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Abstract— Three-dimensional stacked memory is considered
to be one of the innovative elements for the next-generation
computing system, for it provides high bandwidth and energy
efficiency. Particularly, packet routing ability of Hybrid Memory
Cubes (HMCs) enables new interconnects for the memories,
giving flexibility to its topological design space. Since memory-
processor communication is latency-sensitive, our challenge is to
alleviate latency of the memory interconnection network, which is
subject to high overheads from hop-count increase. Interestingly,
random network topologies are known to have remarkably low
diameter that is even comparable to theoretical Moore graph. In
this context, we first propose to exploit the random topologies
for the memory networks. Second, we also propose several
optimizations to leverage the random topologies to be further
adaptive to the latency-sensitive memory-processor communica-
tion: communication path length based selection, deterministic
minimal routing, and page-size granularity memory mapping.
Finally, we present interesting results of our evaluation: the
random networks with universal memory access outperformed
non-random networks of which memory access was optimally
localized.

I. INTRODUCTION

Memory wall problem has become a central issue in the
computer systems with the growing gaps in the performance
between memories and processors. The limitation on the mem-
ory bandwidth is imposed from both processor I/O bandwidth
and DRAM bandwidth. Recently, three-dimensional stacked
memories have been proposed and they are likely to become an
important component in the next-generation computer systems.
A striking feature of the stacked memories is their performance
in channel bandwidth and energy efficiency.

Hybrid Memory Cubes (HMCs) [1], in particular, support
packet routing function at the logic die placed at the bottom
stack, by the functionality of a switch that can forward
the message to another HMC through a path-through link.
Memory network is recently proposed new paradigm for the
memory system; HMCs are viewed as routers, and augmented
flexibility in the topological design space enables new inter-
connection among memories [2], [3]. The memory network
benefits to relieve bottlenecks of memory access thanks to the
high-speed channel links and enhanced throughput. However,
mainly because the links would be subject to dominantly high

power consumption, its router is constrained to have small
degrees, i.e. four according to HMC specification 2.0[1]. The
low-degree HMC routers aggravate the network latency due to
increased hop-counts and measurable per-hop temporal cost
of them. Clearly, building low-latency memory networks is
an emergency topic for extensive use of HMCs. Fortunately,
since HMCs can support routing tables for arbitrary routing
as suggested in [1] and the power required is not proportional
to the link length, the additional overhead to support arbitrary
topologies and routings would not impact on area and power.
However, the limited number of channels in the memory node
settles thorny issue to the scalability of the network, which
makes it challenging for typical classic topologies to expand
the memory network to the larger scale. These facts stirred up
our topology-design interests mainly in favor of better parallel-
application performance.

This paper proposes a new approach to alleviate the net-
work latency in the memory network, by introducing random
topology based on small-world property. The random networks
are attracting interest due to their potential to significantly
reduce network diameter and average shortest path length. We
investigated further optimization of the random network to
best satisfy the requirement for the latency-sensitive memory
network. In particular, we selected the random topology based
on communication path length criteria, and we extended an
optimized deterministic deadlock-free routing algorithm [4]
to realize minimal routing for the selected random topology.
Moreover, we exploited page-size granularity memory map-
ping across HMCs for better packet distribution and load bal-
ancing. These optimizations enable the memory network to be
more scalable even with small number of available channels,
while low in the communication latency. Under the condition
that only four channels are available in one memory node,
the random memory network significantly reduces latency
and becomes highly scalable. Our investigations further reveal
that the randomized memory network offers better energy
efficiency by simply cutting off power of unused links.

The rest of the papers is organized as follows. Background
and related work are discussed in Section II. In Section III,
we discuss our proposal in terms of network design, topology
generation, and our optimization for random memory network.
Section IV shows the result of our evaluation through graph
analysis, network simulation, and full-system simulation. Fi-



Fig. 1. HMC’s block diagram and memory network system designs using
HMCs [2].

nally, Section V concludes the paper with a brief summary of
our findings.

