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ABSTRACT
Technology scaling makes designers face difficulties dealing with
wire delay of long global interconnects, especially for high-radix
networks. In this context, we propose decentralization of on-chip
packet routers. A decentralized router consists of submodules, each
of which has particular functionality and they are scattered on a
link, thereby long wires are segmented. Our starting point is from
a conventional router architecture, and we illustrate four case stud-
ies to generalize our proposal. We also propose a new buffer de-
sign and how to balance pipelines of a router. A proof-of-concept
is shown in 28-nm process technology. Our results demonstrate
that the decentralization of an on-chip router enables Link Traversal
(LT) stages to be eliminated, and the critical path delay is improved
by up to 45% with the reduced area compared with a conventional
router. As technology advances, the benefit of the decentralized
routers become more substantial in the nano-scale era.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiple data stream
architectures—Interconnection architectures

General Terms
Design, Performance

Keywords
Decentralized router, delay model, interconnect bottleneck, inter-
connection networks, router architecture, wire delay

1. INTRODUCTION
It is 14 years since Ho et al. forecasted that designers would face
difficulties dealing with wire delay [6]. Unlike gate delay, wire
delay of long global interconnects increases with process scaling
owing to wire resistance and capacitance. This forecast has already
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become real, and researchers call it the “interconnect bottleneck”.
For instance, a recent study [2] on Network on Chip (NoC) reports
that technology scaling creates the interconnect bottleneck in both
delay and energy. Although NoC provides high communication
bandwidth and parallelism as an efficient solution for many-core
chips, wire delay limits its performance even when we use recent
process technologies. A conventional way to reduce wire delay is
inserting many repeaters, but there is still a limit to this and besides
it consumes an unacceptably large amount of energy [6]. In this
work, we radically take a different way to address the interconnect
bottleneck.

Wire delay in NoC leads us to a new clash between logical and
physical distances, that is, the number of hops and delay from
a source to a destination. On this occasion, we investigate low-
latency topologies for high-radix networks that include long-range
links, such as Flattened Butterfly [8]. They reduce the number of
hops to a destination effectively, whereas wire delay per hop in-
creases on account of long-range links. Consequently, their well-
balanced implementation becomes increasingly difficult as technol-
ogy evolves. Another case of our interests is small-world NoCs
[10]. They add random links to a standard mesh topology to induce
the small-world phenomenon, thereby reducing average latency as
well as improving achievable throughput. There is an ultimate
trade-off between large wire delays and these topological perfor-
mance gain, as the device scaling continues to grow. Through our
observation, we should carefully consider both logical and physi-
cal distances when we discuss network latency on future and recent
NoCs.

This paper introduces decentralization of on-chip routers, which is
a universal methodology to solve aforementioned problems caused
by wire delay. A decentralized router is composed of plural sub-
modules that each of have a particular functionality and they are
scattered on a link, thereby long wires would shorten. In addition,
we propose a novel buffer design on decentralized architecture. We
implement the design in 28-nm process technology and evaluate
gate delay and wire delay to demonstrate the efficiency of the de-
centralized router architecture. In this regard, we formulate a delay
model, optimize arrangement of submodules, and evaluate the crit-
ical path delay.

Section 2 surveys prior research related to decentralized router ar-
chitecture. Section 3 introduces architectures of the conventional



and decentralized routers, and formulates delay models. In Section
4, we show the simulation results, and then balanced pipelines opti-
mize decentralized routers. Finally, Section 5 concludes the paper.

2. RELATED WORK
Several decentralized router architectures have been proposed for
different purposes. To the best of our knowledge, Rotary Router
(RR) [1] is the first to show signs of decentralized architecture for
on-chip networks. RR provides no crossbar switch or arbiter. In-
stead, it has distributed modules on two independent rings, which
force packets to circulate either clockwise or anti-clockwise, trav-
eling from port to port. It eliminates head-of-line blocking to im-
prove the performance. Its architecture and concept are very distant
from ours, but this study reveals the potential of decentralized ar-
chitecture.

