
Expandable Chip Stacking Method for Many-Core
Architectures Consisting of Tiny Chips

Hiroshi Nakahara1, Tomoya Ozaki1, Hiroki Matsutani1, Michihiro Koibuchi2, and Hideharu Amano1

1Keio University 2National Institute of Informatcs
3-14-1 Hiyoshi, Kohoku-ku, 2-1-2 Hitotsubashi, Chiyoda-ku,

Yokohama, Japan Tokyo, Japan
blackbus@am.ics.keio.ac.jp koibuchi@nii.ac.jp

Abstract—The increase of recent non-recurrent engineering
cost (design, mask and test cost) have made large System-on-Chip
(SoC) difficult to develop especially with advanced technology.
We radically explore an approach for cheap and flexible chip
stacking. To connect a large number of small chips for building
a large scale system, a novel chip stacking method called the
staggered stacking is proposed that enables the system to be
extended to x and y dimensions, not only to z dimension. For
such flexible inter-chip communication, we use Inductive coupling
ThruChip Interface (TCI). Here, a novel chip staking layout, and
its deadlock-free routing design for the case using multi-core
chips are shown. The network with 256 nodes formed by the
proposed stacking improves the latency of 2D mesh by 13.8%
and the performance of NAS Parallel Benchmarks by 6.7% on
average compared to that of 2D mesh.

I. INTRODUCTION

The increase of recent non-recurrent engineering cost have
made large System-on-Chip (SoC) difficult to develop espe-
cially with advanced technology. Alternatively, various tech-
niques on System-in-Package, which integrates a number of
small chips, have been developed. 2.5D implementation with
Through Silicon Via (TSV) [1], micro bumps, and a silicon
interposer has become a mature technique for building large-
scale FPGAs. They would have a potential to be a competitor
or complementary technology to a large SoC. Needless to say,
they stack chips only for vertical direction and their structures
are fixed and cannot be changed once they are stacked.

We radically explore a different approach for cheap and
flexible chip stacking. To connect a large number of small
chips for building a large scale system, a novel chip stacking
method called the staggered stacking is proposed that enables
the system to be extended to x and y dimensions, not only to z
dimension. This method interestingly allows to incrementally
add chips to existing stacked chip systems and allows to
optimize stacking to a target application on demand.

For such flexible inter-chip communication, we use in-
ductive coupling ThruChip Interface (TCI) [2]. TCI is yet
another technique to connect multiple chips with high-speed
links. Since links between chips are built with a wireless
interconnect, it is easy to insert or replace chips of the chip-
stack after fabrication. Since coils for inductor can be built
with metal wires, no special process technology is needed

other than standard CMOS process. A transfer speed over 8
Gbps was achieved with a low-energy dissipation and a low
bit-error rate (BER< 10−12) [3]. The TCI has been used for
memory stacking [4], a dynamically reconfigurable processor
[5], and a heterogeneous multi-core system [6]. In all of them,
straight-forward 3D stacking is used. However, the number of
connected chips is limited to eight considering the total height
of the chip stack.

Our challenges in the novel chip stacking method are (1)
chip staking layout for TCI using x,y and z dimensions, and
(2) the routing algorithm for the case using multi-core chips.

The contributions of the paper are as follows:
• The staggered stacking builds more than 64-chip stacking

with eight-chip height. It provides a mesh-based 3D
topology only with TCI links naturally formed by the
chip-stacking.

• The case that a chip has a multi-core connected with
2D mesh is investigated. By distributing TCI links to
corner nodes, that achieves better diameter and average
shortest path length than 2D mesh with the same degree.
An extended deadlock-free routing algorithm with two
virtual channels achieves better application performance
(Section 4).

• The performance of the various cases of chip stacking
is evaluated with both typical traffic and these from the
practical applications. (Section 3 and Section 4)

The rest of paper is organized as follows. Section II intro-
duces inductive-coupling TCI technology. Section III proposes
a new chip-stacking method, called staggered stacking, cor-
responding network toplogy and a routing algorithm for the
case to stack multi-core. Section IV evaluates these proposed
techniques and Section V concludes the paper.