II. BACKGROUND AND RELATED WORK

A. Hybrid Memory Cubes

Hybrid Memory Cubes (HMCs) [1] are recently proposed
3D stacked memory device which provides high-bandwidth
and cost-efficient transactions with DRAM memories [5]. The
block diagram of an HMC is shown in Fig. 1. HMCs have
several stacks of DRAM layers on top of a logic layer placed
at the bottom, and each layer is connected via TSV (Though
Silicon Via). Each DRAM layer is partitioned into several
segments, and a group of segments in a vertical column of
the HMC is called vault. The logic layer is composed of
several elements: the memory controllers or vault controllers
which manipulate DRAM access to their vault, I/Os for
packet transaction, and a switch which connect the memory
controllers and the I/Os.

The communication between CPU-HMC and HMC-HMC
is done through high-speed signaling, which contributes to
broaden channel bandwidth. On top of that, they use high-level
messages for communication, such as request/response mes-
sages. This allows processors to communicate with abstracted
memory objects without any consideration of detailed DRAM
technologies and unique timing of DRAM, and those are now
managed by an HMC’s memory controller instead. Notably,
HMCs can be chained to increase the memory capacity. This
enables arbitrary deterministic routing and topology with a
routing table in which each entry corresponds to a destination
HMC identifier (CubeID).

B. Memory Network

Since it is not only I/O–memory controller traversals but
I/O–I/O traversals that are supported by the switch at the logic
layer of HMCs, they can forward packets to other HMCs.
Kim et al. [2], [3] proposed a new system design using
HMCs in order to fully utilize the bandwidth of the high-
speed channel links across all system components, by looking
HMCs as routers of a network. They defined conventional
system design, which assigns processor channels to dedicated
memory channels and dedicated processor interconnection
channels, as (conservative) processor-centric network (PCN)
(Fig. 1(a)); and then proposed memory-centric network (MCN)
as the system design with more flexible bandwidth adaptation
by connecting all processor channels to HMCs. They also

 1

 10

 100

 1000

 10000

 100000

 0  5  10  15  20  25  30

H
op

s

Degree

Non-random, Diameter
Non-random, Avg. Shortest Path

Random, Diameter
Random, Avg. Shortest Path

Fig. 2. Diameter and average shortest path length vs. degree for a ring topology
with non-random or random shortcuts, for 215 vertices [7].

proposed hybrid network (HBN) (Fig. 1(b)) as the combination
of PCN and MCN.

Our analysis of memory network traffic observed much
more inter-processor communication packets traversing in the
network. Thus, it would be a natural solution to keep the
processor-to-processor communication channels in the mem-
ory network. Indeed, most of the ongoing processor architec-
ture clearly specifies distinct memory access interfaces and
processor interconnection interfaces. For example, SPARC64
XIfx [6], Fujitsu’s processor designed for HPC systems, has
I/Os composed of Tofu2 interface for inter-processor com-
munication and 128-lane HMC interface for memory access.
These observation made us presumed that HBN is the feasible
design for both processor vendors and memory vendors, giving
consideration to current processor organizations. This study
thus sets HBN organization as the baseline.

C. Random Shortcut Topology

Small world property is known to drastically reduce network
diameter by introducing random links. Various researches are
focusing on this property to apply it to different fields, such
as computer data network and wireless sensor network. We
explored the availability of the random shortcut topology
for high performance computing (HPC) systems in [7]. We
found that ring topology with random shortcut links effectively
reduced network diameter and average shortest-path length,
and we suggested that randomized topology could organize
low-latency, high-throughput HPC network. The similar effect
occurs in network-on-chip [8], [9].

Fig. 2 from our study [7] elaborates on an example of
the striking features of randomized topologies. We added
shortcut links randomly or non-randomly to a ring topol-
ogy. The non-random topologies were created by adding K
links to each vertex i of N -vertex ring to connect vertices
i + ⌊N/2k⌋ mod N , for k = 1, · · · ,K. Thus, the diame-
ter was reduced by approximately a factor of two. On the
contrary, random topologies, each vertex of which was added
randomly directed shortcut links of the same number, observed
significant reduction in diameter and average shortest path



length, both of which resulted in dramatically low values
compared with non-random. Moreover, these improvements
required only a small number of random links as can be seen
in Fig. 2.

Therefore, we presume that latency-sensitive memory net-
work, which can afford only a few number of links per node
and is prone to deteriorate its performance directly by the
increase in hop-count, should benefit from reduction in average
shortest-path length by organizing randomized topology.

III. NETWORK DESIGN

This section describes our baseline network design and the
organization of randomized memory network.

