
Acceleration of the aggregation process in a Hallthruster
simulation using Intel FPGA SDK for OpenCL

Hiroyuki Noda
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

noda@am.ics.keio.ac.jp

Ryotaro Sakai
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

ryotaro@am.ics.keio.ac.jp

Takaaki Miyajima
Japan Aerospace Exploration

Agency (JAXA)
7441 Jindaijihigashi, Chofu,

1828522, Japan
miyajima.takaaki@jaxa.jp

Naoyuki Fujita
Japan Aerospace Exploration

Agency (JAXA)
7441 Jindaijihigashi, Chofu,

1828522, Japan
fujita@chofu.jaxa.jp

Hideharu Amano
Keio University

3141 Hiyoshi, Yokohama,
2238522, Japan

asap@am.ics.keio.ac.jp

ABSTRACT
The Full Particle-In-Cell (Full-PIC) method is a numerical

simulation technique used in the research and development

of Hall-thrusters which are a type of electric propulsion en-

gines. It treats ions, neutrons, and electrons as particles

and is highly accurate compared with other methods which

treat them as a fluid. However, it requires a large com-

putational cost. The Japan Aerospace Exploration Agency

(JAXA) is developing a software package called NSRU-Full-

PIC that implements such a method. One of the important

computing tasks in NSRU-Full-PIC is the aggregation pro-

cess, which causes Read-After-write (RAW) hazards, and

hence makes parallel computation difficult.

In this paper, we tackle this problem by introducing a

reduction operation with an FPGA accelerator. We use In-

tel’s mid-range SoC, Arria 10 which embeds floating-point

DSPs for high performance numerical computation. Intel

FPGA SDK for OpenCL is available for this platform for

easy offloading of complex tasks. We implemented 4 types

reduction kernels and compared their performance. As a re-

sult, the aggregation process becomes 76.4 times faster than

the single-thread version on an ARM Cortex-A9 1.5 GHz,

and 14.1 times faster than that on a Xeon E5-2660 2.9 GHz

in our fastest implementation, Read-16-Vect. In this im-

plementation, we achieved 93.5% of theoretical performance

with optimized FPGA resources.

1. INTRODUCTION
Electric propulsions such as Hall and ion thrusters are

highly efficient in propulsion power compared with chemical

propulsions. In such electric propulsions, Hall-thrusters su-

HEART2017, June 79, 2017, Bochum, Germany c⃝ 2017 Association
for Computing Machinery. ACM ISBN 9781450353168/17/06$15.00
https://doi.org/10.1145/3120895.3120915

Figure 1: Operating principle of Hall-thrusters

perior to ion thrusters from the viewpoint of power efficiency

in the low propulsion range and light weight because of its

simple structure. That is, Hall-thrusters are considered to

be an ideal propulsion system for satellite missions like sta-

tion keeping, orbit transfer, or deep space exploration[1].

So, they are currently intensively studied and developed in

various institutes and companies.

Figure 1 shows an operating principle of Hall-thrusters.

In an annular plasma accelerator called a channel, electrons

emitted from the cathode are trapped and drift in the cir-

cumferential direction by applying a radial magnetic field

(green line) and an axial electric field (yellow line). Elec-

trons that move circumferentially generate the Hall current

in a circumferential direction of the channel. Propellant

that flow from a anode into the channel collides with elec-

trons performing circumferential movement and turns into

Figure 2: Profile of NSRU-Full-PIC on CRAY XE 6 with

128 processes

plasma. The Lorentz force generated by the Hall current and

the radial magnetic fields hinders the movement of electrons

in the plasma to cancel the electric fields in axial direction.

As a result, the electric fields in the axial direction is main-

tained. By this, only ions in the plasma are accelerated and

emitted as a beam outside the thruster. The thruster itself

obtains thrust by a reaction force of the generated Lorentz

force. The channel is kept a quasi-neutral state because the

electrons flowing from the cathode are scattered toward the

anode in the channel.