II. INDUCTIVE COUPLING THROUGH CHIP INTERFACE

A. Inductive coupling channels

Inductive-coupling TCI uses square coils implemented with
common layers of the chip. As shown in Fig. 1, by stacking
a transceiver coil on a receiver coil, an inductive coupling
channel is formed between two chips. Two coils, one for
the clock and the other is for data are usually provided

Fig. 1: 3D NoC using TCIs

for a channel. A high frequency clock (1GHz to 8GHz) is
generated by a ring oscillator, and data are serially transferred
synchronized with the clock directly through the driver. The
driver and inductor pair for sending data is called the TX
channel, while the receiver and inductor pair is called the RX
channel. Data can be transferred at most 8Gbps with a low
energy dissipation (0.14pJ per bit) and a low bit-error rate
(BER< 10−12) [3].

Data multicast can be used if a TX channel is placed
at the same location of multiple RX channels in different
chips. On the other hand, stacked multiple TX channels at the
same location cannot send the data simultaneously to avoid
interference. Since a coil can be used for both the transmitter
and receiver, the functionality of TX and RX channels can be
quickly switched, that is, a half-duplex bi-directional channel
can be formed using a single coil.

Although TCI requires a certain amount of logic to form a
link between two chips, it has the following benefits. (1) A
number of chips can be stacked if a physical environment is
allowed. (2) Since chips can be tested before stacking, only
known-good-dies can be connected. (3) Since TCI is electri-
cally contact-less, no electro-static-discharge (ESD) protection
device is needed. (4) Since the coil uses common wire layers
of CMOS process, no extra process is needed. Although a coil
has a large footprint, we can implement circuits inside the coil.

B. Chip stacking and inter-chip networks

Although a number of practical systems have been devel-
oped by using TCI, all use simple 3D chip stacking. Fig. 2
shows the chip stacking used in Cube-1[6]. To place the
receiver coil just on the transceiver coil, chips are shifted and
stacked. The shifted space is also used to maintain the space
for wire bonding. Note that even in TCI, several wires are
needed for the power supply. In Cube-1, a ring-like packet
switching network is formed just by stacking chips.

Although a case has been reported in which more than
10 chips were stacked [7], stacking chips with simple 3D
stacking, that is, to z-dimension has certain physical limita-
tions. First, the chip stacking is sometimes physically unstable
when more than four chips are stacked, since ground chips are
slightly bent because of the difference between the coefficient

Fig. 2: Chip stacking used in Cube-1

Fig. 3: Chip used in linear stacking

Fig. 4: Example of stacking seven chips in accordance with
linear stacking

of thermal expansion of the silicons and that of the wires. Sec-
ond, the package height is limited. From a practical viewpoint,
it is difficult to stack more than eight chips to z-dimension.

C. Extension of stacking to x-dimension

To connect more chips with the limitations of z-dimension,
linear stacking has been proposed [8]. This method assumes
four TX and RX channels on a chip as shown in Fig. 3. By
using each stacked chip as a bridge between chips, the stacking
can be extended to x-dimension as shown in Fig. 4, resulting
in more than 64 chips being connected within an eight-chip
height. With the linear stacking, a type of mesh network called
stairway boundary mesh (SBM) is formed between chips as
shown in Fig. 5. Although the dimension order routing (DOR)
can be used in the SBM, packets must move around the
boundary when the DOR path faces to it. Since the routing
introduces congestion around the boundary, the throughput is
degraded. Thus, although SBM has almost the same average
hop count as common mesh, its throughput is much smaller.

D. Stacking methods for other through-chip interfaces

Three dimensional stacking methods have been studied for
various through-chip interface techniques, and some of them
are based on the same motivation to extending x, y and

Fig. 5: Stairway boundary mesh with 39 chips

z dimensions[9]. The offset cube[10] proposed for through-
wafer optics is 3D stacking method for building ultra-compact
massively parallel processors. As shown in later, the generated
network topology of the offset cube, the stacking method
shown in [9], and that of the Staggered Stacking is the same.
However, our stacking method is specialized to the TCI for
avoiding the interference between inductors. Moreover, our
proposed method is designed for chips which include multiple
cores. Our proposed chip stacking method is specialized on
these points.

III. STAGGERED STACKING

We propose a new stacking method, called staggered stack-
ing. The aim of the stacking is to extend the system to x and
y dimensions, not only z dimension.

A. The stacking method

The limitation of the linear stacking is caused by extending
the chip stack to only x-dimension. To extend chip-stack both
to x and y dimensions, we use four coils (two for TX and two
for RX) to make a full duplex link between stacked chip. A
couple of full duplex links are provided at four corners of a
chip instead of the uni-direction links in Fig. 3. Since a chip
can be a bridge of four under-laying or overlaying chips with
these coils, we can extend the chip stack to both x and y
directions.