A. Links and Processor Channels
HMC Specification 2.0 [1] stipulates that an HMC has four

full-duplex bidirectional links, on which serialized messages
traverse for communication. The system assigns unique ID in
the network called CubeID to each HMC, and the routing func-
tionality of each HMC refers to the CubeID field in the header
of incoming request message for routing computation. Since
this ID is a 3-bit value, eight HMCs are available in a system
according to the specification. However, in consideration of
growing demands for large scale high-performance memory
system such as those used in next-generation warehouse-scale
computers [10] and large in-memory database, more and more
HMCs are supposed to be implemented in a system. Therefore,
extending the bit width to distinguish more HMCs is generally
accepted [2]. Therefore, this paper also assumes that more than
eight HMCs are available in a system.

On the contrary, installing more channel links to an HMC
would be challenging because of high energy consumption
of each link, which is considered to dominate total power
consumption of HMCs (73% on average according to [11]),
as well as the need for additional logic modules such as
SerDes. This can be revealed from the fact that the number of
links in an HMC was decreased when the HMC specification
revised from version 1.1 to 2.0. Therefore, we assume low-
radix network of which degree is four according to the latest
HMC specification, so that such network devises of limited
number of links can organize scalable memory network by
our methodology.

The number of memory channels gives direct impacts to
the system performance. The memory channels denotes the
host links that connect a processor with HMCs, and no
doubt that the increase in the number of memory channels
broadens the memory access bandwidth. Unfortunately, at
present, the number of memory channels is severely limited.
For example, SPARC64 XIfx [6] has 128-lane HMC interface
for memory access on HPC systems. If an HMC is connected
with full-width link, a memory controller on SPARK64 XIfx
can support at most four direct connections to HMCs. This
paper examines with different number of memory channels so
as to indicate that various processors with different channel
organizations could benefit from randomization.

These 4-degree limitations allow a few conventional com-
petitor topologies. Interconnection networks can be classified

Fig. 3. Memory channel connection
of mesh with minimal local HMC di-
ameter (nch = 2).

Fig. 4. Dragonfly [12].

Fig. 5. De Bruijn graph of order 3.

Fig. 6. Schematic of a randomized
memory network.

into two types: direct and indirect, and among the direct
interconnection networks few topologies are known to be
viable under the degree of four or below, e.g. mesh, tori, and
spidergon. We compared our random topology (Fig. 6) with
counterpart single/multi-channel mesh (Fig. 3) and De Bruijn
network (Fig. 5), and single-channel dragonfly [12] (Fig. 4).

B. Topology and Memory Access Design

1) UMA and NUMA in Memory Network: The memory
network offers a choice of two types of memory access design:
UMA (Uniform Memory Access) and NUMA (Non-Uniform
Memory Access). UMA uses shared address space across
all HMCs, while here NUMA defines distinct local address
spaces for each processor with local HMC groups. UMA
seems to be meaningful structure for the memory network
as a processor can access to any HMCs across the network.
However, given that HMCs in the mesh network accessed
uniformly from a processor, inevitable increase in hop-count to
access distant HMCs generates additional latency. Conversely,
although remote processors are required to relay remote HMC
access packets in NUMA, localized HMC arrangement in the
vicinity of home processors reduces network diameter for local
packets, resulting in low-latency. For example, assuming 8 ×
8 mesh HBN with uniform traffic, average shortest-path length
(ASPL) from a processor is 8.0 for UMA, while just 4.75 for
NUMA. Therefore, we employ NUMA with directory-based
MOESI cache coherence protocol.

On the other hand, in a random topology, local HMCs and
remote HMCs are placed randomly even for NUMA. Thus, the
memory traffic traverses all across the network regardless of
UMA and NUMA. We assumed both random and conventional
topology use NUMA for fair comparison; however, we leave



Algorithm 1 Random topology generation
1: N ← Set of nodes (with free ports) in a given system
2: fp(n) ← Number of free ports of node n
3: while N ̸= ∅ do
4: a ← A node poped from N
5: A ← Set of connected nodes with a
6: while fp(a) > 0 do
7: if N −A = ∅ then initialize again
8: Randomly choose b from N −A
9: Connect a with b

10: if fp(b) = 0 then remove b from N
11: end while
12: end while
13: Check if all nodes are connected
14: for all processor nodes do
15: Calculate and add up the shortest path length to each memory

node (communication paths)
16: end for
17: Calculate ASCPL from the shortest communication path length

sum of each processor node

it our future work to explore better memory access and cache
coherence protocol for random topologies.

