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ABSTRACT
A hardware local essential tree (LET) generator used in an
N-body simulation is implemented on the FPGA of PEACH2
(PCI Express Adaptive Communication Hub ver2), a low la-
tency switching hub for high performance GPU clusters. By
using the pipelined on-the-fly execution with a multipole
acceptance criterion judging module and a data updating
module, the generation performance is 2.2 times faster than
that with the CPU. When data communication is consid-
ered, the performance was 7.2 times as the case with the
CPU.

1. INTRODUCTION
The field-programmable gate array (FPGA)-based switch-

ing hub is commonly used in various layers of networking.
One such switching hub, PEACH2 (PCI Express Adaptive
Communication Hub Ver.2), has been developed for low la-
tency direct communication between accelerators through a
PCIe standard I/O bus based on the concept of tightly cou-
pled accelerators (TCA) architecture [2][7]. By using four
PCIe ports provided to PEACH2, a double-ring network is
formed between multiple nodes consisting of a host CPU
and GPUs. Memories of the host CPU and GPUs attached
to connected nodes are mapped onto a single address space
of the PCIe and data can be transferred by writing it to this
address. Hardwired logic of the FPGA in the PEACH2 chip
is used for the packet buffer, switch, routing function, and
DMA controller, just like any other switching hub. However,
there is room to implement other functions specialized for
applications executed in the system. As with other high per-
formance computers, the main players with this computing
are GPUs and CPUs connected to PEACH2, but the recon-
figurable functions implemented with the hardwired logic in
PEACH2 can additionally be used as another accelerator
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that helps compute the GPUs and CPUs. This approach
is especially advantageous when the processed data need
to be exchanged between GPUs and transferred through
PEACH2. In other words, on-the-fly processing during data
transfer is possible.

To investigate this approach, here we implement a func-
tion to generate a locally essential tree (LET) in an N-body
simulation that is commonly used in astrophysics [14]. This
tree data structure was introduced so as to increase the
number of particles to be simulated with a limited com-
putational cost. When running a parallel tree method with
multiple GPUs, the data of the particles are divided and dis-
tributed among each GPU, so locally divided trees must be
exchanged between GPUs during the simulation. The LET
is a tree structure proposed to reduce the amount of data
that has to be exchanged between GPUs. In the conven-
tional implementation, the LET is generated in the CPU
and/or GPU depending on the data from a GPU and is
then transferred to the different GPUs. By implementing
the LET generator in the PEACH2 FPGA, the data can be
directly transferred from one GPU to another via on-the fly
processing for LET generation. This off-loading reduces the
total amount of data transfer as well as the CPU and/or
GPU load. It also concentrates the GPU in a process called
Tree Walk.

The rest of this paper’s organized as follows.
First, we explain TCA and PEACH2 in Section 2. Then,

the algorithm for generating LET is introduced in Section
3. We describe our implementation of the hardware acceler-
ator in PEACH2 in Section 4. We evaluate the performance
improvement in Section 5 and then conclude with a brief
summary in Section 6.

2. TCA/PEACH2

2.1 HAPACS/TCA
HA-PACS/TCA (Highly Accelerated Parallel Advanced

system for Computational Sciences / TCA) is a system de-



Table 1: HA-PACS/TCA system.
CPU Intel Xeon-E5

2680v2 2.8 GHz 　 2 sockets
IvyBridge-EP 10 core/socket

Memory DDR3 1866 MHz 　 4 ch 128 GBytes
MotherBoard superMicro X9DRG-QF

GPU NVIDIA K20X 　 4
Memory(GPU) GDDR5 6 GBytes/GPU
TCA board Stratix IV EP4SGX530NF45C2

the number of nodes 64

Figure 1: Overview of HA-PACS/TCA design.

veloped for removing communication bottleneck by using di-
rect PCIe packet transfer between GPUs across nodes [7][2].
When we communicate between GPUs across nodes in multi-
GPU clusters, three steps are needed. First, we copy the
data from the GPU (node A) memory to the host CPU (node
A) memory. Second, the data are transferred from the host
CPU (node A) to another host CPU (node B). Finally, the
data are copied from the host CPU (node B) memory to
the GPU (node B) memory. Communication between the
CPU and GPU, and between CPUs across multiple nodes,
requires a large latency. This can sometimes result in a se-
rious performance bottleneck. TCA architecture provides
an FPGA board called PEACH2 (PCI Express Adaptive
communication Hub ver2) in each node. TCA enables di-
rect communication between nodes through PCIe, which is
commonly used as a bus in a node. That is, communica-
tion between GPUs can be done through PEACH2 without
having to pass through any host CPUs.
The specifications of HA-PACS/TCA are listed in Table 1.