Definition 3.1: Staggered Stacking
Chip is placed on a grid turning by 45 degrees. The grid size
is fixed so that four TCI links of a chip are just on the under-
laying chips and the remaining four TCIs are on the over-
laying chips. For layer k, if k is an even number starting from
0, place the chip on the grid (i, j), where (i + j) is an even
number. If k is an odd number, place the chip on the grid (i,j),
where (i+ j) is an odd number. 2

For example, considering the case that stacks 32 chips with
the staggered stacking, first we stack eight chips for layer 0
and eight chips for layer 1 in accordance with the definition
shown in Fig. 6a). Then, in the same manner, we place layers
2 and 3 as shown in Fig. 6b). Note that layers 0 and 2 are the
same layout, while layers 1 and 3 are also the same.

Note that chips are stacked so that every layer is shifted
with the size of the coil to prevent vertical interference. Fig. 7
is a cross-cutting view of the chip stack shown in Fig. 6b).

Fig. 6: 32-chip stacking with staggered stacking

Fig. 7: Cross cutting view of Fig. 6b)

By shifting chips, a coil can be placed just on coils in the
next lower and upper layers. This is the reason why the grid
tilts. Even if the number of layers is increased, the vertical
interference can be avoided in this manner. We call this
stacking method staggered stacking.

Staggered stacking generates more spaces between chips
than linear stacking. To avoid being physically unstable, spacer
chips are sometimes needed. On the other hand, space between
chips can be advantageous for heat dissipation.

B. The Network Topology

The staggered stacking builds a network between all stacked
chips by using a chip as a bridge of other chips. First, for
simplicity, all TCI links are connected to a single router
which also connects to a core on the chip. That is, a chip
is treated as a node with eight links for connecting to other
nodes. A connection topology between nodes composed by
the staggered structure is defined as follows.

Definition 3.2: Network topology formed by the staggered
stacking is represented as T[M,N,H] where M and N
represent the number of cores in two adjacent layers, and H
is the number of layers stacked and must be an even number.

A node is identified with (x, y, z), where (x, y) is a coordi-
nate of the grid where the corresponding chip is placed, and
z is the layer number placed. A node (x, y, z) is connected to
(x+1, y, z+1), (x, y+1, z+1), (x−1, y, z+1), (x, y−1, z+1),
(x + 1, y, z − 1), (x, y + 1, z − 1), (x − 1, y, z − 1), and
(x, y − 1, z − 1) when the following conditions are satisfied:
0 ≤ x < N , 0 ≤ y < M , and 0 ≤ z < H . 2

Note that staggered stacking connects chips through vertical
TCI links, a chip and its neighbors have different z. For
example, topology shown in Fig. 6b) is represented as T[4,4,4].
The total number of chips becomes NMH/2.

Fig. 8: Topology composed in Fig. 6a) (4× 4 mesh)

The topology generated by the staggered stacking itself is
the same as that of Topology B[9] and the offset cube[10]. We
will extend it to stack multi-core chips which have multiple
cores in a chip connected with each other.

C. The Network Topology for Multi-Cores

Recently, even in a small chip, multiple cores connected
with a NoC each other are implemented. Here, we assume that
cores in the chip are connected with a 2D mesh. A router in
2D mesh usually has five ports: four for neighbors and one for
the core. However, four routers at each corner of the chip use
only three of them, thus, remaining two can be used for up-link
and down-link of TCI without changing the router structure.
With this method, we can extend the network for staggered
stacking to multi-core chips. Note that the node with eight
links in T[M,N,H] is distributed to corner nodes, in which
each node has four links, same as a common 2D mesh and
the SBM from the linear stacking.

Since the data transfer rate of a TCI link is 8Gbps [2], and
the bandwidth of a link can be enhanced by increasing the
number of data coils, we assume that inter and inner chip
links have the same bandwidth.

When such chips are stacked in the staggered stacking, the
network topology Tm[M,N,H,Mc,Nc] is defined.

Definition 3.3: Assume that Mc ×Nc nodes in a chip are
connected with 2D mesh. Add two TCI links for off-chip
connections to four corner nodes. These chips are placed in the
staggered stacking T[M,N,H], and then a network topology
Tm[M,N,H,Mc,Nc] is formed. 2

For example, the topology shown in Fig. 9 is represented
as Tm[2, 2, 2, 2, 2]. Since the stacking method is the same as
the staggered stacking, the topology composed by chips is a
2 × 2 mesh. Here, TCI links are shown with doublet lines,
while other single lines show links inside the chip.