2) Topological Design for Mesh: As mentioned in the pre-
vious section, local HMCs in a mesh network are placed near
their home processor for the efficient NUMA memory access.
We assumed that HMCs had four degrees, thus interfaces to
the processors are offered by peripheral HMCs. This work
employs XY deterministic routing for mesh, hence we chose
the best interface ports so that the ASPL in a local HMC group
becomes minimal, as can be seen in Fig. 3.

C. Random Network Optimization

1) Topology Selection Based on Communication Path
Length: What count is to consider the difference of the traffic
patterns of memory networks from those of other systems such
as data-center networks and HPC systems. Generally, random
topology with minimum ASPL is preferable to be beneficial
for the traffic injected from any nodes. However, all traffic
in memory networks is CPU vs. HMC, and no end-to-end
communication is observed between HMCs. Therefore, we
designed our random topology focusing on the communication
paths between CPUs and HMCs, so as to minimize them.

In particular, we selected the topology of the minimum
average shortest communication path length (ASCPL) among
100,000 trial of generation of Alrogithm 1. Note that the com-
putation cost of Alrogithm 1 does not a matter because costly
calculation of ASPL for all node-combinations is unnecessary
and the procedure can be easily parallelized, e.g. it spent only
4.5 hours for extremely large networks, 4-degree 1,024 nodes,
with OpenMP API computed on Xeon E5-2470.

2) Deadlock-free Minimal Routing: Among various routing
strategies available for irregular networks, up*/down* routing
is one of the basic and useful routing schemes. It realizes
deadlock-free non-minimal routing by using hierarchical struc-
ture of a spanning tree of a certain root node. However, non-
minimal routing is not preferable for the memory networks of
which latency and performance easily degrade by the increase

Fig. 7. Minimal routing for random memory networks.

Fig. 8. Memory mapping policies.

of hop-count. For this reason, we extended the up*/down*
routing to offer deadlock-free deterministic minimal routing
optimized to irregular memory network to further reduce la-
tency. As mentioned in section III-C1, memory networks only
observe CPU-involved traffic. We focus on this characteristic,
and route packets on the spanning trees of which roots are set
at the processor node. This can be regarded as an extended
version of our work [4] and we optimized it for the memory
networks. In particular, following procedures are taken:

1) For each processors, assign VCs (Virtual Channels) and
search for a spanning tree, setting the processors as the
root node (root processor).

2) Each memory node creates routing tables using the tree
structures just as those of up*/down* routing for each
VCs.

3) Messages of which source node or destination node is the
root processor exclusively use the processor’s VCs, and
VC switching to other processors’ VCs does not occur in
the network.

Fig. 7 shows the concept of this routing scheme. In this way,
round-trip message transfer toward a destination HMC only
uses the down channels (CPU-to-HMC) or up channels (HMC-
to-CPU) of the root processor’s VCs. The minimal paths are
always taken because the processor node is the root of the
spanning tree. Moreover, deadlock freedom is obvious because
of no cyclic dependency in each VC and no possibility of
switching to VCs of the other processor’s domain.

3) Inter-HMC Page-size Granularity Memory Mapping:
Traffic congestion could happen in the memory networks,
for some workloads has relatively high access locality. We
attempted to contend this problem by the minimal routing
and inter-HMC page-size granularity memory mapping, taking
advantage of the randomized network. We assumed that each
HMC has 16 memory controllers, and we applied round-robin
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Fig. 9. Changes in ASCPL in a system with nch = 1 (left), 4 (right).

page-size memory mapping policy across memory controllers
of different HMCs. In particular, page address a is mapped
to a memory controller mh(0 ≤ mh ≤ 15) in HMC
h(0 ≤ h ≤ nLp − 1) according to the following equation:

h = a mod nLp ,mh = a/nLp mod 16,

where nLp denotes the number of local HMCs of processor
p. In this way, memory interleaving across the network would
ease traffic congestion and accomplish load balancing. This is
because HMC connection is randomized in the network, unlike
typical regular topologies where methodically arranged HMCs
would cause congestion with adjacent HMCs. Fig. 8 shows
the conceptual diagram in comparison with the conventional
inter-vaults memory mapping policy.