Afterward, moving to the nano-scale era, distributed switch archi-
tecture [11] presents the idea of reducing the negative impact of
links by decentralized architecture, which is similar to our concept.
It improves the trade-off between the power consumption and the
operating frequency, that is, it increases the maximum operating
frequency with the reduced peak power consumption. The char-
acteristic of this study is that its starting point is from a modular
switch, which is a specific architecture. On the other hand, our
starting point is from canonical router architecture because we aim
at generalization of decentralized router architectures.

The latest implementation of decentralized architecture is ElastiNoC
[12]. This study introduces decentralization of routers based on
Virtual Channel (VC), which allow for traffic separation and iso-
lation to enable deadlock avoidance and improve network perfor-
mance. Moreover, it provides a scalable distributed self-testing
mechanism. This mechanism enables testing sessions to be con-
ducted in a modular manner over multiple phases and achieves
high fault coverage. Applying decentralized architecture to mak-
ing fault-tolerant networks is an original idea here.

These preceding studies make us appreciate that decentralized ar-
chitecture is beneficial, although there are differences in architec-
ture and concept. We generalize decentralized architectures using
four case studies of common routers as well as follow the prece-
dents, especially the concept of reducing the impact of wire de-
lay. Furthermore, we propose an alternative approach: decentral-
ized buffer design and optimization of the arrangement of modules
based on balanced pipelines.

3. ARCHITECTURE AND DELAY MODELS
3.1 Baseline router
First, we describe a baseline conventional router. Figure 1 shows an
overview of our baseline virtual-channel router. It consists of n in-
put channels, an arbiter, a crossbar switch, and m output channels.
If the topology is 2D-mesh, both n and m are five for connecting
to neighboring routers and a local core. An input channel provides
multiple VCs, each of which has an input buffer and Route Com-
putation (RC) logic that computes the next route by using routing
algorithm such as dimension order routing or west-first routing. For
input buffers, FF-based FIFO buffers or RAM are used. Since we
target high performance routers, we adopt FF-based FIFO buffers
and virtual cut-through flow control. An arbiter allocates a pair of
the output channel and the VC for each incoming packet on the
basis of the state of the next router that is sent through output chan-
nels. A crossbar switch consists of m n-to-1 multiplexers, each of
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Figure 1: Overview of baseline router architecture.

which is controlled by a select signal from the arbiter. In an output
channel, there is a register that can store one flit.

The routing processing typically consists of four steps: Route Com-
putation (RC), Virtual channel Allocation (VA), Switch Allocation
(SA), and Switch Traversal (ST). The baseline router is a conven-
tional three-cycle router. That is, it has three pipeline stages: RC,
VSA, and ST. In the VSA stage, VA and SA are speculatively per-
formed in parallel. If the VA fails, SA will be ignored even though
it succeeds. In addition, Link Traversal (LT) is also required to
transfer a flit to the next router, and consequently four cycles are
required in total. Since the latency of a NoC is directly related to
the pipeline depth in a router, LT stages limit the performance. To
make matters worse, the latency of LT stages increases as technol-
ogy progress because it is determined by wire delay. For this rea-
son, LT stages are obvious drawbacks to the conventional router.

The delay model of the baseline router is formulated as follows:

TRC=max(Gfifowr , Grc), (1)
TVSA=Garb, (2)
TST=Gfiford +Gcb, (3)
TLT=Wlink, (4)

where T , G, and W are the delay of each pipeline stage, the gate
delay of each processing, and the wire delay of the link between
routers, respectively. The critical path delay of the router Trouter is
determined by the maximum T as follows:

Trouter=max(TRC, TVSA, TST, TLT). (5)

Naturally, the best performance is achieved by balancing pipeline
stages. We will show the measured value and balance pipeline
stages in Section 4.

3.2 Naive decentralized router
We decentralize the baseline router to reduce the negative impact
of LT stages. We divide the router function into small ones and
design submodules for each function. Since router pipelining pro-
cesses each step in a clock cycle at a dedicated stage, each function
corresponds to each pipeline stage. The basic idea is to segment
the function of a router into several modules in this manner and in-
tersperse them with a link. Then a link between routers is divided
into shorter links, and LT stages are segmented. Segmented wire
delay is distributed to the remaining pipeline stages: RC, VSA, and
ST. Figure 2 shows the naively decentralized router. The decentral-
ized router consists of three submodules, the functions of which are
explained below.
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Figure 2: Overview of naive decentralized router architecture.