D. Routing

1) Routing for T[M,N,H]: First, the routing algorithm
for T[M,N,H] is discussed and then it is extended to
Tm[M,N,H,Mc,Nc]. The positive-Z-first algorithm proposed

Fig. 9: Topology of [2,2,2,2,2]

for the offset cube can be directly applied to T[M,N,H].
However, since it is an adaptive routing, it is difficult to be
extended for Tm[M,N,H,Mc,Nc]. Here, we use a simpler fixed
routing as a basis of the routing.

Although the DOR [11] can be applied on a 2D mesh
formed with T[M,N,H], xy-direction and z direction needs
to be moved simultaneously to z direction. Thus, we must
select two routing methods in accordance with the position of
the source node to the destination node.

Let (xcur, ycur, zcur) be the source node, and
(xdst, ydst, zdst) be the destination node. Here, we define
the absolute distance between the current node and the
destination node as dx = |xcur − xdst|, dy = |ycur − ydst|,
and dz = |zcur − zdst|. The number of hops for routing
in xy-axes is expressed as dx + dy, and that for z-axis is
expressed as dz. The routing method is selected on the basis
of the relationship between the dx+ dy and dz as follows.

• dx+ dy ≥ dz
In this case, z coordinate reaches zdst before (x, y)
becomes the destination (xdst, ydst) with the DOR. For
example, assume that the chip (0,0,0) sends a packet to
(3,3,2) in T[4,4,4] topology. As the routing is basically
done with the DOR, first, the packet goes in x direction
to the xdst. Since a hop in x direction also moves in z
direction, we select the direction in which zcur moves
closer to zdst. That is, the packet is transferred in the
order of (0,0,0)-(1,0,1)-(2,0,2). Now, z coordinate reaches
zdst while (x, y) coordinates have not. In this case, we
send the packet to z coordinate so that it is not far
from the destination while the DOR is applied to xy-
direction. That is, if zcur equals zdst, z coordinate is just
incremented except when zcur equals H−1. In this case,
since the upper neighbor does not exist, z coordinate is
decremented. Otherwise, the packet is sent to z direction
with the zdst. In accordance with the rules above, the
packet is forwarded in the order of (2,0,2)-(3,0,3). Now,
since x coordinate is the same as the destination, the
packet is sent by the same rules to y direction. Thus,
it reaches the destination on the remaining path (3,0,3)-
(3,1,2)-(3,2,3)-(3,3,2).

• dx+ dy < dz
In this case, (x, y) direction reaches (xdst, ydst) before z

Fig. 10: Routing on YZ-plane in the case of (dx+ dy) < dz

coordinate reaches zdst. For example, assume the case of
sending a packet from (0,6,0) to (1,6,7) in the T[8,8,8].
Similar to the case of dx + dy ≥ dz, routing for xy
direction uses the DOR, and routing on z axis makes zcur
move closer to the zdst. In the example, the packet goes
on the path (0,6,0)-(1,6,1), and x coordinates is equal
to xcur even though z coordinate has not arrived yet.
Then, in accordance with the DOR the packet is sent to
y direction on the basis of the relationship between the dy
and dz. When dy > dz, the packet is sent to y direction
to ycur+1. When dy < dz, the packet is sent to ycur−1.
When dy = dz, the packet is sent to closer to ydst. In
this example, the remaining routing path from (1,6,1) to
(1,6,7) is shown in Fig. 10.

The above routing algorithm is represented as Algorithm 1.
Here, let (xnext, ynext, znext) be the coordinates of the next
chip determined by the algorithm.

Proof of deadlock-freedom of routing algorithm 1 is divided
into two parts. First, it is shown that all (x, y, z) values must
not change simultaneously. Second, the movement of packets
is proved to be deadlock free on XY-plane, XZ-plane, and YZ-
plane.

Lemma 3.1:
When sending a packet to its neighboring chip, all the (x,y,z)
values never change simultaneously

Proof 3.1:
A chip at (x, y, z) coordinates is adjacent to (x+1, y, z+1),
(x, y+1, z+1), (x−1, y, z+1), (x, y−1, z+1), (x+1, y, z−1),
(x, y + 1, z − 1), (x− 1, y, z − 1), and (x, y − 1, z − 1). All
of them have the same value as (x, y, z) at one axis. Thus, all
the (x, y, z) values never change simultaneously. 2

Lemma 3.2:
Routing Algorithm 1 is deadlock free on XY-plane, XZ-plane,
and YZ-plane.