For development of Hall-thrusters, the numerical simula-

tion is essential, since it is much more cost effective than

real experiments. The Full-PIC method which is classified

as the particle method that discretizes the motion of a con-

tinuum as the motion of a finite number of particles is used

to analyze the state of Hall-thrusters. It doesn’t adopt any

modelization, so takes a long time to compute [2][3][4][5].

The JAXA has been developing in-house Full-PIC pro-

gram called NSRU-Full-PIC. An important computing tasks

in the code is called the aggregation process, which can

cause the RAW hazards. In the original code, this pro-

cess is executed sequentially. Miyajima et al. introduced an

atomic operation to implement the aggregation process on

a GPGPU [6]. They could only achieve 10% of performance

improvement. Also, a few subroutines of NSRU-Full-PIC

were offloaded to a Zynq, which is an ARM-based SoC with

FPGA has been proposed [7]. However, their focus was not

on the aggregation process due to the limited resources of

the used platform.

This paper addresses the RAW hazard of the aggregation

process by changing the algorithm for introducing reduc-

tion operations. We implement 4 types reduction kernels on

Intel’s mid-range SoC, Arria10 using Intel FPGA SDK for

OpenCL. The contribution of the paper is as follows.

• We avoided the RAW hazards of the aggregation pro-

cess modifying loops to reduction operations.

• We implemented an OpenCL reduction kernel for op-

timizing the performance and FPGA resource usage

of Intel’s Arria 10 SoC using Intel FPGA SDK for

OpenCL.

Figure 3: Flow chart of NSRU-Full-PIC

2. AGGREGATION PROCESS IN NSRUFULL
PIC

NSRU-Full-PIC is a numerical simulation program for Hall-

thrusters under development by JAXA. The code is writ-

ten in Fortran90 of about 7000 lines. In this research, we

adopted this code as a target of acceleration. NSRU-Full-

PIC analyses the plasma behavior and state of the electro-

static field in the channel in each time step by updating

particle and field physical quantities alternately, which has

a large loop structure. One-time step corresponds to real

time 1 × 10−12 sec. A computational field called a cell di-

vides the channel inside the thruster. There are 270 × 310

cells, and the distance between them is 0.2mm. In addi-

tion, the number of particles necessary for thruster analysis

is tens - hundreds of millions. Figure 3 shows the processing

flow of NSRU-Full-PIC.

We conducted a preliminary experiment of NSRU-Full-

PIC. We used a CRAY XE 6[8] supercomputer in Kyoto Uni-

versity with 128 processes. The evaluation environment is as

follows, CPU: an AMD Opteron 6200 2.5 GHz, Memory: 64

GB/node, OS: a Cray Compute Node Linux, MPI Process:

128. Figure 2 shows the profiling result of NSRU-Full-PIC

by the CRAY XE 6 with 128 MPI processes. The aggrega-

tion process accounted for about 40% of the total processing

time. Thus, the aggregation processing is a largest part of

NSRU-Full-PIC. The aggregation process adds the physical

quantities held by each particle to the four corners of the

cell containing them. Figure 4(a) shows how it is performed

on multiple particles. Here, the values held by two particles

p1 and p2 are added to GP[0-3], and the values are then

updated. If we execute the computation of two particles

in parallel, RAW hazards can occur, which means that it

has to be done sequentially. This is a vital problem to be

Figure 4: Arria10 consists of HPS and FPGA.

addressed to enable efficient parallel processing.

For the practical simulation, 270 × 310 cells are used and

each cells has 256 particles at most. Thus, 270 × 310 ×
256 = 21, 427, 200 particles are in the simulation. In Fig-

ure 3, The aggregation process is included in both the step

4 (extrapolation of charge) and the step 9 (updating the

number of particles).

