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Abstract— Recursive Diagonal Torus (RDT), a class of
interconnection network is proposed for massively parallel
computers with up to 26 nodes. By making the best use
of recursively structured diagonal mesh (torus) connection,
the RDT has a smaller diameter (eg., it is 11 for 2'% nodes)
with smaller number of links per node (i.e., 8 links per n-
ode) than those of the hypercube. A simple routing algo-
rithm called vector routing, which is near-optimal and easy
to implement is also proposed. Although the congestion on
upper rank tori sometimes degrades the performance under
the random traffic, the RDT provides much better perfor-
mance than that of 2-D/3-D torus in most cases, and under
hot spot traffic, the RDT provides much better performance
than that of 2-D/3-D/4-D torus.

The RDT router chip which provides message multicas-
t for maintaining cache consistency is available. Using the
0.5um BiCMOS SOG technology, versatile functions includ-
ing hierarchical multicasting, combining acknowledge pack-
ets, shooting down/restart mechanism, and time-out/set-up
mechanisms work at 60MHz clock rate.

Keywords— Interconnection Network, Massively Parallel
Computer, routing algorithm, router chip, mesh network,
torus network, message multicast.

I. INTRODUCTION

HE communication network is one of the critical com-

ponents of a highly parallel multicomputer. Recently,
multicomputers providing more than a thousand compu-
tation nodes are commercially available, and efforts have
been exerted to implement Massively Parallel Computers
(MPCs) with tens of thousands nodes.

In these systems, the connection topology often domi-
nates the system performance. Instead of hypercube used
in first-generation multicomputers, most recent machines
take the 2D or 3D mesh (torus) network[1][2][3]. Although
the diameter of a mesh network is large ( O(v/M) or
O(V/M) for M mnodes), it only requires four or six links
per node unlike the hypercube which requires loga M links
per node. Architectural supports for fine grain processing
[4] and the wormhole routing [5] reduce the performance
degradation caused by a large diameter. Moreover, mesh
networks are suitable for wide area of scientific calculations
including flow dynamics, QCD, and structural analysis.
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However, in an MPC with more than ten thousands n-
odes, the large diameter of the mesh network is intolerable.
A lot of connection topologies ( De Bruijn[6], fat tree[7],
Star graph[8] and others) have been proposed for such M-
PCs. Although these networks support a small diameter
with a small degree, embedding the mesh network is diffi-
cult. On the current machines with mesh structure, parallel
computation algorithms and message handling algorithms
have been accumulated and refined. To make the best use
of them, a network including the mesh structure is advan-
tageous even for future MPCs.

In this paper, we propose a novel class of networks called
Recursive Diagonal Torus (RDT)[9], which consists of re-
cursively structured mesh (torus) connection. It was origi-
nally designed as a network of a massively parallel proces-
sor[10] for efficient hierarchical multicasting. However, it
provides a lot of interesting properties as a general purpose
network. In Section 2, the structure of RDT and assign-
ment of torus are defined. In Section 3, a simple routing
algorithm called “vector routing[11]” is defined. In Sec-
tion 4, performance evaluation under the random traffic
is reported, and other properties of this network are dis-
cussed in comparison with other networks for MPCs. In
Section 5, hierarchical multicasting is introduced, and im-
plementation of a router chip for the RDT are described.

II. INTERCONNECTION NETWORK: RDT

Recursive Diagonal Torus (RDT) is a novel class of net-
works which consists of recursively structured mesh (torus)
connections of tori with different sizes in the diagonal di-
rections[9].

A. Definitions of the RDT

First, a two-dimensional square torus is defined as the
basis of RDT.

Definition 1: : Base torus
The base torus is a two-dimensional square array of nodes
each of which is numbered with a two-dimensional number
as follows:

(0,0) (1,0
(0,1) (1,1)
(0,2) (1,2

(o,ﬁ_m (1,1\}_1) (2,1\%-1) (N—le—l)

where N = n*. The n and k are natural numbers. The
torus network is formed with four links between node (z, y)
and neighboring four nodes:
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Fig. 2. Structure of the rank-1 torus

(mod(z + 1, N), y) and (z, mod(y + 1, N))
This base torus is also called the rank-0 torus. O

In order to reduce the diameter, the best way for the
torus network is to provide bypass links for the diagonal
direction. Assume that four links are added between a node
(z,y) and nodes (z £+ n,y £ n). Then, the additional links
form a new torus-like network. The direction of the new
torus-like network is at an angle of 45 degrees to the original
torus, and the grid size is v/2n times of the original torus.
Here, this torus-like network is called the rank-1 torus. On
the rank-1 torus, another torus-like network (rank-2 torus)
can be made by providing four links in the same manner.
Thus the rank-(r+1) torus can be formatted on the rank-r
torus in the same way. Figure 1 shows rank-1 and rank-2
tori when n is set to be 2. Our new network called the
RDT consists of such recursively formed tori.

Each odd rank torus-like network is a 2:1 rectangle one
which provides spiral circular links as shown in Figure 2,
while each even rank network is a common square nearest
neighbor torus. Here, both types of networks are called the
“torus” or “tori”.

Definition 2: : Upper rank torus
Assume that the rank-r torus satisfies the following condi-
tion:

Na(rt1) X Ny(rg1) 2 2
where
Ny,

Nyppy) = —r
o(r+1) ged(Nyp,n)

N,
N = -
y(r+1) 2gcd(Ny,, n)
and, N, N,

yrs Nar+1) and Ny 1) are the sizes of the
rank-r and rank-(r+1) in = and y axes.
Links between node (z,y) and nodes (2/,y'), (”,3") on
the rank-r torus form the rank-(r+41) torus:
Case 1: r is an even number, and thus, an odd upper rank
tori on the even rank tours is defined. (x, y), (x’, y), (x7,
y”) are the co-ordinates on the even rank tours.
, r+n
P

+n
g — N, yrn

2 = ($+N)—er \‘I-FHJ

Nzr

n—1y+ Ny,
N,

yr

J' = (y—n) + Ny, [

Case 2: r is an odd number, and thus, an even upper rank
tori on the odd rank tours is defined. (x, y), (x’, '), (X7,
y”) are the co-ordinates on the odd rank tours.