Each node has its own PEACH2, two Ivy Bridge CPUs, and
four GPUs. Figure 1 shows an overview of TCA. Eight nodes
are connected with a ring network formed with PEACH2.
Two rings can also be connected with an extra link provided
in each PEACH2. For connecting to a greater number of
nodes, a higher-level Infiniband network is used.

Figure 2: Block diagram of PEACH.

2.2 PEACH2
Figure 2 shows the block diagram of a PEACH2 chip im-

plemented on Altera’s Stratix IV FPGA [17]. The main role
of PEACH2 is extending PCIe, which is commonly used only
as an I/O network, to connect multiple nodes of a cluster.
PEACH2 has four ports: N, E, W, and S. Port N, an end-
point for PCIe Gen2 x8, is pushed into the PCIe connector
on the host CPU board. Port E, an endpoint Gen2 x8, and
Port W, a root complex Gen2 x8, are used for interconnec-
tion between nodes. Port S is a selectable PCIe Gen2 x16
port and used to connect two ring networks formed by Ports
W and E. The routing function embedded in the FPGA de-
cides the destination port simply by checking the destination
address of the PCIe packet on a single 512-GByte shared ad-
dress space. The routing function provided in PEACH2 has
the control registers for the address mask and the lower and
upper bounds. The destination port is statically decided
by checking the address with the address mask. On the
PEACH2, a memory access to a remote node is restricted to
a memory write request. Instead of memory read, which is
difficult to implement efficiently, the proxy write mechanism
can achieve the same effect by using driver support. DMAC
supports sophisticated block data transfer in the address
space.

Table 2 shows the details of PEACH2. It was implemented
with Altera’s Stratix-IV and works at a 250-MHz system
clock. 512-MByte DDR3 SDRAM is provided on the board.
The logic utilization is just 22%. Softcore CPU NIOS work-
ing at a 150-MHz clock is provided for the management of
the PEACH chip. Figure 3 shows a photo of the PEACH2
board. Port N is implemented as a card edge while cable
connectors are used for other ports. A daughter board is
used to extend Port S to x16 port.

3. TARGET APPLICATION

3.1 Tree method for Nbody simulation
N-body simulation is commonly used to investigate the

structure formation and evolution history of galaxies by solv-
ing the following equation:

ai =

N−1∑
j=0j ̸=i

Gmj(xj − xi)

(|xj − xi|2 + ϵ2)
3
2



Figure 3: Photograph of PEACH2.

Table 2: Details of PEACH2.
FPGA Board Stratix IV

EP4SGX530NF45C2

Number of pins 1932 (GND : 497, VCC : 298)
User pins 379 / 1112 (34%)

Logic Utilization 22%
Combinatinal ALUTs 63930 / 424960 (15%)

Dedicated logic registers 78236 / 424960 (18%)
Total block memory bits 2947383 / 21233664 (14%)

DSP block elements 4 / 1024 (1 %)
NIOS II 150 MHz

Total GXB RX PCS 32/ 32 (100%)
Total GXB TX PCS 32/ 32 (100%)

where xi is a coordinate, mi is a mass, and ai is an ac-
celeration of the i-th particle out of N particles. G is the
gravitational constant and ϵ is the gravitational softening
length introduced to avoid divergence due to division by
zero. The simplest N-body simulation is a direct summing
up of all gravity from (N − 1) particles. However, it takes
O[N2] computational cost, which makes it difficult to treat
a large N .
The tree method has been proposed to reduce the com-

putational cost to O[Nlog(N)] [11] by using the multipole
expansion technique. If the position of node j is far enough
away from particle i, no further search is required. This
reduces the amount of calculation needed. In this process,
to judge the distance between nodes, we adopt Multipole
Acceptance Criterion (MAC) [15][16].
Figure 4 gives a breakdown of the execution time for each

step of the N-body simulation when it is executed in a sin-
gle node including a CPU and GPUs. The ”walk tree” is
the time it takes to follow up tree data, ”make tree” is the
time spent constructing the tree, ”calc MAC” is the time
to calculate the position, mass, and MAC of all tree nodes,
”PH-key” is the time to generate the Peano-Hilbert key [8] of
the N-body particles and sort them using the key, ”body”
is the process of transferring the particle data between a
CPU and a GPU, and ”node” is the process of transferring
tree data to GPUs. In this measurement, the GPU we used
was a Tesla K20 and the number of particles N was 223.
Here, we divide the distribution of the ”walk tree” into 3
parts because we use a block time step approach. We also
have to make a tree at appropriate intervals in every step,
so ”PH-key” and ”make tree” have sparse intervals. Here,
the gravitational calculation time (sum of ”calc MAC” and

Figure 4: Breakdown of execution time.

”walk tree”) must be dominant. That is, ”body” and ”node”
for data transfer must be smaller than the calculation time.
It is for these reasons that we decided to use LET and make
LET generater.