Submodule-A. The function of the submodule-A is to compute
routes and generate requests to an arbiter. Initially, a state machine
waits for a header flit. For a header flit, RC logic finds a route and
sends a request signal, called an initial request, to an arbiter. At
the same time, submodule-A wakes up submodule-B by sending
an enable signal. Then the state is changed to transfer state, and
the state machine waits for a tail flit. After it arrives, the state is
initialized.

Submodule-B. This is the simplest submodule: its function is
to forward packets when a grant is received. It has no particular
hardware. Initially, a state machine waits for the enable signal sent
by submodule-A. If the enable signal arrives, the state is changed
to the transfer state, and the state machine waits for a tail flit in the
same way as submodule-A. When a pipeline does not stall, a grant
against the initial request immediately comes. When a pipeline
stalls, however, the submodule-B generates a request different from
the initial request.

Submodule-C. This is the biggest submodule: it consists of a
crossbar switch, an arbiter, and output channels. It is arranged at the
same position of the conventional router, and the other submodules
are dispersedly arranged on a link. Output channels monitor the
state of virtual channels of the next router and send this information
to an arbiter. On the basis of this, the arbiter arbitrates between
input channels and asserts a grant signal. Then multiplexers of the
crossbar switch are configured to let packets pass through.

At this point, we find important problems associated with decen-
tralization. Buffers are required in each submodule, and hence
there is highly frequent buffering, which obviously increases power
consumption. Specifically, the dynamic power consumption of the
buffers increases (n − 1) times (n represents the number of sub-
modules). In our case, it doubles because n is three and buffering
occurs in RC and VSA stages. Since the dynamic power in a router
increases rapidly as the network traffic increases, this is a matter
of consequence. Buffers also increase latency in a pipeline stage at
read or write operations. Meanwhile, area does not change because
buffers are only separated. We must reduce the buffer cost for de-
signing the router suitable for NoC. This is not only an inherent
problem in a decentralized router but also general one. For exam-
ple, implementing long-rage links requires inserting buffers in the
repeaters [10].

Note that the flow control also changes in the case of the naive
architecture. This is because each submodule has buffers and flow
control is performed individually between submodule-A and submodule-
B. Since each buffer is half the size of the baseline router, the naive
architecture degrades performance at heavy network load, and sat-

uration throughput lowers. This problem is resolved by using a
decentralized buffer design, which is shown below.

The delay model of the naive decentralized router is formulated as
follows:

TRC=max(Gfifowr , Grc) +Wsegmenta , (6)
TVSA=max(Gfifowr , Garb + 2Wsegmentb), (7)
TST=Wsegmentb +Gfiford +Gcb +Wsegmentc , (8)

where Wsegment is the wire delay of each segmented link as shown
in Figure 2, and consequently Wsegmenta+Wsegmentb+Wsegmentc =
Wlink. Since segmented wire delays are determined by the arrange-
ment of submodules, we can optimize it on the basis of the delay
model. We discuss it in Section 4.

This delay model reveals another problem, which is caused by re-
quest and grant in VSA stages. Arbitration is required to forward
request and send back a grant serially within one clock cycle, and
consequently larger wire delay (2Wsegmentb ) is needed (cf. Equa-
tion 2). Since TVSA is typically large as evaluated in Section 4, the
VSA stage becomes an apparent bottleneck, which is inadmissible.
We therefore propose the method to overcome drawbacks of the
naive decentralized router in the next subsection.

3.3 Novel decentralized router using new buffers
We propose separating a control path from a data path. Packets
go through links that consist of only buffers, and control informa-
tion that includes flit type, request, and grant goes through links
that consist of the decentralized router submodules. This method
avoids increasing the amount of buffering and removes buffer de-
lay completely from pipeline stages. For this data path approach,
we implement a new buffer design that reduces buffer costs. Fig-
ure 3 illustrates the new buffer design. It consists of D latches and
is arranged dispersedly on a link. A bunch of D latches whose size
corresponds to one flit composes a column and flits transit columns.
Since columns are decentrally organized, wire delay arises between
adjacent columns. If we design the buffer so that the delay between
the first and last columns becomes two cycles, data can be trans-
ferred within the same cycles as the buffering duration of the con-
ventional three-cycle router. This design is, so to speak, the delay
line consisting of D latches.