In addition, random network would drastically reduce net-
work diameter and ASCPL, as well as deterministic routing
simplifies the routing fabrics and flow control. Our analysis
shows that in 1,024 node network the ASCPL of the random
topology is approximately 55.9% of that of mesh as revealed
in the following section. Thus, increase in latency would be
moderate even when the network size becomes large.

IV. EVALUATION

This section describes the methodology and result of our
evaluation for randomized memory network. In particular,
we analyzed the effect of our random topology by graph
analysis, and then we evaluated our proposed routing scheme
by a cycle-accurate network simulator with synthetic traffic.
Finally, we used a full-system simulator to evaluate whole
random memory network system with real workloads from
the viewpoint of performance and energy consumption.

A. Hop-count Analysis of Memory-processor Communications

In the first set of analyses, we assumed uniform traffic
traversing the network, and calculated average shortest com-
munication path length (ASCPL). For mesh and dragonfly net-
work, we assumed that the processors only accessed their local
memories, and calculated ASCPL from following equation:∑

p∈P

∑
l∈Lp

dp,l/n, where P is the set of processor nodes,
n is the number of total memory nodes, Lp is the set of the
local memory nodes of processor p, and da,b is the shortest
path length from node a to node b. Conversely, for De Bruijn
and random network, we assumed universal traffic without
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Fig. 10. Routing comparison (left: 4VC, right: 8VC).

distinction of local nodes, and calculated ASCPL as follows:∑
p∈P

∑
m∈M dp,m/n, where M is the set of all memory

nodes.
We assumed that the system had four processors, and we

analyzed under three conditions of the number of processors’
memory channels nch: nch = 1, 2, 4, 8. Also, due to the
limitation of the number of HMC links, we evaluated mesh,
dragonfly (DFLY), De Bruijn and random under the condition
of nch = 1; mesh, De Bruijn and random under nch > 1.

These regular topologies, i.e. mesh, dragonfly and
De Bruijn, are justifiable as the comparison objectives, for
HMCs share the same condition that degree = 4. De Bruijn,
which contains long range links, is selected as a competitor
because it has great advantage in diameter, i.e. it affords the
diameter of hypercube while the degree is the same as 2D
mesh. However, in terms of the memory network, mesh in
particular is advantageous in a sense that it can be optimally
localized as mentioned in section III-B2, while random and
De Bruijn face difficulty for it. Note that the dragonfly can
be applied only when nch = 1 since only HMCs placed
at the corners have an available port to connect to CPU.
Some research investigates other topologies such as flatten
butterfly [2], however, it omits the 4-degree condition of up-
to-dated HMC specification. Likewise, 2D tori have trouble
because no HMC affords a port for CPU.

Fig. 9 shows the results of our graph analysis. The vertical
axis explains ASCPL, while the horizontal axis indicates the
number of total memory nodes. While not in the figure,
the almost same tendency as nch = 4 was observed when
nch = 2, 8. The result demonstrated that small scale networks
with less than 150 nodes increased the ASCPL of random;
however, the notable result to emerge from the data was
that large scale networks with more than 180 nodes found
random topology had smaller ASCPL than any other regu-
lar topologies despite the assumption of universal access to
all nodes. Although the random yielded worse ASCPL in
smaller scale network where the counterparts’ access locality
predominated, we can also validate the randomization, for
it can provide universal memory access with relatively low
overhead.An important observation of these findings is that
the random network efficiently reduces ASCPL for the large
scale memory networks, and that it becomes more beneficial
as the network size grows.



TABLE I
SYSTEM CONFIGURATION

Parameter Configuration
Core Out-of-Order core @ 3.5GHz

L1 I/D cache 32KB, 2-way
L2 cache Private 256KB, 8-way

Cache coherence Directory-based MOESI
Cacheline size 64B

HMC Configuration 8 layers, 16 vaults, 4 I/O
Total memory 8GB

DRAM Configuration tCK=0.8ns, tRP=13.75, tRCD=13.75,
tCL=13.75, tWR=15, tRAS=27.5

B. Network Simulation
This evaluation explores the impact of our deadlock-free

minimal deterministic routing scheme for irregular memory
network by a cycle-accurate network simulator [13]. Here
we assumed 4CPU-64HMC random memory network system.
Random synthetic traffic of CPU-to-HMC and HMC-to-CPU
are injected to the network, and we assessed difference of
latency between up*/down* and our scheme. The root node
for the up*/down* routing was properly chosen so that the
difference in average communication path lengths from each
processor was minimized to make it fair. Likewise, for fair
comparison, same number of VCs were set to be available for
both routing schemes, and up*/down* routing was allowed to
choose any VCs while routing.