+y
= — (N — N, _rry
. (@ +n) = ( Y {Nm%

) |
V=) = V= ) | 20

[ “(N..— N =y
T (T-i—n) ( xr yr) {NIT—QTL

Z r—y
V= =)+ o = N |
Nodes on the rank-(r+1) torus can be identified by an-
other two-dimensional number (z,,1,¥,11). The number
is given in the following manner:

1. Let node (0,0) of the rank-r torus be (0,0) of the rank-
(r+1).

2. For an even rank torus, the axis is set as the same
direction of the base torus. For an odd rank, the di-
rection from (z,y) to (2/,y’) is set to be an x-axis of
the rank-(r+1) torus.

3. Give a two-dimensional number to each node on the
rank-(r+1) torus according to Definition 1.

The rank-(r+1) torus is called the upper rank torus based
on the rank-r. n is called as a cardinal number. O

Note that there are several independent upper rank tori
formed on a torus (This problem will be discussed in Sec-
tion II-B). By forming upper rank tori recursively on the
base torus (Definition 1) according to Definition 2, the Re-
cursive Diagonal Torus (RDT) is defined.

Definition 3: : Perfect RDT

Let form upper rank tori recursively according to Defini-
tion 2 on the base torus defined in Definition 1 as many as
possible. A network in which every node has links to for-
m all possible upper rank tori (i.e. RDT(n, R, R))is called
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the perfect RDT (PRDT(n, R)) where n is the cardinal
number and R is the maximum rank. O
Although the PRDT is unrealistic because of its large
degree (4(R+1)), it is important as a basis for establishing
message routing algorithms of the RDT theoretically.
Definition 4: : RDT
Recursive Diagonal Torus RDT(n, R, m) is a class of net-
works in which each node has links to form m upper tori
(the maximum rank is R) with the cardinal number n in
addition to the links of the base torus. O
According to this definition, the
RDT(n, R,m) is 4(m + 1).

degree of the

B. Torus assignment

Various structures of the RDT can be formed by chang-
ing n and m. Although large n is sometimes advantageous,
the cardinal number n is set to be 2 so as to enable easy
implementation of algorithms based on binary tree or cube.
Since an upper torus requires four links, the RDT with a
large m requires too much hardware. Here, a system with
tens of thousands nodes (for example, array of 128 x 128
nodes or 256 x 256 nodes) is assumed, and m is set to be
1 (degree = 8). For such number of nodes, the upper most
rank of tori is 4. Thus, the RDT(2,4,1) is mainly treated
here.

In the RDT(2,4,1), one of upper rank tori is assigned
to each node. Thus, the structure of the RDT(2,4,1) also
varies with which rank of tori are assigned to each node.
This assignment is called the torus assignment. For the
torus assignment, the identification of upper rank tori is
required.

Theorem 1:
2n? independent rank-(r + 1) tori are formed on a rank-r
torus while there are Ny, x Ny, > 4n? nodes in the rank-r
torus and there are N;q X Ny nodes in the system. Where
Nzo = Ny = ¢(2n)7, and ¢, n,~ are natural numbers.

The proof is shown in Proof 1 of Appendix.

Theorem 2:

Let be the following 2n x n array of nodes in the rank-i
torus of the PRDT(n,R).

(0,0) (1,00 (2,00 (3,
0,1 1,1 2,1 3

0 - (20-1,0
o1 11 (21 1

)
) - (2n-1,1)

)

(Om—1) (1;n—1) (2,n—1) (3,n—1) (2n—1,n—1)
If rank-7 + 1 torus can be formed on the rank-¢ torus, every
node in the above array fraction is a member of an indepen-
dent rank-i + 1 torus. We call nodes in this array fraction
a minimum node set. A node which has links for rank-
torus (i # 0) is called a node with the rank-i torus. “A
node has the rank-¢ torus” means that the node has links
for forming the rank-i torus.

The proof is shown in Proof 2 of Appendix.

Definition 5: : Identification of upper torus

A rank-1 torus is called the (g, jo) torus if a node (ig, jo)
in the minimum node set of the base torus has the torus.
Similarly, a rank-2 torus is called the (ig,jo)(%1,71) torus

O ran|

‘.’@ O ran!
5 5% 8
T " @ ran|

© ran|

@ ran!

Fig. 3. Torus assignment for the RDT(2,4,1)/«

if a node (i1,71) in the minimum node set of the (ig,jo)
torus has the torus. In general, a rank-k torus is called the
(0, Jo)(i1,71) - -« (4k—1, Jr—1) torus if a node (ig_1,jk_1) in
the minimum node set of the (ig, jo)(i1,1) - ({k—2, Jx—2)
torus has the torus.

Here, (*,*) means all nodes in the minimum set. Thus,
(i0,70) (31, J1) - - - (ik—2, jr—2) (%, *) represents all rank-k tori
on the (io,j@)(il,jl) .. (ik_z,jk_g) torus. O

For example, the rank-1 torus in Figure 3 is called (1,0)
torus. The rank-2 torus in Figure 3 is (1,0) torus formed
on (0,0) torus, and thus, called ((0,0)(1,0)) torus.

Various torus assignment strategies can be selected con-
sidering the traffic of the network. If the local traffic is
large, the number of nodes which have low ranks should
be increased. However, complicated torus assignment in-
troduces difficulty to the message routing algorithm and
implementation.

A relatively simple torus assignment is selected here.

Definition 6: : The RDT(2,4,1)/«

Here, RDT(2,4,1) with the following torus assignment is
called the RDT(2,4,1)/« .

o rank-1: (1,0) , (3,1)

o rank-2: ((0,0)(*) , (2,1

o rank-3: ((1,1)(*,*)(*.*)) ,

o rank-4: (D)) (*5)(*.%)) :

(2.0)(%5)(%%)(*,%) D

Torus assignment used in the RDT(2,4,1)/« is shown in
Figure 3. In this assignment, a node has eight links, four
for the base (rank-0) torus and four for rank (1-4) torus
(Most of links for upper rank tori are omitted in Figure 3).
With the cardinal number n = 2, 8 independent rank-1 tori
can be formed on the base torus. Two tori (1,0) and (3,1)
are used directly as the rank-1 torus. Other rank-2 tori are
formed on two rank-1 tori (0,0) and (2,1). Similarly, two
rank-1 tori are used in forming rank-3 tori, and two rank-2
tori for rank-4 tori.

Note that a node with an upper rank torus has neighbor-
ing nodes with tori of other three upper ranks. Therefore, a
packet sent from any node can be passed to any rank torus
with a single message transfer between neighboring nodes.
This property reduces the diameter and average distance
between nodes.

Another torus assignment called RDT(2,4,1)/3 is pro-
posed[32]. It improves the average distance compared with
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RDT(2,4,1)/a when local communication is dominant.