Certainly D latches achieve better delay, area, and power consump-
tion than those of flip-flops, but they are difficult to control. Thus,
the control of D latches is essential. For instance, recent stud-
ies propose novel buffer design using D latches such as Elastic
Buffer [9] and Marching Memory Through-type [14]. In the present
study, an additional mechanism for accepting pipeline stalls is needed
for the buffer, otherwise packet loss occurs when packets conflict.
We therefore add back pressure as an external signal. It is trans-



Data

Back pressure

    from
prev. router

from arbiter

Buffer delay(e.g. 2 cycles)

1-bit

1 flit

Column
number

1 2 3 4 5

Figure 3: Decentralized buffer composed of D latches.

ferred in a direction opposite to data at the same speed as data. It
passes D latches that are added to each column and stops data trans-
fer as shown in Figure 3. When an arbiter wants to stop data (i.e.,
packets conflict), arbiter asserts back pressure. Then back pressure
comes through in order, from the header flit.

The design is implemented in Verilog-HDL, and then synthesized,
placed and routed by Synopsys Design Compiler and Synopsys IC
Compiler. Data are transferred with two clock cycles when back
pressure is low and are stored in D latches after the arbiter asserts
back pressure. After back pressure is negated, data transfer restarts.
This method spontaneously transfers data correctly without perfor-
mance overhead.

Based on the above, the proposed decentralized router architecture
is illustrated in Figure 4. It is basically identical to the naive design,
but buffers are disjoined as shown in this figure. The columns of the
buffer are placed at regular intervals. Flits from the previous router
are transferred to the data path, and control signals are picked up
and proceeded to the control path. Then data transfer and control
processing are handled independently.

In contrast to the naive architecture, a flow control does not change
in the case of the proposed architecture, because the buffers are
separated from all the submodules. The identical flow control that
the baseline router uses, namely virtual cut-through, is performed.
Consequently, performance of the proposed and the baseline archi-
tectures is the same on a cycle level. This means the performance is
determined by the critical path delay rather than execution cycles.

The delay model of the proposed router is formulated as follows:

TRC=Grc +Wsegmenta , (9)
TVSA=Garb +Wsegmentb , (10)
TST=Gcb +Wsegmentc . (11)

TVSA is improved compared with the naive architecture. This is be-
cause the grant delay is eliminated, or rather, back pressure replaces
grant. Grant needs the wire delay Wsegmentb , whereas back pres-
sure does not, because the arbiter is adjacent to the head column of
the buffer. Furthermore, Wsegmentb becomes also unnecessary in
TST, because data arrive at the submodule-C before ST stages.

Besides the delay of each pipeline stage, the delay of data Tdata

must be considered in the case of the proposed router. It is formu-
lated as follows:

Tdata≈Gbuffer +
Wlink

C
. (12)

Table 1: Routers used in four case studies.

# Routing algorithm # of VCs Pipeline structure
1 DOR 2 [RC][VSA][ST][LT]
2 DOR 8 [RC][VSA][ST][LT]
3 West-first 2 [RC][RS][VSA][ST][LT]
4 Duato’s protocol 2 [RC][RS][VSA][ST][LT]

Gbuffer is the critical path delay of the buffer, and C is the number
of cycles that correspond to a duration of buffering. The critical
path delay of the proposed router becomes the maximum T includ-
ing Tdata.

3.4 Case study
We now get back to the case study since our study targets general
rather than specific router architecture. We select four common
router architectures, and present how to decentralize them. After
that, we elucidate the effect of decentralization in each case and
discuss the difference between these cases and the preferred router
architecture. Table 1 outlines the routers used in the four case stud-
ies.

3.4.1 The simple router
The simple router completely corresponds to the baseline router
whose routing algorithm is Dimension Order Routing (DOR). We
assume a very simple router that has only two VCs per input chan-
nel that are allocated with fixed priority. Specifically, the next VC
is computed by RC logic and packets never change VCs to pass.
We also use this router for area evaluation.