Fig. 10 shows the result of the network simulations. It indi-
cates that proposed routing scheme certainly reduced network
latency. When four VCs were used, the proposed minimal
routing decreased the latency by 11.3%, and the average hop-
count by 14.1%. Because the result is of minimal routing, this
is the minimum average hop-count value theoretically possible.

In Fig. 10 (left), proposed routing observed little decrease
in the throughput. This should be attributed to the bottleneck
of available VCs in a spanning tree: proposed routing could
use only one VC if total number of VCs was four, while
up*/down* could choose a free VC among all. This bottleneck
can be avoided by augmenting the number of VCs. Fig. 10
(right) is the result of eight VC configuration providing two
for each spanning tree, and it shows that proposed routing
offered 109% throughput than up*/down* while low in the
latency.

C. Full-system Simulation
To evaluate performance of the random memory network for

real-workloads, we used Gem5 simulator [14]. Ruby system,
gem5’s memory subsystem models, was tailored for use with
modeled HMCs and the page-size granularity memory map-
ping policy. Note that the inter-HMC page-size mapping was
only applied to random topologies, because regular topologies
suffered from adjacent congestion. Likewise, gem5’s detailed
interconnection network model Garnet was customized to
support random network and proposed routing schemes. The
parameters for the full-system simulation are listed in Table I.
We used NAS Parallel Benchmarks for the evaluation.

This paper assumes to use deterministic routing in consider-
ation of simplifying flow controls and lowering latency. In the

first set of evaluations, we assessed the system performance of
MCN-Mesh and MCN-random, which did not have P2P CPU
interconnect; HB-Mesh, HB-DFLY, and HB-random, which
had P2P interconnect; to explore the system design that best
suit for the deterministic routing scheme, assuming 4CPU-
64HMC system. The result is shown in Fig. 11.

Fig. 11 shows that MCNs suffered from hop-count overhead
for inter-CPU communication, resulting in degradation in the
performance. Since our analysis revealed remote CPU access
including remote memory access counted several hundred
times of that of local-memory access, we consider retaining
inter-processor direct links to be important to reduce latency.
Thus, we suppose HBN for further analyses.

From our results of HBN, we found that the random network
demonstrates equivalent or slightly better performance to the
regular networks when nch = 1. As substantiated in Fig. 9,
gaps in ASCPL grow as the network size increases, thus we
believe the performance of random network would not be re-
versed in larger networks. On the contrary, mesh outperformed
by at most 6.1% with multiple memory channel as anticipated
in the graph analysis. Hereafter, we go further to explore the
impact of the increase in network size for each topologies.

Fig. 12 and 13 show the changes in cycles for mesh,
De Bruijn and random topology under the condition of nch =
1 and 4, setting the network size to 16, 64, 256, and 1,024. The
figures are normalized to those of mesh of each network size.
While the random network shows comparable performance
to that of regular topologies when the network size is small
(16, 64), the remarkable result to emerge from the data is
that the random outperforms for all the applications when
the network size becomes large. Specifically, for 1,024 node
network, the random reduced cycles by 21.1% at maximum
(EP), 6.6% on average (GMEAN) when nch = 4 compared
to mesh. De Bruijn shows comparable performance to the
random; however, few results are reported to substantiate the
performance superiority of De Bruijn to random.

Fig. 14 through Fig. 16 shows the cycle count overhead,
which increases as the network size grows. The values are
normalized to those of network size 16, and they are corre-
spondent to Fig. 13. It was found that mesh network increased
cycle overheads steeply due to significant increase in hop-
count to destination nodes even if accessible nodes were
limited to those of local memories. On the other hand, it is
remarkable that random showed moderate increase in cycle
overhead because ASCPL growth was also moderate in accor-
dance with the graph analysis, even compared to De Bruijn.
These results show the satisfactory agreement between graph
analysis and full-system simulation.