I1I. ROUTING ALGORITHM
A. Vector routing

First, a routing algorithm called the vector routing[11]
is introduced for the PRDT. In this routing algorithm, the
route of a message is represented with a combination of
unit vectors each of which corresponds to each rank of tori.
On the torus structure, a vector from a source node to the
destination node is represented with a vector A = azpy + by
where 7 and g are unit vectors of the base (rank-0) torus.
The goal of the routing algorithm is to represent the vector
A with a combination of vectors each of which corresponds
to a unit vector of each rank of torus (Figure 4(a)).

First, the direction of the unit vector corresponding to
each rank torus must be defined. The direction of the unit
vector for each rank torus rotates clockwise at an angle of
45 degrees as the rank increases as shown in Figure 4(b).
The unit vectors of rank-(r41) torus #,i1,y-4+1 is repre-
sented with the unit vectors of rank-r (2., 4.) as follows:

Tpy1 = NTr + NYy Yr+1 = —NTy + NYr

. First, the target vector azy + byg is represented with a
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Fig. 4. Directions or the coordinate axes
combination of 27,771,279 and g as follows:
azy + byo = 921 + fyi + jTo + kijo

Here, we select maximum ¢ and f in order to use the up-
per torus as possible. From previous equations, maximum
integers for g and f are represented as follows:

a+b
9= 2n f=

a—b
2n

In order to minimize j and k corresponding to the remain-
ing unit vectors of the rank-0 torus (and so required mes-
sage transfer using the rank-0 torus), the integer divisor
used here is rounded to the nearest whole number (if the
remainder is greater than n, increment the divisor).

Thus, j and k are represented with g and f:

azh + byo = g(nao + nyo) + f(—nas + nyo) + j2o + ko

b=ng+nf+k
k=b—ng—nf

a=ng—nf+j
j=a—ng+nf

. Then, gz + fyi are represented with a combination of
vector T3, ¥s, 1, and g7 in the same manner. By iterating
this process to the maximum rank, vectors for message
routing are obtained.

This algorithm is specified with a simple C program frag-
ment as follows:
Algorithm: The simple vector routing

for (rank=0; rank < MAX_RANK; rank++) {
g=div_2n(a+b); f=div_2n(-(a-b));
vector [rank] .x= a-(n*g - n*f);
vector [rank] .y= b-(n*g + nxf);
a=g; b=f;
}
vector [MAX_RANK] .x=g; vector [MAX_RANK] .y=f;

where div_2n means division with 2n rounding to the
nearest number. The routing vectors for each rank are

obtained in the array vector[rank].
Step 1

Step 2 Step 3

(12 12) L2

(5.9) (5.9)

59 \/

0=(3+1)/4=1,=-(3-1)/4=0

x1=3-2(1-0)=1
y1=1-2(1+0)=-1

9=11/4=3, f=3/4= 1

X0=4-2(3-1)=0
y0=7-2(3+1)=-1

a=5-1=4, b=9-2=7
Fig. 5. An example of the vector conversion

Figure 5 shows an example of a vector from (1,2) to
(5,9) converted into a combination of unit vectors of rank-0,
rank-1, and rank-2.

Theorem 3: The diameter of the RDT(n,R,R)(ie.
PRDT(n,R)) with the simple vector routing is as follows:

N2|’R2—1'|
e

where D is the diameter, N is the size of the base torus, R
is the maximum effective rank number.

The proof is shown in the Proof 3 of Appendix.

In the simple vector routing, vectors of a rank are decided
with already fixed vectors of lower ranks. Better routes
may be found by considering the vectors of all lower ranks
again. However, the difference between the diameter with
the simple vector routing and the theoretical one is at most
1. Considering that the simple vector routing only requires
simple add and shift operations, it is advantageous in most
cases.

According to the Theorem 3, diameters of RDTs with
various n and R can be obtained. Figure 6 (a) shows di-
ameters of the RDT(n,1,1) in which a node has the base
torus and only rank-1 torus. In this case, the diameter
is decreased with a larger n. It shows that a large n is
advantageous if it is not possible to make higher rank tori.

+nR
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Fig. 6. Diameter vs. the number of nodes

However, if higher rank tori are provided, a smaller
n is suitable. Figure 6 (b) shows the diameters of the
RDT(n,4,4) in which a node has the base torus and rank-
1,2,3,4 upper torus links. In this case, n = 2 is optimal
with up to 16000 nodes. For larger number of nodes, n = 3
is optimal.

B. Floating vector routing

Unlike the PRDT, only one upper torus is connected
to each node in the RDT(2,4,1)/c« . Therefore the vector
routing algorithm for the PRDT must be extended for the
RDT(2,4,1)/c so as to transfer the message to upper rank
tori using the rank-0 torus. Since the vectors from the
source node to the destination node are determined before
routing, this algorithm is called the fixed vector routing.

RECURSIVE DIAGONAL TORUS: AN INTERCONNECTION NETWORK FOR MASSIVELY PARALLEL COMPUTERS

For the fixed vector routing of the RDT(2,4,1)/« , the
following theorem is easily found.

Theorem 4:
The diameter of the RDT(2,4,1)/a (Drpr(2,4,1)/a) 15 as
follows:

Drpr2,4,1)/a < DPrDT(2,R) + B —1

where Dprpr(2,r) is the diameter of the PRDT(2,R).
Proof: Since every torus can use rank-0 (base) torus,

at most R — 1 times additional steps of message transfers

are required for the use of every upper rank torus. |

However, the algorithm becomes complicated for consid-
ering the routing on the rank-0 torus links required to use
upper rank tori in the RDT(2,4,1) /. Moreover, this rout-
ing is not suitable for bypassing faulty links or hot spot
nodes. To cope with these problems, the floating vector
routing is proposed.

This routing method is torus assignment independent,
and the vector calculated by the vector routing algorithm
for the PRDT can be directly used. In this method, the
vector reduction is done in the source node, according to
the vector routing for the PRDT. Then, the routing tag
for routing vectors is stored in the packet header. A router
attached to each node checks the tag, and determines the
link to send the packet. From Theorem 3, the maximum
number of vectors used for a direction is equal to n. In the
RDT(2,4,1)/c , 3bits (-2 to 2) are required for horizontal
and vertical directions respectively, and thus, 6bits are re-
quired for a rank in total. Here, the bit map for the rank-r
vectors is represented as (vpp, Upy)-

Each router is provided with a simple table indicating
the direction of the nearest node for every rank of torus.
In the RDT(2,4,1)/a , each node can use any rank of torus
by only a single step of message transfer to a neighboring
node, and thus the local routing table is quite simple.