Proof 3.2:
1) XY-plane

Turns on the XY-plane are shown in Fig. 11a). As the
routing on the xy-axis is the DOR, two turns ((x+1, y)−
(x+1, y+1)−(x, y+1) and (x, y+1)−(x, y)−(x+1, y))

Fig. 11: Turns on each plane

are prohibited. Cycles are, thus, never formed in this
plane.

2) XZ-plane
Turns on the XZ-plane are shown in Fig. 11b). Once
a packet goes to the x ± 1 direction, it never changes
its direction, that is, a packet never goes to x ∓ 1 the
direction. That is, turns ((x+ 1, z)− (x, z + 1)− (x+
1, z + 2) and (x, z + 2) − (x − 1, z + 1) − (x, z)) are
prohibited. Cycles are, thus, never formed in this plane.

3) YZ-plane
Turns on the YZ-plane are shown in Fig. 11c) and 11d).
According to Algorithm 1, when (dx + dy) < dz, the
next direction is determined by the relationship between
dy and dz. Here a turn (y, z)−(y+1, z+1)−(y, z+2)
in Fig. 11c) and a turn (y, z+2)− (y+1, z+1)− (y, z)
in Fig. 11d) are prohibited except if y equals 0. If y
doesn’t equal 0, since these prohibited turns are known
to be negative-first routing [12], cycles are never formed
in this case. If y equals 0, there is no chip at the (y −
1, z + 1), thus no cycles are formed. 2

Theorem 3.3: Routing Algorithm 1 is deadlock free.
Proof 3.3: From Lemma 3.1, Routing Algorithm 1 is divided

into three parts each of which is on three planes, and routing
on each plane is never used twice. From Lemma 3.2, deadlock
never occurs in each plane. Thus, the Routing Algorithm 1 is
deadlock free. 2

2) Extension of the routing: The Routing Algorithm 1
can be directly applied for the chip-to-chip communication.
However, since an inter-chip link is distributed to nodes, to
use another inter-chip link, the inner-chip routing is needed.
For inner-chip routing, we can use the common DOR. Here,
let (xccur, yccur) and (xcdst, ycdst) be the coordinates of the
current node inside a chip and destination node inside a chip.
(xcnext, ycnext) shows the coordinates of the next target node
inside a chip. Also, let (xctci, yctci) be the coordinates of the
node connected with the TCI in the current chip (xcur, ycur,
zcur) and the next chip (xnext, ynext, znext). Routing algorithm
for multi-core chips is shown in Routing Algorithm 2.

Routing Algorithm 1� �
if (dx+ dy < dz) {

(xnext, ynext) = DOR to (xnext, ynext)

if (zcur ̸= zdst) making znext move close to zdst
else znext is zcur + 1

} else {
if (xcur ̸= xdst)

making xnext move close to xdst

else {
if (dy > dz) ynext is ycur + 1
else if (dy < dz) ynext is ycur−1

else making ynext move close to ydst
}
making znext move close to zdst

}� �
Routing Algorithm 2� �

((xnext,ynext,znext) is calculated by routing algorithm1)
(xctci, yctci) is determined by the (xnext,ynext,znext)

if ((xcur, ycur, zcur) = (xdst, ydst, zdst)) {
(xnext,ynext,znext) = (xcur,ycur,zcur)
(xcnext, ycnext) = DOR to (xcdst, ycdst)

} else if ((xccur, yccur) ̸= (xctci, yctci)) {
(xnext,ynext,znext) = (xcur,ycur,zcur)
(xcnext, ycnext) = DOR to (xctci, yctci)

} else {
// (xnext,ynext,znext) are not changed.
(xcnext, ycnext) is determined automatically.

}� �
A problem of routing in Tm[M,N,H,Mc,Nc] is deadlock
possibility generated by the combining inner-chip routing
and inter-chip routing. An example of cyclic dependency in
Tm[2,2,2,2,2] is shown in Fig. 9. Although the cycle can be
resolved by prohibiting some turns in inter-chip routing or
inner-chip routing, this approach will introduce a pair of nodes
which is difficult to communicate each other. So, we introduce
two virtual channels and a simple rule to use them. Since a
cycle is only generated in the XY-plane including four sides of
a rectangle consisting of inter-chip TCI links, we can resolve
it by changing the virtual channel on either side. We selected a
simple VC transition for Routing Algorithm 2 which changes
VC when x coordinate is changed first.