3.4.2 The router with many VCs
The second case adds many VCs to the simple router. Since many
VCs improve efficiency of resource allocation by allowing more
packets/flits to participate in arbitration [15], this case is common.
Router architecture and routing algorithm are essentially the same
as before, but eight VCs are allocated with round-robin priority in
this case. Thus, the critical path of VSA becomes long. Many VCs
are implemented only in this case.

3.4.3 The partially adaptive router
So far we have assumed deterministic routing, but from here we
adopt adaptive routing. In this case, router architecture changes,
for adaptive routing requires additional hardware, such as selection
function. It is inserted between an input channel and an arbiter as
shown in Figure 5. It receives multiple requests from input chan-
nels and selects one of them. The selected request is sent to an
arbiter. In this case, an additional pipeline stage called route selec-
tion (RS) is implemented. Its delay is formulated as follows:

TRS=Grs +Wsegmentd . (13)

Wsegmentd is the segmented wire delay between submudule-B and
submodule-D (vid. Figure 5b).

We employ minimal west-first routing as partially adaptive routing.
It is based on the turn model [4] to make it deadlock free. This
algorithm first routes a packet west, and then adaptively in other
directions. We assume a round-robin mechanism as its selection
algorithm: that is, the selection function selects an output chan-
nel in rotation, rather than considering network congestion. Con-
sequently, the router architecture becomes simple for an adaptive
router.
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3.4.4 The fully adaptive router
Next, we adopt Duato’s protocol [3] as fully adaptive routing. It
has an escape path for deadlock avoidance, in which we use west-
first routing. Since it is fully adaptive routing, it outperforms west-
first routing. When fully adaptive routing is used, however, output
channels must send the state of the next router to selection functions
to avoid deadlock. Therefore, the delay of RS stages changes as
follows:

TRS=Grs + 2Wsegmentd +Wsegmentb . (14)

It requires extra segmented wire delay. The effect is evaluated in
Section 4.

4. RESULTS AND DISCUSSION
4.1 Simulation methodology
We design the proposed router models in STMicroelectronics 28-
nm FD-SOI process technology to evaluate wire delay, gate delay,
and area. They are synthesized by Synopsys Design Compiler, and
placed and routed by Synopsys IC Compiler. The packet and flit
sizes are 5 flits and 16-bit, respectively.

For the performance evaluation, the baseline and proposed routers
are compared on the basis of delay models, gate delay, and wire de-
lay. Overall, there are no functional differences between the base-
line and proposed routers as already described in Section 3. There-
fore, the performance is basically determined by the critical path
delay rather than the number of cycles if pipeline depths are equal.

Table 2: Simulation results of gate delay. Each symbol corresponds
to that of delay models.

Symbol Variations Delay [ns]
Grc DOR 0.27

West-first 0.27
Duato’s protocol 0.27

Gfifowr – 0.34
Grs West-first 0.38

Duato’s protocol 0.70
Garb fixed VA 0.92

round-robin VA with 8 VCs 1.45
Gfiford – 0.18
Gcb – 0.44

Gbuffer – 0.21

In addition, the reduction of LT stages can be considered by cycle
accurate simulation.

We implement separately each router’s function to analyze gate de-
lay on the basis of prescribed delay models. After place-and-route,
a static timing analysis is carried out. We measure actual wire de-
lay reported by IC Compiler. We implement a special design to
measure wire delay, in which two small macros of an inverter are
placed far apart at intervals of optional distance. By sending data
from one to the other, wire delay is measured. Since inverters are
small, delay in a macro is negligible.

4.2 Critical path delay
Table 2 shows the results of the gate delay based on delay models.
Grc is constant regardless of routing algorithm. This is because RC
logic only compares the current node with the destination node.
Instead, the difference between routing algorithms is found in RS
stages. Garb is the longest, and the use of many VCs prolongs it
further. Gfifowd , Gfiford , Gcb, and Gbuffer are constant in all cases.
On the basis of these data, the critical path delay is evaluated.

Figure 6 shows the wire delay evaluated by IC Compiler. IC Com-
piler inserts few repeaters automatically with timing constrains loose.
Manhattan distance is defined as the distance of a link considering
routers as points. Since a tile measures 1mm wide by 1mm long
in our design, Manhattan distance corresponds to real length mea-
sured in millimeters. From the figure, repeated wire delay mostly
increases linearly. Consequently, we can evaluate segmented wire
delay by linear approximation and optimally arrange each submod-
ule. Table 3 shows wire delay of each example topology. Each
maximum Manhattan distance can be generalized as described, and
the case for a 4x4 mesh is shown.
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Table 3: Wire delay of each example topology.