The algorithm for the floating vector routing is as follows.

1. If the node i (iy,i,) has the rank-r torus and
(Vrhsvry)  #  (0,0), send the packet according
to (Vrh, Ury)- Otherwise, choose rank p whose
(vph, vpw) # (0,0). If there are no upper ranks to be
routed, goto (4).

2. Choose the node j (jz, jy) which has the rank-p torus
and minimizes abs((jz —iz) —von) +abs((jy — iy — vow).
This node selection is done by the local table reference.

3. Send the packet to node j through links for the rank
0 torus.

When the packet reaches to the node j, replace ¢ by
J» and (von, vou) by (von + (Jo — ix), vow + (]y - Zy))
Then, goto (1).

4. Send the packet according to (vop,vg,) through links
of the rank 0 torus.

In this method, the packet transfers on the rank-0 torus
which is required to use upper rank tori are automatical-
ly adjusted, and so the vectors calculated for the PRDT
can be directly utilized. This method can be applied for
any torus assignment of the RDT, and also useful as the
basis of the fault tolerant or adaptive routing. Since the
node is selected so as to minimize the routing with rank-0
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TABLE I
DIAMETER AND AVERAGE DISTANCE OF THE RDT

[ Number of nodes

1024 | 4096 | 16384 | 65536 |

[
Theoretical diameter [
[

5 | 6 | 8 [ 10 |
PRDT(2 |
RDT(2,R) | Simple Vector Routing 6 7 [ 9 [ 10 |
. . Diameter 7 8 9 11
Floating Vector Routing oo rce B.56 6.67 7.82 8.05
R . Diameter 9 11 15 19
Fixed Vector routing Average distance 5.67 7.07 8.60 11,21
RDT(2,4,1)/a Dondlock-froo Diameter 11 12 17 19
Average distance | 6.68 | 8.10 9.96 11.690
T Diameter 13 17 19 23
Closed Partitioning Average distance 6.60 8.37 9.03 11.74

torus, both the diameter and average distance are also min-
imized. Table I shows the diameter and average distance
of the RDT(2,4,1)/« with the floating vector routing and
fixed vector routing. As shown in Table I, the diameter
and average distance of the RDT(2,4,1)/a with the float-
ing vector routing are not so increased compared with that
of the PRDT(2,R), and greatly improved compared with
the fixed vector routing.

IV. PERFORMANCE EVALUATION AND COMPARISON
WITH OTHER NETWORKS

As shown in section V, the RDT is originally proposed
for hierarchical multicasting in a massively parallel proces-
sor. However, it is a satisfactory performance for a general
purpose network in many aspects. In this section, the per-
formance of the RDT is evaluated and its properties as a
general purpose network are discussed.

A. Comparison with other networks

First, the diameter and degree of the RDT(2,4,1)/« is
compared with other direct networks.

From Table II, it appears that RDT(2,4,1)/« supports
smaller diameter than most of direct networks considering
its degree. Especially, for the system with 65536 nodes, the
diameter of the RDT(2,4,1)/« is smaller than that of the
hypercube with only a half degree.

Although De Bruijn, Kautz, and Pradhan provide a com-
parable diameter and degree with RDT(2,4,1)/« , they are
difficult to use to embed the mesh structure. Diagonal
Mesh [20] which also consists of a torus and bypass links
is equivalent to the PRDT(n,1,1). Tt provides no recur-
sive structure. There are other networks (base-m n-cube
or hypermesh|[21] [22] and fat tree[7]) which are suitable for
MPCs. However, the comparison is difficult because they
are indirect networks. Although the latency of the message
passing in these networks is smaller than that of the RDT,
large size of crossbar switches are required if the size of the
network is larger than ten thousand.

Bisection bandwidth of the RDT is difficult to represent
with a simple formula, since it depends on both the network
parameters (n,m,R) and torus assignment. Assuming that
the node number is N and channel bandwidth is W, bisec-
tion bandwidth of k-ary n-cube (N = k™) is represented as
2Wk"~1. Since in RDT(2,4,1)/a each node provides a 2D
torus as a base torus and another 2D torus with different
size as an upper torus, bisection bandwidth is sum of those

of two 2D tori. For RDT(2,4,1)/« , bisection bandwidth
b4+ is represented as follows:

brdt = {

From this equation, the order of RDT(2,4,1)/« ’s bisec-
tion bandwidth is just as same as 2D torus(O(k)).

Tablelll represents examples of bisection bandwidth of
direct networks (N = 4096 and N = 16777216).

2x 13 x W x k,
2x28x W x k,

for k < 64
for k > 64

TABLE III
BISECTION BANDWIDTH OF DIRECT NETWORKS

network 4096 nodes | 16777216 nodes
(64 x 64) (4096 x 4096)

2D Torus 128W 8192W
3D Torus 512W 131072W
4D Torus 1024W 524288W
Hypercube 2048W 8388608W
RDT(2,4,1)/c 1664W 229376W

From Tablelll, it is shown that the bisection bandwidth
of RDT(2,4,1)/« is larger than that of 4D torus when n-
ode number is 4096. For a larger number of nodes such
as 16777216, the bisection bandwidth of 4D torus be-
comes larger than that of RDT(2,4,1)/« since the order
of RDT(2,4,1)/« ’s bisection bandwidth is O(k).

B. Performance evaluation

In this paper, an interconnection network simulator is
utilized to compare the performance of the RDT with other
networks. This simulator has been developed to estimate
the performance of interconnection networks for massively
parallel computers which has tens of thousands processor
elements.

The interconnection network simulator used here is a flit-
level simulator written in C+4-. Network size, the number
of virtual channel, and packet length are selected just by
changing parameters. As shown in Figure 7, each node
consists of a processor, request queue and the router which
provides bidirectional channels. Each node is connected
with neighboring nodes by using bidirectional channels at-
tached to the router.

