRDT.

Definition 5 : Duato’s protocol on PRDT

Algorithm:

Algorithm:

. Provide an escape path Cy on a torus of PRDT as well as the case for the k-ary n-cube.

. Next, the order of rank usage is restricted. Let X; and Y; be channel of each dimension in the rank i

torus. Use the channel in the X first and descending order of the rank. That is, for PRDT(2,4), the
channel is used in the following order

Xs =Y - Xo =Y, - X; =1

We refer this escape path C;.

. Add a new virtual channel Cp(Fully adaptive) which is used for the fully adaptive routing, following

a minimal path.

D-A Provide the virtual channel Cg directly for the escape channel Ci. In Cg, each direction of
+X and +Y in odd rank and even rank must be the same direction. In the vector routing, the
unit vector for each rank torus is changed clockwise at an angle of 45 degree as represented in
function(1) and function(2), the unit vector for odd rank torus must be same direction with the
unit vector for rank 0 torus (%o, Jo) and the unit vector for even rank torus must be the same with

the one for rank 1 torus(Z1,41).

D-B Provide the virtual channel Cg,, not for C] but for Cy in each rank. Cp, channels can cross

dimensions in any order following a minimal path, but must cross ranks in descending order.

10



Figure 7 illustrates the fully adaptive virtual channel Cr in Algorithm D-A. Since Cp is directly assigned
to the escape path C], the Cp itself must be a minimal routing. This means that a packet must not use the

opposite direction which used in the past.

’
Ci
eoe Destination

Ce

Figure 7: Channels using Algorithm D-A

On the other hand, the fully adaptive path is assigned to the escape path C; of each rank in Algorithm D-

B(Figure8). Therefore, there is no restriction for using unit vector, while the order of using ranks is restricted.

C, C.

@ 9...
Cr, Cr,
Lovee

Figure 8: Channels using algorithm D-B

Figure9 illustrates the possible path and impossible path for algorithm D-A and D-B. The path (b) which
uses rank 2 before rank 3 is allowed in the algorithm D-A while it is prohibited in the algorithm D-B, since
the rank is not be used in the descending order. On the contrary, path (c) in which the unit vectors of rank
1 and rank 3 are directed opposite to each other is prohibited in the algorithm D-A but allowed in the
algorithm D-B.

rank2
rank3 rank3
rank2 ankl
rank
rank2
rank2
rankl rankl
(a) base vector (b) (©)

Figure 9: Examples of vectors in algorithm D-A and D-B

Theorem 2 Algorithm D-A is deadlock-free. O

11



Proof Since the order of the rank is the same as that of the e-cube routing[9], the escape path C'1 is
deadlock free. In Cp, the opposite direction which used in the past is prohibited, and so Cr is a minimal

path. From theorem 1, Algorithm D-A is deadlock-free. O
Theorem 3 Algorithm D-B is deadlock-free. O

Proof () is the same escape path used in theorem 1, and is deadlock free. Cg,, is a minimal path in each
torus. From theorem 1, Algorithm D-B is deadlock-free in each rank of torus. Since the order of used rank
is the same as the e-cube routing, Cy nor Cp, in any rank does not cause a cycle each other. Therefore,

Algorithm D-B is deadlock-free.Ol

4 Adaptive routing based on the turn model

Although Duato’s protocol is powerful approach for bypassing the congestion, only minimal paths can be
used. For selecting paths with additional steps, another adaptive routing based on the turn model[15] is

proposed here.

4.1 Turn model for Two-Dimensional Meshes

Deadlock in the wormhole routing is caused by message packets waiting for each other in a cycle. The turn

model proposed by Glass is a method which prevents deadlock by prohibiting certain turns.

(a) (b) westfirst (C) north-last

Figure 10: The turn model for two-dimensional meshes.

For two-dimensional meshes, Figurel0(a) shows the possible turns and simple cycles. Deadlock can be
prevented by prohibiting only one turn from each cycle, as shown in FigurelO(b),(c). These routing algo-
rithms are called the west-first routing algorithm and north-last routing algorithm, respectively. Although
this model is for a simple mesh network without cyclic links, it is easily used in the torus by introducing

extra channels like the e-cube routing.

4.2 The turn model for RDT

Here, we extend the turn model for two-dimensional meshes of the RDT. The possible turns in RDT are
expressed in Figurell. As shown in Figurell, there are eight different directions in the RDT, so there exists

sixteen 45-degree turns, sixteen 90-degree turns and sixteen 135-degree turns.

12



Figure 11: The possible turns and simple cycles in RDT.
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Figure 12: The first step to the north-last routing on RDT.
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Here, like the north-last routing algorithm for two dimensional mesh, the right top turns and left top

turns of cycles are prohibited as shown in Figurel2.

3

D, O
Q

"
3”.‘

Figure 13: Particular types of cycles.