D. Energy Evaluation

We conducted an analysis of the amount of energy con-
sumed by the network in real application workloads we used
in the previous section. We used an interconnect energy
model of the memory networks described in [2]. We assumed
2.0 pJ/bit for Tx&Rx real packets, 1.5 pJ/bit for idle packets
and 1.0 pJ/bit for processing of a router according to their
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Fig. 11. Performance comparison of different network design (4CPU-64HMC).
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Fig. 13. Performance comparison of different network size (nch = 4).
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Fig. 14. Cycle overhead (nch = 4, Mesh).
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Fig. 15. Cycle overhead (nch = 4, De Bruijn).
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Fig. 16. Cycle overhead (nch = 4, random).
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Fig. 17. Energy consumption (left: all links activated, right: power-gated).

work.
Presumably, the random and De Bruijn of which links

outnumber the mesh would consume more power, since idle
packets need to be exchanged over the high-speed signaling
links when there is no communication data. Specifically, some
HMCs in mesh network, such as those at periphery, do not
fully use their available links while those in random use all,
and at first this balance seemed to lead the scenario that
random was the topology of high-performance, and of high-
energy consumption to make a trade-off.

When a memory network employs a minimal routing, some
of the HMC-to-HMC links are not utilized. These links can be
power-gated, and we thus assumed no power was consumed
for them. Fig. 17 shows the difference in total energy con-
sumption with and without the constant power-gating. EP is
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Fig. 18. The fraction of activated links.

chosen as the metrics since it showed most sensitive reaction.
When the network size is small, the energy consumption for
idle links is the major detriment of energy efficiency of random
and De Bruijn, and thus it becomes rather comparable to mesh
when the constant power-gating is implemented. Interestingly,
this feature becomes more prominent for the large networks,
where 35% of total links are power-gated in random memory
network while just 25% in mesh when the network size is
1,024. Fig. 18 shows the fraction of activated links among
total available links, and this demonstrates that the amount of
activated links is on the same level with mesh in small size
network, still growing not as high as mesh even if the networks
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Fig. 19. Energy comparison of different network size (nch = 4, power-gated).

become large.
Contrary to our initial expectation, the results of energy

evaluation as shown in Fig. 19 remarkably reveals that the
energy consumption of random is highly comparable to mesh,
and it becomes rather advantageous when the network size
becomes large. This is explained by two factors: the number
of activated links became smaller as just stated above, and
the total cycles decreased as demonstrated in the performance
evaluation. The difference in random and De Bruijn can be
explained by almost the same factors, while the former is
rather prominent in small networks and the latter in large,
as in Fig. 18 and 13. Finally, for 1,024 node network, the
random reduced energy by 40.9% at maximum (EP), 18.9%
on average (GMEAN) when nch = 4 compared to mesh.

Summing up the results, our works led us to conclude that
our random network is the scalable, high-performance and
energy-efficient organization for large-scale memory network.

V. CONCLUSIONS

This paper proposed to introduce random networks based
on small-world property to organize scalable and low-latency
memory network. We also proposed communication path
length based selection for random graph generation, minimal
deterministic routing scheme, and inter-HMC page-size gran-
ularity address mapping, to effectively reduce latency even in
a large network. In the memory network, routing and link
length do not heavily impact on both the area and power
overhead of HMCs, because of the use of routing tables in
HMCs and the irrelevancy of link power consumption to its
length. Our interests thus focus on the performance gain of
parallel applications.

Our main concern about the randomized memory network
was that increased utilization rate of HMC links should lead
an upsurge in energy consumption, but conversely, adequately
powered off links save needless idle energy, resulting in better
energy performance, which is around 18.9% less than opti-
mized mesh on average. The major trade off of the randomized
memory network would thus lie in the complexity of actual
layout on printed circuit boards. Despite this we believe our
work could be a springboard for large scale memory network
using randomized topology.

In conclusion, our proposed method reduced cycles by
6.6% on average, according to the result of our full-system
simulation. Interestingly, those are the evidence that random
network outperformed the counterpart mesh network, which
is optimized by limiting the access range to processors’

local HMCs. Furthermore, predominance over such regular
topologies with long range links as De Bruijn is also proven.
Consequently, random topology would enable further opti-
mization for parallel applications due to increased accessibility
to remote memory nodes with reduced latency.
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