As shown in Figure 8, a simple router model consisting
of channel buffers, crossbar, link controller (LC), virtual
channel controller (VC) and control circuits is used.
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TABLE II
DIAMETER (DEGREE) OF DIRECT NETWORKS

Nodes number 4096 Notes 65536 Notes
2D Torus 64(4) 64764 256(4) 256%256
3D Torus 24(6) 16*16*16 64(6) 32*32%64
4D Torus 16(8) 8*8*8*8 32(8) 16*16*16*16
Hypercube 12 (12) 16(16)
De Bruijn[6] 12 (4) 16 (4)
Kautz[13] 11 (4) 3072 Nodes 15 (4) 49152 Nodes
Pradhan[14] 12 (5) 16 (5)
Circular omega[15] 20 (4) 5120 Nodes 26 (4) 53246 Nodes
n-Star graph[8] 7 (8) 5040 Nodes 8 (7) 40320 Nodes
CcCC[16] 40 (3) 9-9 4608 Nodes 66 (3) 12-12 49152 Nodes
Hypernet[17] 19(5) 4D3-hierarchy 17(8) 5D3-hierarchy
Crossed Cube [18] 7(12) 9(186)
Midimew [19] a6(4a) 64*64 181 (a) 256*256
RDT(2,4,1)/a 8(8) 64*64 12(8) 256*256

Processor

output

channel channel

|

input channels Router . output channels

\.

Fig. 7. The construction of each node
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Fig. 8. Router model

In this paper, we will consider five interconnection net-
works with 4096 nodes, i.e., the RDT(2,4,1)/c , the 2D
torus (64x64), the 3D torus (16x16x16), the 4D torus
(8 x 8 x 8 x 8) and the 12-dimensional hypercube. In terms
of implementation, the simulation parameters for each in-
terconnection network are set as TablelV.

The destination node of a packet is determined by the
traffic pattern in the simulator. Two traffic patterns are
used in this simulation:

o uniform

All destination nodes are selected randomly, and so
distributed uniformly.

e hot spot

Only 128 nodes (i.e. 35 of all nodes) are selected for

TABLE IV
SIMULATION PARAMETERS

4096 nodes

16 flits or 128flits(fixed)
3 flits (fixed)

wormhole

1 clock

Network size

Packet length

Packet header length
Routing method
Packet generation time

Routing and cross bar setup time 1 clock
Flit transfer time T clock
(from input buffer to output buffer)

Flit transfer time (at physical link) T clock

10000 clock
(ignore the first 1000 clock)
2

Simulation time

The number of virtual channels

destination node, thus causes hot spot traffic.
The following two measures are used for evaluations.

B.0.a Average path length:. The average distance be-
tween nodes can be measured without any conflict in the
network.

B.0.b Network latency:. Let the time when a node p
inserts the first flit of a packet into the input buffer be
to, and the time when the tail flit of the packet is sent
to the processor at destination node ¢ be t;. Here, we call
Tiat(p, q) = t1—to the network latency, and use the measure
of the network performance.

B.0.c Throughput:. Throughput is the maximum amount
of information delivered per time unit. Here, throughput
could be measured in flits per node in each clock cycle.

When the network is saturated, the execution of simula-
tion is aborted.

TABLE V
AVERAGE PATH LENGTH OF DIRECT NETWORKS

[ network (4096 nodes) [ average path length | diameter |

2D Torus 32.0078 64
3D Torus 12.0029 24
4D Torus 8.0020 16
Hypercube 6.0015 12
RDT(2,4,1)/c 8.1902 12

Table V shows the average path length of each direct
networks (4096 nodes). In this simulation, since a simple
deadlock free routing algorithm shown in the sectionIV-C
is used, diameter of RDT(2,4,1)/a is larger than that of
the 4D torus which provides the same number of links a
little.



Figure 9 shows the average message latency as a function
of network throughput for the RDT(2,4,1)/cx, 2D torus, 3D
torus, 4D torus, and the 12-dimensional hypercube under
uniform traffic. In this case, packet length is 16 flits.
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Fig. 9. Network Throughput vs. Average message latency

The latency of 2D torus is large because of its smal-
1 degree. In contrast, the latency of higher dimension-
al topologies: the hypercube and 4D torus is low. The
RDT(2,4,1)/c also has a low latency under low through-
put. However, the latency of the RDT(2,4,1)/a becomes
worse than that of the 3D torus when the throughput is
high, thus, the network is congested. Under the uniform
traffic, when the network is congested, messages transferred
with upper rank tori will increase. This causes severe con-
gestion on upper rank tori, and stretches the latency in

RDT(2,4.1)/cx .
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Fig. 10. Network Throughput vs. Average message latency (long
messages)

Figure 10 shows simulation results in the case of long
messages (packets with 128 flits) are transferred. In this
case, the latency of RDT(2,4,1)/« is better than 3D torus,
even under a heavy traffic load. It comes from that the
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average distance of RDT(2,4,1)/« is smaller than that of
3D torus as shown in Table V.
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Fig. 11. Network Throughput vs. Average message latency (hot spot
traffic)

Figure 11 shows simulation results under ”hot spot” traf-
fic, that is, packets are concentrated to only a part of nodes.
Under the hot spot traffic, RDT(2,4,1)/« performs better
performance than 4D torus. Since RDT(2,4,1)/« consists
of recursive structured tori, RDT(2,4,1)/« contains a hier-
archical structure and this will cause performance improve-
ment under the hot spot traffic.

Through these evaluations, the latency
of the RDT(2,4,1)/« is better than those of 2D and 3D
torus except the case using short packets, and under hot
spot traffic, RDT(2,4,1)/« is better than that of 4D torus.
However, the congestion of the upper tori degrades perfor-
mance under uniform traffic. In order to avoid the partial
congestion of the network, adaptive routing is required.

C. Other issues of the RDT

The RDT provides other features which are useful as
interconnection networks for MPCs.

C.0.d Deadlock free routing:. The RDT consists of hierar-
chical connected tori, that is k-ary 2-cubes. For the PRDT,
the e-cube routing [12] which is a common deadlock-free
routing algorithm for k-ary n-cubes is almost directly ap-
plied and the deadlock can be avoided with two virtual
channels for each link[11].

For the RDT(2,4,1)/« , the order of rank usage is re-
stricted so as the dimension ordering of e-cube routing.
The packet must traverse the highest rank torus first, and
traverse each rank torus in descending order. Another vir-
tual channel is required for links to the X-dimension of the
rank-0 torus[11] for moving between different ranks with-
out deadlock.

C.0.e Closed partitioning:.  The network partitioning is
important for a massively parallel computer, since multiple
users might use the machine independently. One of the
major disadvantages of 2-D or 3-D torus network is that a
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partitioned torus must be used as a 2-D or 3-D mesh (not
a torus) as the wrap-around links cannot be used. This
causes a lot of packets for distant nodes.

However, in the RDT, by using links for upper rank
tori, the network is partitioned without severe performance
degradation. In the RDT(2,4,1)/« , the quad-sectional
(2 x 2) partitioning is possible. For, example, the 16 x 16
torus shown in Figure 1 can be divided into four 4 x 4 tori.
The minimum size of the partition is 4 x 4. The diame-
ter of the partitioned RDT(2,4,1)/« is stretched 2-4 steps
compared with the same scale RDT(2,4,1)/« [11].