3. INTEL FPGA SDK FOR OPENCL AND
ARRIA 10 SOC

3.1 Intel’s Arria 10 SoC
Arria 10 SoC is a mid-range SoC FPGA developed by In-

tel [9]. It consists of Hard Processor System (HPS) with

dual core ARM Cortex-A9 MPCore and the FPGA logic as

shown in Figure 4. The HPS unit is consisting of a proces-

sor unit including a CPU, cache, on-chip memories, external

memory interface, a communication interface controller, and

AXI interconnect. The FPGA logic part embeds hardened

floating-point DSPs for high performance numerical compu-

tation. Arria 10 SoC can compute floating point operations

using this much faster than common FPGAs such as Zynq.

3.2 Intel FPGA SDK for OpenCL
Intel FPGA SDK for OpenCL is an OpenCL-based High-

Level Synthesis environment for FPGAs[10]. It is designed

for describing high-performance FPGA circuits in a short

time. OpenCL is a parallel programming framework that

can be used in a multiprocessor environment composed of

various processors such as CPUs, GPUs, and FPGAs. Intel

FPGA SDK for OpenCL introduces two kinds of code, kernel

code and host code. The kernel code is for the operation of

an arithmetic processor (OpenCL device), and the host code

is for an operation of the control processor (host). They are

described in OpenCL C language and C++ with OpenCL

runtime Application Programming Interface (API). In addi-

tion, Intel FPGA SDK for OpenCL provides a board sup-

port package (BSP) that supports peripheral circuits such as

PCIe bus between the OpenCL device and host, and an in-

terface with external memory. By using the BSP, users can

operate FPGA without designing the peripheral interface.

The OpenCL programming model consists of two hierar-

chical layer, work-group and work-item. Work-group is a set

of work-items, and the OpenCL device executes work-item

based processing. Global memory and constant memory can

(a) Aggregation
process on multiple
particles sequen-
tially could cause
RAW hazards.

(b) Reduction and
temporary value
are used.

Figure 5: The aggregation process in a cell

be accessed from all work-groups. The global memory is

readable and writable, but the constant memory is read only.

On the other hand, local memory is used for work-group and

can be accessed from all work-items belonging to it. Also,

private memory is work-item specific.

There are two types of kernel program in the Intel FPGA

SDK for OpenCL, a Single work-item kernel and a NDRange

kernel. The Single work-item kernel corresponds to task par-

allel model. There is only one work-group and one work-item

in Single work-item kernel, and so kernel code can be de-

scribed like sequential programming. The compiler extracts

the parallelism in the kernel code, and makes pipelines in the

loop. On the other hand, the NDRange kernel corresponds

to data parallel model. Each work-item corresponds to a

thread space and is executed in a pipelined manner. With

NDRange kernel, it is possible to specify kernel pipeline mul-

tiplexing and vectorization for multiple work-items, which

contribute to improvement of throughput. However, it can

cause an increase in FPGA resource usage.

4. IMPLEMENTATION

4.1 Avoiding the RAW hazards
As described in Section 1, the step including the aggre-

gation process requires high computational cost, and the

avoidance of the RAW hazard is essential for parallelization.

Figure 4(b) shows the outline of our implementation. Here,

in order to avoid the RAW hazard, particle basis computing

is changed into cell by cell computing in the source code

level. That is, values of particles are added to four corners

of the cell. As shown in Figure 4(b), the value of GP[0] is

updated by a temporal variable which gathers the values of

all particles in the cell. Since the update is done at once

after adding values of all particles into the temporal vari-

able, the RAW hazard never occurs. The same processing

is performed for GP[1-3]. In this case, the reduction which

is a common computation pattern in high speed computing

can be used for computing temporal variables. Although the

parallelism of the reduction is decreased at the later steps of

communication, there are a lot of cells and the tree structure

implemented on an FPGA logic can be used in the pipelined

manner.