3.2 Locally Essential Tree (LET)
When a tree method is executed in a GPU cluster such

as HA-PACS, the tree is divided and distributed to each
GPU for parallel processing. A locally essential tree (LET)
[14][6][10][9] is a tree with a pruned data structure that re-
duces the communication between GPUs. In order to gener-
ate a LET, first, a GPU I sends the imaginary particle data
to GPU J . This particle is the sphere including all particles
in GPU I. The center of the sphere is consistent with the
focus of particle distribution. GPU J performs tree traver-
sal and judges on the basis of MAC whether a node needs
to be added to the tree and then sends the node to GPU
I if needed. GPU I receives the node and adds it to the
LET. The same process is performed for all combinations of
GPUs in the system to form a LET in each GPU.

3.2.1 Tree data structure
Here, we adopt a tree data structure optimized for BFS.

We used five arrays, as shown in Figure 5.

• list[leaf level]: Only this array is indexed by (leaf level),
which represents the depth of the tree (e.g., if the root
node has 0 and its children nodes have 1). The array
of the list shows the index of each starting leaf level
and the number had by leaf level. Both items are rep-
resented with a 32-bit integer, so 64 bits are needed in
each element.

• jpos[id]: The rest of the arrays are indexed by the
node identifier (id). The array jpos contains the ra-
dius, x coordinates, y coordinates, and z coordinates
of the node. Each data item is represented by a single-
precision floating point number, so 128 bits are used
in total for each node.

• mj[id]: It shows the mass per node with a single-
precision floating point, so 32 bits are needed.

• mask[id]: The element of this array takes a value of 1
or 0 to show whether input node data is included in
the output LET data. If the mask[id] is 1, the data of
its id must be included in the LET, otherwise it is not
included. At the initial state, only the root node has
1.



Figure 5: Structure of array.

• more[id]: This array shows information of the child
nodes. In this implementation, the upper 6 bits hold
the number of child nodes and the lower 26 bits hold
the head index of the child nodes. For example, when
the upper 6 bits are 3 and the lower 26 bits represent
10, children nodes are node 10, 11, and 12.

3.2.2 Flow of LET creation
Figure 6 shows the flow of LET creation. First, we check

the array of mask[id]. When mask[id] is 1, the next step is
to judge distance. Otherwise, some part of the particle data
is changed and moved to the next node. The judge distance
step is for comparing distance by using MAC. Next, after
searching more arrays, the mask array of a child node is
changed from 0 to 1. Some of the interior of particle data
is then updated and added to the output LET. After these
processes are finished, we move on to the next node. The
checking is performed in the BFS order.

4. ONTHEFLY LET GENERATOR

4.1 Implementation in PEACH2
In our implementation, the LET generation is done in the

host CPU communicating with GPUs. However, in TCA,
GPUs can communicate directly with PEACH2. Imple-
menting the LET generator in PEACH2 has the following
benefits:

• The data to generate LETmust be transferred between
GPUs through PEACH2, and LET generation can be
done on-the-fly during data transfer.

• Data transfer between CPU and GPU for generating
LET is removed. This saves communication time as
well as computational load on the CPU and/or GPU.

In PEACH2, the main functions as switching hub include
PCIe interface, routing functions, multiplexers for packet
switching, and the DMA controller working at a 250-MHz
clock. An LET generator must be implemented so as not
to influence the operation of this part, so we implemented
our logic as a functional module attached to the Avalon
bus, as shown in Figure 2. The working memories inside
the FPGA, DDR3 DRAM interface, and Nios soft processor

Figure 6: Flow of LET creation.

are connected to the bus, and this part works at a 150-
MHz clock for easier implementation. The memory can be
mapped into the same address space as the GPU and CPU
memory modules connected with PEACH2, and writing this
memory area is done by sending data to the registers of
the LET generator. Since the bus width is 128 bits, the
fundamental data size in the implementation is set to be
128-bit.

4.2 The LET generator
As shown in Figures 7 and 8, the LET generator con-

sists of a MAC judging module and a data updating mod-
ule. Input data structures jpos, more, and mj come from
a PCIe link on the 128-bit data bus with 2 clock cycles to
the MAC judging module, which is shown in Figure 9. In
order to receive data continuously, all computational mod-
ules are executed in a pipelined manner. Altera’s floating
point megafunctions are used for the single-precision float-
ing point calculation. All megafunctions are pipelined so
that the MAC judging module can accept the input data in
every clock cycle. However, because of the limitation of the
128-bit internal bus, the module accepts and generates data
once every two clock cycles. The latency of the module is
136 clock cycles.

If the result of judging a module is ”1”, the data updating
module updates the data in more and mask and the mask
of the children nodes must be set to ”1”. Since the tree is
pruned, more must be modified in accordance with the num-
ber of pruned nodes. Note that most of the processing in the
LET generator can be done without locking pipeline, expect
when the index crosses the leaf level. An mask needs to be
updated if its children nodes have a leaf level one greater
than its own. Thus, the processing must be stalled until
the mask data have updated at the pipeline by 140 cycles at
most.