C.0.f Hypercube embedding:.  Hypercube can be easily
embedded by the RDT(2,4,1)/c if the number of nodes is
the same. Even rank tori can be directly used for the hy-
percube embedding, while two step message transfers are
required in odd rank tori. Since these transfers are per-
formed without any conflict, the hypercube embedding is
performed with 2 steps. With the RDT(2,4,1)/c, 2(R+1)
steps (R < 4) are required[11].

C.0.g Adaptive Routing:.  Although the vector routing
proposed here is a simple and near-optimal method, it can-
not use alternative paths for avoiding congestion in the
network. Since RDT(2,4,1)/« provides multiple paths be-
tween nodes, adaptive routings can be applied by simple
modification of methods for torus networks[24][25].

Two algorithms are proposed for RDT(2,4,1)/« . The
first algorithm is based on Duato’s necessary and sufficient
condition[23]. With this method virtual channels are effec-
tively used while paths with redundant routing steps are
prohibited[29]. Another algorithm is based on the turn
model[26]. By prohibiting certain turns on RDT(2,4,1)/«
, it permits paths with additional hops. Both algorithm-
s are proved to be deadlock free, and from evaluation, it
is known that adaptive routing on RDT(2,4,1)/« greatly
improves the performance[24][25].

C.0.h Fault tolerance:. From the Theorem 1, the
RDT(2,4,1)/« provides independent tori for each rank: 2
for rank-1, 16 for rank-2, 128 for rank-3, and 1024 for rank-
4. Since upper tori have a degree of redundancy, there ex-
ists an alternative torus which can be used when a torus
cannot be used by a fault. By using the floating vector
routing, a faulty node can be bypassed just by rewriting
the table which stores location of a node with each upper
rank torus.

V. Tue RDT ROUTER CHIP
A. A massively parallel processor prototype JUMP-1

The RDT was originally proposed as a network of a mas-
sively parallel processor prototype JUMP-1 [31][10] which
is developed by collaboration between 7 Japanese univer-
sities.

The major goal of this project is to establish techniques
for building an efficient distributed shared memory on a
massively parallel processor. JUMP-1 consists of clusters
which is a bus-connected multiprocessor including 4 coarse-
grained processors(CPU), 2 fine-grained processors (Mem-
ory Based Processor or MBP) each of which is directly

connected to a main memory and the RDT router chip.
A CPU is an off the shelf RISC processor (SUN Super-
Sparc+) which performs the main calculation of the pro-
gram.

In JUMP-1, each node processor shares a global virtu-
al address space with two-stage TLB implementation, and
the directory is attached not to every cache line but to ev-
ery page, while the data transfer is performed by a cache
line. Unlike other CC-NUMAs, update type cache coher-
ence protocols can be utilized in JUMP-1 for applications
which require frequent data exchange.

For supporting this approach, Reduced Hierarchical Bit-
map Directory schemes (RHBDs) were introduced[27][28].
In the RHBD, the bit map directory is reduced and car-
ried in the packet header for quick multicasting without
accessing directory in each hierarchy.

Now, JUMP-1 with 64 processing elements (Figure 12)
is working and the RDT is actually used as the intercon-
nection network. Here, the RDT router chip for efficient
implementation of the RHBD is described.

Fig. 12. JUMP-1 with 64 processing element

B. Message broadcast/multicast

Fig. 13. The message transfers for broadcast and deadlock-free

In the RHDB, messages for keeping the cache consisten-
cy are required to multicast through the hierarchical net-
work structure. Upper rank tori of the RDT can be used
for this purpose. The pattern of message transfers from
a node with the rank-i torus to nodes with the rank-(i-1)
torus is shown in Figure 13(a). Two steps are required:
(1) each node transfers a message to four neighbors, (2) a
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TABLE VI
THE NUMBER OF STEPS REQUIRED FOR THE BROADCAST/BROAD-CALL

Number of nodes | 1024 | 4096 | 16384 | 65536
RDT(2,4,1)/« 10 11 12 13
Hypercube 10 12 14 16
4-ary tree 8 10 12 14

neighbor (South in Figure 13(a)) transfers the message to
three neighbors except the source node (dotted lines in Fig-
ure 13(a)). As shown in this figure, the eight nodes which
receive the data never receive the message from other nodes
(marked X in Figure 13(a)) on the same rank-i torus. By
repeatedly applying this data transfer from the maximum
rank to the rank-0, the data is sent to every node of the
PRDT (i.e. broadcast). Since two steps are required for
each rank, message broadcast on the PRDT(2,R) requires
2(R+1) steps.

On the RDT(2,4,1)/a , the following steps are required:

2(R+1)+(R—-1)+1=3R+2.

The second term (R — 1) corresponds to the additional
steps of message transfers on the rank-0 torus to use other
rank tori, and the third term (1) is a message transfer to the
node with the maximum rank of torus when the broadcast
starts.

Table VI shows required steps for broadcasting on
the RDT(2,4,1)/a , 4-ary tree and hypercube. In the
RDT(2,4,1)/« , there are many nodes with the maxi-
mum rank torus, and all of them are used as a root n-
ode for broadcast. Therefore, broadcast is performed on
the RDT(2,4,1)/a with less steps than the hypercube and
sometimes the 4-ary tree.

This broadcast method is advantageous for multicasting
data to nodes local to the source node. In the RDT, nodes
which receive the packet through the tree whose root rank
is ’i’ are located around the source node. For larger i,
the number of such nodes becomes large, thus the area
to which a message is multicast becomes wide. We call
such an area ”territory” of a multicast. Figure 14 shows
territories of a multicast of rank-1 and rank-0. Since the
shape of a territory is always formed surrounding a source
node, message multicast to local nodes can be performed as
a lower rank multicast (thus, forms just a small territory).

The tree formed on the RDT is a kind of ” fat-tree” which
provides many root nodes. Therefore, the congestion of
root nodes is relaxed even if many source nodes multicast
their data simultaneously and independently. Using this
property, messages for keeping cache consistency required
in the RHBD are multicast effectively to local nodes with-
out causing congestion at root nodes.