4.2 Reduction Kernels
We implemented 4 types of reduction codes. All codes

adopted Single work-item kernel. In the implementation,

the reduction is single precision floating point operations.

For data communication between host CPU and FPGA, we

used clEnqueueWriteBuffer and clEnqueueReadBuffer pro-

vided by OpenCL runtime API.

4.2.1 FullUnroll implementation
Full-Unroll implementation is adopted for the eight-loops

structure as shown in the following partial pseudo code.

Each level of reduction was described in independent loop.

For each loop, unrolling is performed by adding #pragma

unroll in the source code, and all the loops are fully ex-

panded. Additionally, we added volatile to the input argu-

ment of the kernel code. Caching generation was invalidated

for reducing the FPGA resource usage.

Listing 1: Partial pseudo code of Full-Unroll

1 kernel void
2 full unroll (global volatile const float∗ restrict input,
3 global float∗ restrict output)
4 ...
5 // 1st level (256 −> 128)
6 #pragma unroll
7 for (i = 0; i < 256; i++) // level1 (256−>128)
8 buf1[i] = input[i∗2 + 0] + input[i∗2 + 1];
9

10 // 2nd level (128 −> 64)
11 #pragma unroll
12 for (i = 0; i < 128; i++) // level2 (128−>64)
13 buf2[i] = buf1[i∗2 + 0] + buf1[i∗2 + 1];
14 ...
15 // 64, 32, 16, 8, and 4 iteration loops are followed.
16 ...
17 // 8th level (2 −> 1)
18 buf8[i] = buf7[i∗2 + 0] + buf7[i∗2 + 1];
19 ...

4.2.2 Read1 implementation
Read-1 implementation was adopted for the loop structure

as shown in the following partial pseudo code. This loop

structure performs reduction of 16 elements, and is repeated

16 times. Each level of reduction is manually described in

tree-type structure. In the next section, we evaluated the

number of unrolls, N.

Listing 2: Partial pseudo code of Read-1

1 kernel void
2 blueread−1 (global volatile const float∗ restrict input,
3 global float∗ restrict output)
4 ...
5 #pragma unroll N
6 for (int i = 0; i < cells∗16; i++){
7 // 1st level (16 −> 8)
8 level1[0] = input[i+0] + input[i+1];
9 level1[1] = input[i+2] + input[i+3];

10 ...
11 level1[7] = input[i+14] + input[i+15];
12
13 // 2nd level (8 −> 4)
14 level2[0] = level1[0] + level1[1];
15 ...
16 level2[3] = level1[6] + level1[7];

17
18 // 3rd and 4th level are followed.
19 }
20 ...

4.2.3 Read16 implementation
Read-16 implementation is similar to the structure for

Read-1 implementation, except that float 16, a vector data

type is used as a kernel argument. In the next section, we

evaluated the number of unrolls, N.

Listing 3: Partial pseudo code of Read-16

1 kernel void
2 blueread−16 (global volatile const float16∗ restrict input,
3 global float∗ restrict output)
4 ...
5 #pragma unroll N
6 for (int i = 0; i < cells∗16; i++){
7 // 1st level (16 −> 8)
8 level1[0] = input[i+0] + input[i+1];
9 level1[1] = input[i+2] + input[i+3];

10 ...
11 level1[7] = input[i+14] + input[i+15];
12
13 // 2nd level (8 −> 4)
14 level2[0] = level1[0] + level1[1];
15 ...
16 level2[3] = level1[6] + level1[7];
17
18 // 3rd and 4th level are followed.
19 }
20 ...

4.2.4 Read16Vect implementation
Read-16-Vect implementation used vector addition for re-

duction processing of Read-16 implementation. In the next

section, we evaluated the number of unrolls, N.