Example Max. Manhattan distance Wire delay
topology Size: 2n × 2n Size: 4 × 4 Size: 4 × 4
2D-Mesh 1 1 0.628 ns

Folded Torus 2 2 1.140 ns
Flat. Butterfly 2n − 1 3 1.667 ns

We now finally obtain all numerical data to discuss balanced pipelines
and evaluate performance. From here, we do this with respect to
each case.

4.2.1 Case 1: The simple router
The delay of the baseline router is as follows:

TRC=max(Gfifowr , Grc) = 0.34 ns, (15)
TVSA=Garb = 0.92 ns, (16)
TST=Gfiford +Gcb = 0.62 ns, (17)

TLT=

⎧
⎪⎨

⎪⎩

0.63 ns (M = 1)

1.14 ns (M = 2)

1.67 ns (M = 3).

(18)

M is the maximum Manhattan distance of the topology. Gate de-
lays are not balanced, and VSA is an apparent bottleneck. Looking
at wire delay, it becomes the critical path when M becomes two.

Decentralization changes the delay as follows:

TRC=0.27 ns +Wsegmenta , (19)
TVSA=0.92 ns +Wsegmentb , (20)
TST=0.44 ns +Wsegmentc , (21)

Tdata≈0.21 ns +
Wlink

2

=

⎧
⎪⎨

⎪⎩

0.52 ns (M = 1)

0.78 ns (M = 2)

1.04 ns (M = 3).

(22)

Wsegmenta , Wsegmentb , and Wsegmentc appear in TRC, TVSA, and
TST, respectively. Thus no segmented delay appears at more than
one pipeline stage. Here we can optimize segmented wire delay to
balance pipelines on the basis of liner approximation. Specifically,
the following procedure balances pipelines. Note that this method
affects only the wire delay rather than the gate delay in contrast to
gate sizing and pipeline refactoring.

• STEP1: Initially take 0 for every segmented wire delay.

• STEP2: Extend Wsegmenta until TRC becomes equal to TST.
If Wsegmenta reaches Wlink in the interval, Wsegmenta =
Wlink and the remainder become 0. Then the procedure is
completed. Otherwise go to the next step.

• STEP3: Extend Wsegmentc in the same way. If Wsegmentc +
Wsegmenta reaches Wlink in the interval, the procedure ends
at that point. Otherwise go to the next step.

• STEP4: Allocate the remaining wire delay, i.e, Wlink −
(Wsegmenta+Wsegmentc) to each segmented wire delay equally.
As a result, all segmented delays become equal.

If the topology is 2D-mesh (M = 1), the procedure ends at Step
1. Consequently, the critical path remains VSA and stays constant,
but LT stages vanish even in this case. Meanwhile, if the topol-
ogy is Folded Torus (M = 2), the optimized delay becomes the
following.

TRC≈0.27 ns + 0.653 ns = 0.923 ns, (23)
TVSA≈0.92 ns + 0.003 ns = 0.923 ns, (24)
TST≈0.44 ns + 0.483 ns = 0.923 ns. (25)

In this case, the critical path is improved by 10% compared with
the baseline router. Each submodule is arranged at intervals of the
same rate as segmented wire delay.

In the case of Flattened butterfly (M = 3), the optimized delay
becomes as follows.

TRC≈0.27 ns + 0.83 ns = 1.10 ns, (26)
TVSA≈0.92 ns + 0.18 ns = 1.10 ns, (27)
TST≈0.44 ns + 0.66 ns = 1.10 ns. (28)

The critical path is improved by 34% compared with the baseline
router, and we refer to this rate as the improvement rate. We can see
from the above that the decentralized router effectively improves
the performance as the maximum Manhattan distance increases.
After reaching Step 4, the critical path delay increases only at a
rate of the third part of that of the baseline router. In that context
our proposal expands the availability of low latency topologies.