C. Structure of the router chip

The RDT router chip which provides message multicast
for the RHBD scheme is available. As shown in Figure 15,
the core of the chip is a 10 x 11 crossbar which exchanges

O 44‘»0#@4»0'4
;Q'@;i'sli

Fig. 14. Territory of a multicast

packets from/to ten 18-bits-width links, that is, four for
the rank-0 torus, four for the upper rank torus, and two
for the MBPs of each cluster which manage the distributed
shared memory of JUMP-1. In JUMP-1, two RDT router
chips are used in the bit-sliced mode to form 36 bits width
for each link.

All packets are transferred between router chips synchro-
nized with a unique 60MHz clock. In order to maximize
the utilization of a link, packets are bi-directionally trans-
ferred. Maximum packets length is 16flits (36 bits-width
16flits-length) so as to carry a line of the cache. 3-flits
header which carries the bit-map of the RHBD is attached
to every packet, but the length of the body is variable.

-
b

18bits width at 66MHz

Olher nodes (x8)
MBP (x2)

18bits width 16 flits

Handshake

10x11 Crossbar Controller

-

Output buffer

Counter
4

Ack packet combining
Cache

Fig. 15. The structure of the RDT router

Unlike common router chips[4], the following facilities
are provided:

o efficient deadlock free multicasting using the asyn-

chronous wormhole routing,

¢ acknowledge packet combining,

« shoot-down/setup, and

« error/handling mechanism.
Especially, the deadlock free multicasting based on the
RHBD and acknowledge packet combining are the most
challenging aspect of this design. They reduce the conges-
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tion of network traffic drastically[30].

D. Chip Implementation

0.5um Hitachi BICMOS SOG which provides maximum
of 125K gates is utilized. Arbitration of the crossbar and
the bidirectional transfer lines are performed simultaneous-
ly (Tt is the critical path of this chip), and it takes six clocks
to pass through the chip without conflict. By using internal
dual port RAMs, packet buffers can push and pull a flit of
a packet simultaneously. The specification of RDT router
chip is shown in Table VII. The package of RDT router
chip provides 299 pins including 260 signal. In order to
drive up to 2m cable directly, we used the ECL I/O buffer,
and Bi-CMOS cell is widely used to secure large fanout
and high gate speed. 19W maximum power consumption
is caused by these Bipolar Cells. To cope with this power
consumption, a large heat sink is attached.

The required number of gates are shown in the Ta-
ble VIII. Random logics require 50,000 gates in total while
areas corresponding to about 4,000 gates are required for
dual-port RAM. Crossbar and arbiter, which are simple but
require high performance, are designed in schematic while
the complicated controllers are described with VHDL.

TABLE VII
SPECIFICATION OF RDT ROUTER

Power consumption 19.4W
Total Pins 299(Signal 260)
Rate of gate utilization 63
Clock rate 60MHz
TABLE VIII

NUMBER OF GATES OF RD'T ROUTER CHIP

Block name Gates Blocks Total Description
Crossbar 2,927 1 2,927 Schematic
Arbiter 2,736 1 2,736 Schematic

Multicast controller 1,558 10 15,580 VHDL
1/0O controller 397 10 3,970 VHDL
Bit-map generator 2,288 10 22,880 VHDL
Acknowledge 2,009 1 2,009 VHDL
combining
RAM for buffer 2,021 20 40,420 RAM

Total 90,522

VI. CONCLUSION

The RDT is a novel interconnection network for MPC-
s which achieves a small diameter which is almost half to
that of the hypercube. By using the floating vector rout-
ing algorithm, the near-optimal routing is possible in any
configuration of the RDT. Although the congestion on up-
per rank tori sometimes degrade the performance under the
random traffic, the RDT provides much better performance
than that of 2-D/3-D torus in most cases, and under hot
spot traffic, the RDT provides much better performance
than that of 2-D/3-D/4-D torus.

The RDT router chip which provides message multicast
for maintaining cache consistency is available. Using the
0.5um BiCMOS SOG technology, the versatile function-
s including hierarchical multicasting, combining acknowl-

edge packets, shooting down/restart mechanism, and time-
out/set-up mechanisms work at 60MHz clock rate. The
JUMP-1 prototype with 64 processing units connected with
the RDT router chip started to work in the spring of 2000.
The communication performance with a real application is
now under evaluation.

ApPPENDIX (PROOFS)

Theorem 1: 2n? independent rank-(r+1) tori are formed
on a rank-r torus while there are N, x Ny, > 4n? nodes
in rank-r torus and there are Ny X Nyo nodes in the sys-
tem. Where, Ny = Ny = ¢(2n)7, and ¢, n,~ are natural
numbers.

Proof:  On the rank-r torus whose grid size is a, the
rank-(r+1) tori whose grid size is

b=+/(an)? + (an)? = V2an

are formed. When the size of the rank-r torus is N, X

Ny, the size (node number) of rank-(r+1) torus (N’ =

Nz(rJrl) X Ny(r+1)) is:

;_ aNgr X aNy,  Ngp X Ny
(\/éan)z 2n2

Therefore, the number of independent rank-(r+1) tori (7')
is:

_ Ngr X Nyp  Ngp X Nyp
= N’ B Na:rXNyr =2
2n2

|

Theorem 2: If the rank-(r+1) tori are formed, every

member of any part of the rank-r torus which consists of

an 2n X n array of nodes takes an independent upper torus
that are different to each other:

(2,0) (3,0)
(2,1) 3,1

(0,0)
(0,1)

(1,0)
(1,1)

(On—1) (1pn—1) (2;n—1) (3,n—1) (2n—1,n—1)
Proof: From the Definition 2, the distance between
two nodes on the rank-(r+1) torus is 2n in the X-dimension
and n in the Y-dimension. So, there are no links of the
rank-(r 4+ 1) between any two nodes of the above 2n x
n array. From the Theorem 1, we know that there are
2n? independent rank-(r + 1) tori, that is, any node of the
above 2n x n array takes an independent upper torus that
is different from each other. |
Theorem 5:
The diameter D which is of the PRDT(n, R) with the vec-
tor routing (Vector Routing Algorithm) is as follow:

D=nR

where, n is the cardinal number, and R is the maximum
rank number.

Proof: On the rank-r of the PRDT, a message from a
source node to a destination node can be represented with
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a vector /fr = a,Z, + Sy, and the unit vectors of the
neighboring rank have the following relations:

(1)
(2)

where, 2., y, and Z,11, ¥,4+1 are the unit vectors of the

rank-r and rank-(r + 1) respectively, and n is the cardinal
number.