Figure 7: LET generator (id = 0).

Figure 8: LET generator (id = 11).

Figure 9: The MAC judging module.

5. EVALUATION
In this section, we evaluate our implementation of the

LET generators in PEACH2 and compare it with a case in
which an LET is generated in a host CPU. Table 3 lists
the details of the evaluation environment. The LET gen-
erator was designed in Verilog HDL and synthesized with
QuartusII 13.1. As shown in Table 4, the hardware used is
small enough to be implemented in PEACH2 without dis-
rupting the main switching functions and our design enables
fast enough operation to be implemented on the Avalon 150-
MHz bus.
Table 5 shows the execution time of the LET generator

and CPU. The clock cycles in the LET generator are counted
using RTL simulation and the execution time of the CPU
is the average of 10 executions. The difference in time scale
between Table 5 and Table 4 (breakdown of execution time)

Table 3: Evaluation environment.
FPGA Stratix IV EP4SGX530NF45C2

Language Verilog-HDL
Tool Quartus II 13.1
CPU Intel Xeon E5 2680
ICC icc 13.1.3
MPI Open MPI 1.6.5

CUDA CUDA 5.5
the number of particles 4096

Table 4: Hardware used.
Logic Utilization 12 %

34 % (add PEACH2)
Combinatorial ALUTs 15692 / 424960 (4 %)

79622 (19 %) (add PEACH2)
Dedicated logic registers 36623 / 424960 (9 %)

114859 (27 %) (add PEACH2)
Total block memory bits 4608 / 21233664 (1 %)

2951991 (14 %) (add PEACH2)
DSP block elements 36 / 1024 (4 %)

40 (4 %) (add PEACH2)

Table 5: Execution time to construct LET.
execution time

CPU 69.3 µsec
Our off-loading module 31.4 µsec

Table 6: Execution time including communication.
Execution time

CPU 245.7 µsec
Our off-loading module 33.7 µsec

can be attributed to particle number. It appears that the
LET generator works 2.2 times faster than the CPU. The
speed of the LET generator was mainly limited by the rate
of the particle data thrown into the module once every 2
clock cycles and the pipeline stall for updating mask.

The above results only pertain to the computation time
for LET generation, not the communication time. In the N-
body simulation that are underway currently implemented,
the data has to be transferred from the GPUs to the CPU
and then the result has to be transferred back to the GPUs
again. In contrast, in the PEACH2 implementation, the
computation time of the LET generator is completely over-
lapped with the data transfer since it is on-the-fly computa-
tion. Table 6 shows the execution times including the data
communication. The hardware excution time is the sum of
LET generator and the time of the communication delay in
the past. The CPU execution time is an average of 10 exe-
cutions, as well as the execution time of only LET gengera-
tion. As shown in this table, the LET generator in PEACH2
achieves a 7.2 times faster execution than the CPU.

6. RELATED WORK
On-the-fly acceleration in the FPGA switching hub or net-

work interface has been tried mostly for networking. En-
cryption and decryption are practical targets of the acceler-
ation, and there has been a lot of research on implementing
hardware mainly on a network interface FPGA [12]. One
common technique is accelerating the network protocol to
reduce the overhead of CPU with hardware implemented
on a network interface FPGA. Reducing the time it takes



to compute CRC is one of the targets of such acceleration
[3][1].
Recently, for big data processing, some of the functions

for database processing have been off-loaded to network in-
terface FPGAs [5]. Most of them are off-loaded to a network
interface FPGA, and the target application is networking or
database processing. To the best of our knowledge, there
has been no research on off-loading part of a scientific com-
putation into a switching hub FPGA. This is due to the dif-
ficulty of implementing additional hard-wired logic on the
high speed switching hub used in supercomputers. Fortu-
nately, although PEACH2 is a low latency switching hub
for GPU clusters, it was designed so that extra functional
modules can be attached by using the hardware resources
that are not being used for the main function.
There are many accelerators and dedicated machines for

N-body simulation, including various GRAPEmodels [13][4].
However, we can omit these here, since the focus of this re-
search is not this type of dedicated accelerator.

7. CONCLUSION
An on-the-fly LET generator is proposed and implemented

on PEACH2, a switching hub for high performance GPU
clusters. Using the pipelined on-the-fly execution with a
MAC judging module and a data updating module resulted
in a generation performance 2.2 times faster than with a
CPU. When data communication is considered as well, a
performance 7.2 times faster than using the CPU can be
achieved.
The total execution of N-body simulation using the pro-

posed LET generator is currently under development. In
future work, we will evaluate the effect of this generator on
total N-body simulation with the HA-PACS/TCA system.
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