4.2.2 Case 2: The router with many VCs
The use of many VCs drastically lengthens TVSA as follows:

TVSA=Garb = 1.45 ns. (29)

The delay of the decentralized router is summarized as follows:

TRC≈

⎧
⎪⎨

⎪⎩

0.27 ns + 0.63 ns = 0.90 ns (M = 1)

0.27 ns + 1.14 ns = 1.41 ns (M = 2)

0.27 ns + 1.18 ns = 1.45 ns (M = 3),

(30)

TVSA≈
{
1.45 ns + 0.00 ns = 1.45 ns (M ≤ 3), (31)

TST≈
{
0.44 ns + 0.00 ns = 0.44 ns (M ≤ 2)

0.44 ns + 0.49 ns = 0.93 ns (M = 3).
(32)

In this case TVSA is too large, and hence the critical path of both
the baseline and proposed routers are the same when M is less than
four. When M is three, the improvement rate becomes 13%. This
shows that routers with many VCs are insulated from the influence
of link delay.



4.2.3 Case 3: The partially adaptive router
West first routing adds RS stages as follows:

TRS=Grs = 0.38 ns. (33)

The other gate delays do not change and the critical path of the
baseline router remains at 0.92 ns. Decentralization changes the
delay as follows:

TRC=0.27 ns +Wsegmenta , (34)
TRS=Grs = 0.38 ns +Wsegmentd , (35)

TVSA=0.92 ns +Wsegmentb , (36)
TST=0.44 ns +Wsegmentc , (37)

Tdata≈0.21 ns +
Wlink

3

=

⎧
⎪⎨

⎪⎩

0.42 ns (M = 1)

0.59 ns (M = 2)

0.77 ns (M = 3).

(38)

Wsegmentd appears in TRS. Once again, no segmented delay ap-
pears in more than one pipeline stage, and hence we can balance
pipelines in the same manner as the foregoing procedure. In short,
Wsegmentd is extended between Step 2 and Step 3.

As a result, the optimized delay for each Manhattan distance be-
comes as follows:

TRC≈
{
0.27 ns + 0.63 ns = 0.90 ns (M = 1)

0.27 ns + 0.65 ns = 0.92 ns (M ≥ 2),
(39)

TRS≈

⎧
⎪⎨

⎪⎩

0.38 ns + 0.00 ns = 0.38 ns (M = 1)

0.38 ns + 0.49 ns = 0.87 ns (M = 2)

0.38 ns + 0.54 ns = 0.92 ns (M = 3),

(40)

TVSA≈
{
0.92 ns + 0.00 ns = 0.92 ns (M ≤ 3), (41)

TST≈
{
0.44 ns + 0.00 ns = 0.44 ns (M ≤ 2)

0.44 ns + 0.48 ns = 0.92 ns (M = 3).
(42)

By adding selection functions, a place to stow wire delay increases.
Consequently, Wsegmentb remains at 0.92 ns and the critical path
is constant if M does not exceed three. The improvement rates
are 0%, 19%, and 45% when M is 1, 2, and 3, respectively. By
increasing wire delay much further, the critical path delay increases
only at a rate of the fourth part of that of the baseline router.

4.2.4 Case 4: The fully adaptive router
The use of Duato’s protocol prolongs the delay of RS stages as
follows:

TRS=Grs = 0.70 ns. (43)

Besides, TRS of the decentralized router also increases as follows,
since the state of the next router is sent backward.

TRS=0.70 ns + 2Wsegmentd +Wsegmentb . (44)

Here TRS has double Wsegmentd , and thus it increases rapidly as
Wsegmentd is extended. Considering this alteration, the optimized
procedure is changed in the following respect.

• After Wsegmentd reaches GVSA, Wsegmentd is never extended.

As for the rest, pipelines are balanced in the same way as the case
of west-first routing.
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Figure 7: Manhattan distance vs. improvement rate of each case.