Listing 4: Partial pseudo code of Read-16-Vect

1 kernel void
2 blueread−16 (global volatile const float16∗ restrict input,
3 global float∗ restrict output)
4 ...
5 #pragma unroll N
6 for (int i = 0; i < cells∗16; i++){
7 // 1st level (16 −> 8)
8 level1 = input[i].s01234567 + input[i].s89abcdef;
9

10 // 2nd level (8 −> 4)
11 level2 = level1.s0123 + level1.s4567;
12
13 // 3rd level (4 −> 2)
14 level3 = level2.s01 + level2.s23;
15
16 // 4th level (2 −> 1)
17 level4[i\%16] = level3.s0 + level3.s1;
18 ...
19 }
20 ...

5. EVALUATION
We compared the computation speed of the reduction cir-

cuits implemented on the FPGA and that of the software

Figure 6: Generated schematic view of Read-16 implemen-

tation. Inner product was used instead of simple addition.

Figure 7: The computation time with Arria 10 SoC and the

above CPUs when the size of the input data is 270 x 310

sets of 256 particles

execution on two CPUs, an ARM Cortex-A9 1.5GHz on Ar-

ria 10 SoC and a Xeon E5-2660 2.90 GHz. The evaluation

environment is as follows. For the FPGA, we used Intel

FPGA SDK for OpenCL 64-bit Offline Compiler ver. 16.0.2

with -v, -g and –fp-relaxed option for the kernel code com-

pilation, and gcc compiler ver. 4.8.3 with -O3 option for

the host code compilation. For the ARM Cortex-A9, we

used gcc compiler ver.4.8.4 with -O3 option. For the Xeon

E5-2660, we used gcc compiler ver. 4.4.7 with -O3 option.

First, we analyzed generated code. We examined the ker-

nels adding –dot option to Intel FPGA SDK for OpenCL

Kernel Compiler (aoc command). In the case of Read-16,

four DSPs and inner products were used to calculate as

shown in Figure 6. The inner product of 8, 4, and 2 el-

ements were performed. Finally, simple addition was per-

formed. The latency of each computation was 11, 8, 6, and

4. Input interval (II) was 1.

Figure 7 shows the computation time with our implemen-

tation and the above CPUs when the size of the input data

is 270 x 310 sets of 256 particles. As a result, Full-Unroll

implementation was about 72.4 times faster than that of an

ARM Cortex-A9, and about 13.3 times faster than that of a

Xeon E5-2667. In Read-1 implementation, that with N = 4

was the fastest. This was 1.6 times slower than Full-Unroll

Figure 8: Evaluation using the roof-line model

Figure 9: FPGA resource usage

implementation. In Read-16 and Read-16-Vect, we achieved

speedup as fast as Full-Unroll with the N = 0, 4 implementa-

tions. The fastest in all implementations was Read-16-Vect

with N = 4, about 76.4 times faster than that of an ARM

Cortex-A9 and about 14.1 times faster than that of a Xeon

E5-2667.

Figure 8 shows the results using the roof-line model. In

Arria 10 SoC, the peak computing performance is 1.5 TFLOPS

and the peak bandwidth is 16 GB/s. Because the number

of single precision floating point operations is 255 times and

the number of memory accesses is 260 times in a cell of the

aggregation process, the arithmetic intensity is about 0.25

FLOP / Byte. Hence, the theoretical performance is about

4.0 GFLOPS. Since Read-16-Vect implementation achieved

3.74 GFLOPS, we can conclude that this implementation

achieved 93.5% of theoretical performance by memory lim-

itation. Table 1 summarizes the performance of our imple-

mentations.

Figure 9 shows the FPGA resource usage in our implemen-

tation. In Read-16 with N = 0 and Read-16-Vect with N =

0, we could reduce the ALUTs by 50.0%, the Registers by

80.0%, the BRAMs by 62.5%, and the DSPs by 87.5% with-

out increasing computation time compared to Full-Unroll

implementation.