However, these restrictions are not sufficient for RDT. Cycles without left top turns or right top turns
are still possible as shown Figurel3. In order to break such triangle cycles, dotted turns shown in Figurel3

must be prohibited. As a result, the following turns are prohibited in RDT.

Definition 6 : North-last routing for PRDT
North-last routing for PRDT is a routing in which fourteen turns shown in Figurelj are prohibited. A

packet transfer through cyclic links is also prohibited. O

», &‘
apaiy 231 dew
e : %
lj) n (1 (“

Figure 14: The turn model for RDT (2).

As well as the turn model for two dimensional torus, cyclic links can be used by introducing an extra
channel for the e-cube routing. Also, this routing can be directly applied for any type of RDT including
RDT(2,4,1)/c.

For showing that the proposed north-last routing algorithm for RDT is deadlock free, the channel num-
bering method by Dally and Seitz[9] is applied. In this method, channels in the direct network is numbered
so that every packet is transferred along channels with strictly increasing (or decreasing) numbers. If such

a numbering is possible, it shows that there is no cyclic path between buffers in channels.

Theorem 4 The north-last routing for RDT is deadlock-free. O

14



Proof Assuming that the size of the base torus of RDT is m x m. Assign two dimensional number of
channel from a node (z,y) according to its direction as shown in Figurel5, and let the unique number of the

channel be ¢, x m + ¢,.

(4(n-1)+y+1, 0)

(3(n-1)+ y+1, (3(n-1)+y+1, 0)

(3{(n-1) -y}, m-1-x)= X,y (3{(n-1) -y}, x)

(3{(n-1)-y}+2, 1) (3{(n-1) -y}+2, 0"
(3{(n-1)-y}+1, 0)

Figure 15: Numbering of the channels leaving each node (z,y) for the north-last routing algorithm for RDT.

Since the size of the base torus of RDT is m x n, the range of the possible channel number (c,,c¢,) is

represented by the following equations.

0< ¢, <5(n-1)

0< ¢y <m-—2

In RDT, there are eight possible input directions. As shown in Figure 16, all possible output channel
numbers are larger than the number of input channel. In other words, the packet transfer to an output
channel whose number is less than input channel is prohibited by the Definition 2 within the range shown
in the above equations.

Therefore, channels are used in the increasing order on RDT.O

Figurel7 shows an example of routing on the 4 x 4 RDT. The blocked channels are bypassed with a
path consisting of channels in increasing order. This figure also shows that the number of permitted output

channel is lager than that of input channel.

5 Conclusion

Two adaptive routing algorithms on RDT are proposed and discussed. The first algorithm is based on
Duato’s necessary and sufficient condition. Based on this method, we proposed two derivatives: Algorithm
D-A and D-B. Algorithm D-A must not use the opposite direction which is used in the past, while Algorithm
D-B can use any direction but must cross ranks in descending order. These algorithms can only use minimal

paths. These methods are proved to be deadlock-free based on Duato’s protocol.

15
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Figure 16: The possible output channels for each input channel.



Figure 17: Example of north-last routing for RDT(m = 4,n = 4).

17

(0.2) 01) I 7 (00 |

0,3 1,3 2,3 3,3

(0,0 ; ;
(12,1) (12,0 (12,1) ( (12,2) (
(1%,0) (1%,0) (1%,0) (1%,0)
(1,0) (1,0) (40) (1,0)
(211) (2,0 (211) (2,0 (211) (2.0)
(3,2 i (3,1 (3,0)
0,2 2,2 3,2
’ EL a8 | ’ ’
(11,1) (11,0 (11,1) (11,0 (11,1) (11,0
(14,0) (14,0) (14,0) (14,0)
(4,0) (4,0) (4,0) (4,0)
(51) (5.0 (541) (5.0 ) (5,0)
(6,2 (6,1) 6,0
0,1 1,1 2,1 3,1
(6,0) (6,1) (6,2)
(16,1) (10,0 (16,1) (10,0 (16,1) (10,0
(13,0) (13.0) (13,0) (13,0)
(7,0) (7,0) (7,0) (7,0)
(81) (8,0) (&) (8,0) (81) (8.0)
(9,2 (9,1 (9,0)

0,0 1,0 2,0 3,0
SO0 T I )
Source Destination

node node
iiiﬂ
Blocked



Another algorithm called north-last routing is proposed based on the turn model. By prohibiting fourteen
turns on RDT, cycles which may cause the deadlock are not formed, and alternative paths with additional
hops are permitted. The north-last routing for RDT is also proved to be deadlock-free by numbering the
channels.

Although this paper focuses on theoretical aspects, a simulation study which demonstrates the effect of
the proposed routing algorithm is required. A simulator which can compare the proposed routing algorithms
and vector routing is now under development. We will improve our algorithms based on the simulation

results.
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