The results are as follows:

TRC≈

⎧
⎪⎨

⎪⎩

0.27 ns + 0.63 ns = 0.90 ns (M = 1)

0.27 ns + 0.65 ns = 0.92 ns (M = 2)

0.27 ns + 0.793 ns = 1.063 ns (M = 3),

(45)

TRS≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.70 ns + 2× 0.00 ns + 0.00 ns

= 0.70 ns (M = 1)

0.70 ns + 2× 0.11 ns + 0.00 ns

= 0.92 ns (M = 2)

0.70 ns + 2× 0.11 ns + 0.14 ns

= 1.06 ns (M = 3),

(46)

TVSA≈
{
0.92 ns + 0.00 ns = 0.92 ns (M ≤ 2)

0.92 ns + 0.143 ns = 1.063 ns (M = 3),
(47)

TST≈

⎧
⎪⎨

⎪⎩

0.44 ns + 0.00 ns = 0.44 ns (M = 1)

0.44 ns + 0.38 ns = 0.82 ns (M = 2)

0.44 ns + 0.623 ns = 1.063 ns (M = 3).

(48)

The improvement rates are 0%, 18%, and 35% when M is 1, 2,
and 3, respectively. They are smaller than in the case of west first
routing.

4.2.5 Summary of the case studies
Figure 7 shows the improvement rate of each case. The best rate
is achieved in the case of the partially adaptive router. There are
three reasons for this. First, its pipelines are deep. This means
the link delay is split into more segments, and consequently critical
path increases slowly when the link delay increases. Second, the
differences between the longest stage and the other stages are large.
This means the point at which the critical path increases becomes
drawn out. Thirdly, it has no signals sent backward, and hence there
is no extra segmented delay. All these conditions combine to make
decentralization the effective way to improve operating frequency.

On the other hand, other cases do not combine them. The fully
adaptive router has signals sent backward. The simple router has
fewer pipeline stages than the adaptive router. In the router with
many VCs, VSA stages are too long, and hence LT stages do not
become critical paths when M is small. The improvement, how-
ever, is achieved in all cases and LT stages are certainly deleted, so
the effect becomes larger and larger as link delay increases.
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4.3 Area budgets
To evaluate area budgets, we compare the baseline, naive decen-
tralized, and proposed routers. They correspond to the first case
study, namely the simple case. This evaluation reveals the over-
head of naive architecture and the effect of the proposed method.
Figure 8 shows the total area of each router architecture. The naive
router increases area by 1.6% owing to state machines and addi-
tional signals. On the other hand, the proposed router decreases
area by 46.0% thanks to the buffer using D latches. This is because
input buffers in a router occupy the greater part, e.g. 60.9% in this
case.

4.4 Discussion
Besides packet switched networks, which this paper deals with,
Circuit Switched (CS) networks [7] are proposed. CS networks re-
serve circuits between two nodes, guaranteeing the full bandwidth
of the channel. The CS network and our proposal can coexist as a
hybrid design. Hybrid designs are implemented practically in MIT
RAW [13] and Tilera TILE64 [5]. Furthermore, a recent study [2]
also suggests the hybrid network in which a packet switched net-
work requests channel and a circuit-switched network returns ack
and transfer data. Henceforth, both packet switched and circuit
switched networks should be studied.

We can make efficient use of the reduction of the critical path for
various purposes. A straightforward use is for increasing oper-
ating frequency. Our decentralized approach speeds up routers
by up to 82%. Alternatively, we can also allow a margin in the
frequency/voltage for variability-tolerant and low power designs.
Variability-tolerant designs become more and more important as
technology evolves. From the above, our decentralized router over-
comes the interconnect bottleneck in both delay and energy and
increasing variability caused by technology scaling.

5. CONCLUSIONS
We have demonstrated that decentralization of an on-chip router
eliminates LT stages, and balanced pipelines improve the critical
path by up to 45% in 28-nm process technology. Four case studies
have established that our approach is efficient in various routers,
and our study provides the framework for future studies about de-
centralized router architecture. Furthermore, the low-cost decen-
tralized buffer has been proposed. As technology advances, our
decentralized routers become more and more beneficial, and hence
they are of efficient solutions to avoid the interconnect bottleneck.

Future work will consider new topologies and layouts for decen-
tralized routers. Moreover, future work should discuss router ar-
chitecture considering both the number of hops and physical delay.

Specifically, router performance should be evaluated by the prod-
uct of the number of hops and critical path delay. Last but not least,
our study suggests that decentralized high-speed routers with deep
pipelines and low-latency topologies are of efficient solutions in the
nano-scale era.
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