Here, we estimate the speed up ratio in the overall off-

Table 1: Performance

loading of NSRU-Full-PIC incorporating Read-16-Vect im-

plementation. According to the NSRU-Full-PIC profiling

described in Section 2, the aggregation process accounted

for 38.9% of the total processing time. Therefore, we can

estimate that the speed up ratio is about 1.61 times as the

execution by an ARM Cortex-A9 and about 1.55 times as

the case with a Xeon E5-2667.

6. CONCLUSION
We off-loaded an aggregation process of NSRU-Full-PIC

which is a particularly high computation cost to an Arria

10 SoC using Intel FPGA SDK for OpenCL. The reduction

computation is adopted to avoid the RAW hazard in ag-

gregation process. We implemented and evaluated 4 types

Single work-item kernels, Full-Unroll, Read-1, Read-16, and

Read-16-Vect. The fastest in all implementations was Read-

16-Vect with N = 4, about 76.4 times faster than that of

an ARM Cortex-A9 and about 14.1 times faster than that

of a Xeon E5-2667. In this implementation, we achieved

93.5% of theoretical performance. And we could reduce the

FPGA resource usage without increasing computation time

compared to Full-Unroll implementation.

As a future work, we plan to extend the current implemen-

tation of aggregation process to all cells in the code. We also

plan to evaluate the overall off-loading of NSRU-Full-PIC in-

corporating the parallelization of the aggregation processing

to the cell base.

ACKNOWLEDGMENT
The present study was supported in part by the JST/CREST

program entitled ”Research and Development on Unified

Environment of Accelerated Computing and Interconnection

for Post-Petascale Era” in the research area of ”Develop-

ment of System Software Technologies for post-Peta Scale

High Performance Computing”.

7. REFERENCES
[1] Kuriki Kyoichi and Arakawa Yoshihiro. Introduction

to electric propulsion rockets. Tokyo Shuppan, 2003.

[2] Yokota Shigeru, Komurasaki Kimiya, and Arakawa

Yoshihiro, . Plasma Density Fluctuation Inside a

Hollow Anode in an Anode-layer Hall Thruster . In

42th Joint Propulsion Conference and Exhibit,

AIAA-2006-5170, 2006.

[3] Hirakawa Miharu . Electron Transport Mechanism in

a Hall Thruster . In IEPC-97-021, 1997.

[4] Justin M. Fox . Advances in Fully-Kinetic PIC

Simulation of a Near-Vacuum Hall Thruster and

Other Plasma Systems . PhD thesis, 2007.

[5] James Joseph Szabo . Fully Kinetic Numerical

Modeling of a Plasma Thruster . PhD thesis,

Massachusetts Institute of Technology, Cambridge,

MA, USA, 2001.

[6] Takaaki Miyajima, Shinatora Cho, and Naoyuki

Fujita. A study of gpu acceleration of ”source” part in

hall-thruster simulation. In IEICE Tech. Rep., Vol.

115 of CPSY2015-62, pp. 7–12, Dec. 2015.

[7] R. Sakai, N. Sugimoto, T. Miyajima, N. Fujita, and

H. Amano. Acceleration of full-pic simulation on a

cpu-fpga tightly coupled environment. In 2016 IEEE

10th International Symposium on Embedded

Multicore/Many-core Systems-on-Chip (MCSOC), pp.

8–14, Sept 2016.

[8] supercomputer system (from October, 2016) —

Supercomputer System —Academic Center for

Computing and Media Studies, Kyoto University.

http://www.iimc.kyoto-

u.ac.jp/ja/services/comp/supercomputer/.

2016/12/29/20:50.

[9] Intel Corporation. Arria 10 SoC - Features:.

https://www.altera.com/products/soc/portfolio/arria-

10-soc/features.html.

2017/01/29/14:04.

[10] Intel Corporation. Intel FPGA SDK for OpenCL

Programming Guide - aocl programming guide.

https://www.altera.com/en US/pdfs/literature/hb/opencl-

sdkaocl programming guide.pdf.

2016/11/17/14:00.