Tr41 = NTp + NYr

Yr+1 = —NTy + NYr

Assume that

3)

Using Equation 1 and 2, Equation 3 can be represented as
follows:

@@y + Brlr = Q1 Zrg + Br1¥rs

oy + Bry_;" = Ofr-‘rl(nx_;” + ny_;”) + ﬁr-‘rl(_n‘f; + ny_;”) (4)
Then we can get the result:
Ty = Qe 1NTy — [Bryp1ny

Brir = ary1nyy + Bry1nyr

ar + B

o= 2t G
_ —ar+ Br

fraa = 202 ®

Since a;41 and G417 must be integral numbers, Equa-
tion 7 and 8 can get the nearest integral numbers ., ; and
;.41 as following:

t
alr+1 = Qpg1 + 2%1 9)

tr2
ﬁ;Jrl = 6’r+1 + ;_n

where, |%2] < 0.5 and |42 | < 0.5.
Using Equation 7 and 8, the following equations can be
obtained.

(10)

Q- + ﬁr trl

g = 2, Tao, (11)
—a, + ﬂr tr?

Bri1 = “on + on (12)

Since rank-r vector is represented with a combination of
rank-r and rank-(r+1) vectors by Vector Routing Algorith-
m, Equation 3 can be modified as follows:

Qpy + Bry_;" = alr+1fr+1 + ﬂ;+1g7‘+1 + a, Ty + bry_;” (13)
Using Equation 1 and 2, we can represent Equation 13 as:

W TrABrtr = oy (NTr 17y )+ 01 (NYr—Ty) +ar Ly +bpyy

(14)
Then we can get two equations on the two directions of the
unit vectors.

/ /
Q. =na,. . — Nl + ar (15)

Br =na,q +nf 1 + by (16)
then

ayp = op —nag . +nf (17)

by = By — oy — 1B (18)

The |a,| + |b| means the message transfer steps on the
rank-r after using rank-(r+1) vectors.
Using Equation 11 and 12, we can get a, and b,:

67‘ + Qe trl 67‘ — Qy tr2
r=0p —n| —— + — T ¢!
“ @ n( 2n + 2n tn 2n + 2n (19)

ﬂT +ar lr1 57‘ — Oy tro

r v ) pgr Troy 2 2
2n + 2n " 2n + 2n (20)
With a simple reduction of the equations we can get fol-
lowing results:

br:ﬂr_n<

trl - tr2
= 21
a . (21)
t, i
b, = _% (22)

Since [ty1] < n, |tr2] <n
2+ oy + [t2) — 2] < 2n°
Z(tal + t%Q + |t$1 - t32|) < 4n?
2t£1 + 2t72'2 + 2|(t7‘1 - tr2)(tr1 + tr2)| S 4”2
rl r2 rl — Ur2 rl r2 rl — Ur2 = an
(trr +tr2)? + (tr1 — tr2)? + 2| (t + tr2) (try — teo)| < 4n?
[tr1 + tral® + [t — tro]® 4 2ltr1 + tralltyy — tra| < 403
(Itry + tra| + [tr1 — tr2])? < 4n®
|t1"1 + tr2| + |t'r‘1 - tr2| S 2n

trl - tr2 trl + tTZ <n
2 2 -
_trl - trQ _trl + tr2
2 2 -
|ar| + 10, < n

that is, the maximum steps of the message transfer on the
rank-r is n.

Then, the diameter D which means total steps on all of
the ranks is: D =nR. |

Theorem 6:
The steps of the message transfer on the rank-R of the
RDT(n, R, R) with Vector Routing Algorithm is:

NQ[R;W

- ()R

where S is the steps, N is the size of the base torus, and R
is the mazimum effective rank number.

Proof: This theorem is proved by the inductive
method.
The number of the message transferring steps for the vector
a,;, + B,y;, on the highest rank-R is:

S = ‘O‘R| + ‘BR|
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1. Incase of R=0
Since it is a torus structure,

N
ool < 5 (23)
N
ool < 5 (24)
N N
< 4
ol + [Bo| < 5 T3
ao| + [Bo] < N
it can be represented as
N2l
 (2n)°
that is, in case of R=0, Theorem 6 is tenable.
2. In case of R =k (k is an odd number)
(a) In case of R=1
From Equation 7 and 8,
Qg + —Qg +
S = || + |Bi] = 0 50+ 0+ Bo
2n 2n
g — log + Bol + | — ag + fol
2n
According to Equation 23 and 24
N
S = < — 25
|041\+\51|_2n (25)
N2l ]
- (2!

That is, Theorem 6 is tenable when R = 1.
(b) If Theorem 6 is tenable when R = k (k is an odd
number, k < 1), then

S=loul 1o = Y250
(c) Incaseof R=Fk+1
S = |akr1| + [Be+1] = akz—;ﬁk + ‘ —a/;: B
|l 1] + |Br+1| = o + Bl &1 = o + B (27)

2n
Since
g + Br| < || + | Bkl
| — o + Br| < Jou| + | Bkl

Then we can modify Equation 27 as follow:

g 1] + [Brga] < W'

Using Equation 26, we can get
Nal5]

>y

|gg1| + [Brs1] < 5
n

That is

Nl ]+

\ak+1‘ + ‘ﬂk+1‘ < W

(28)

Since k is an odd number,

e

The Equation 28 can be changed as follows:

(k+;)—1]
k1] + [Bes1] < @

Then, Theorem 6 is tenable when R = k + 1.
From above three results, theorem 6 is tenable when
R =k (k is an odd number).

3. In case of R =k (k is an even number)

o] + 8] = ag—1+ Br_1 n —p—1 + Br—1
2n 2n
a1+ Br—1| + | — ar—1 + Br—1]
o + 4] = X
2(lap—1| + | Br—
|ak|+|ﬂk‘ < (| k 1‘2 |ﬁk 1‘)
n

Since k-1 is an odd number and Theorem 6 is tenable
when k is an odd number, then

Nol

2 -
(Qn)kfl
2n

=p=1] 4

(2n)*

Nl =]

(2n)*
That is, Theorem 6 is tenable when R = k (k is an
even number).

4. Because of all above equations, Theorem 6 is tenable
when R =k (k is an integral positive number).

|| + 18, ] <

Nal

| +18,] < (29)

] +16,] <

|
Theorem 3: The diameter of the RDT(n,R, R) with Vec-
tor Routing Algorithm is as follows:

B Nol &5

—Wﬁ-nR

where D is the diameter, N is the size of the base torus,
and R is the mazimum effective rank number.

Proof: According to Theorem 5 and 6, the diameter
of the RDT(n,R, R) consists of the steps on the highest
rank o

Nol* ]
(2n)7
and the total steps on all other ranks nR. |
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