Theorem 3.4: Algorithm 2 with the VC transition is deadlock
free

Proof 3.4: Inter-chip routing uses Algorithm 1, so it is
deadlock free. Inner-chip routing uses the DOR, so it is also
deadlock free. The cycle is only generated the combination
of inner-chip routing and inter-chip routing, thus, it is only
generated in XY-plane since inner-chip routing is only done
in the XY-plane. A generated cycle includes at least a link for
x direction, so by changing the VC at the link, the cycle is
removed. 2

TABLE I: Parameters for the network simulation

Number of simulation cycles 100000
Number of VCs 4

Buffer size of each VC 8
Number of the pipeline stage 3

Fig. 12: Network simulation result with 64 cores

VC transition for Routing Algorithm 2� �
if ((xcnext, ycnext) = (xctci, yctci) and (xcur ̸= xdst))

next VC is 0
else if (xccur, yccur) = (xctci, yctci) and (xcur ̸= xnext))

next VC is 1
else

next VC is same as current VC� �
IV. EVALUATION

A. Evaluation of the case of single core

We compare the network topology formed with the stag-
gered stacking, linear stacking, and common 2D mesh. Book-
sim [13] is modified to treat the user defined topology, and
used to evaluate the average latency and throughput. Parame-
ters of the network simulation are shown in Table. I.

Fig. 12 shows network simulation results with 64 cores.
Although the linear stacking denoted as SBM has almost the
same latency as the mesh, its bandwidth is worse because
of the congestion on the stairway boundaries. On the other
hand, the staggered stacking denoted as T[4,4,8] improves the
latency by 28.8% compared to the mesh. In the staggered
stacking, the packet can move both to x and y directions and z
direction at the same time. As a result, the latency of T[4,4,8]
is almost the same as that of the 4× 4 mesh.

Fig. 13 shows network simulation results with 256 cores.
The difference becomes larger with as the size becomes larger.
The staggered stacking improves the latency compared to the
mesh by 42.9%, and the throughput by 53.3% compared to
the mesh.

These results are not surprising, since a node of T[M,N,H]
has eight links, while 2D mesh and the linear stacking uses
node with four links. By introducing multi-core chips con-
nected with 2D mesh, we can reduce links of each node to
four. Thus, the fair comparison will be done later.

Next, we evaluate the execution time of NAS Parallel
Benchmark(NPB) [14] using the GEM5 [15], a full system

Fig. 13: Network simulation result with 256 cores

TABLE II: Parameters for the full system simulation

Processor X86 64
L1 I/D cache size 64KB
L1 cache latency 1 cycle

L2 cache bank size 256KB
L2 cache latency 6 cycles

Memory size 4GB
Memory latency 160± 2 cycles
Router pipeline 3 cycles

Buffer size 5 flits per VC
Flit size 128 bit

Coherency Protocol MOESI directory
Number of VCs 4

Fig. 14: Application execution time (64 cores)

CMP simulator. GEM5 can deal with both topology and
routing defined by the user, but the routing is difficult to tailor.
We modified GEM5 to deal with the routing of staggered
stacking. Parameters for the full system simulation are shown
in Table. II.

Fig. 14 shows full system simulation results with 64 routers.
In this evaluation, a single CPU is allocated on the chip (0,0,0),
(3,0,1), (0,3,1), (3,3,0), (0,0,6), (3,0,7), (0,3,7), (3,3,6) on the
T[4,4,8] to make the best use of the inter-chip network. L2
cache is allocated on the other nodes. We add the evaluation
of four stacking of 4x4 mesh chips with TCI represented as
TCI(4,4,4) in order to compare the staggered stacking and
the stacking in only z direction. The application execution
time is normalized to that of the mesh. The staggered stacking
denoted as T[4,4,8] reduces execution time by 4.6% on average
compared to the mesh, and by 3.4% compared to TCI(4,4,4).

Fig. 15: Network simulation result with Tm[4,4,8,2,2] and
16× 16 mesh

Fig. 16: Application execution time (256 cores)

B. Network simulation for the case of using multi-cores

As mentioned in the Section IV-A, the evaluation of the
case of single core is not fair because the degree of a
router of T[M,N,H] is different from that of the mesh.
However, a router in the Tm[M,N,H,Mc,Nc] has at most
5 links which is same to a router in the mesh. Fig. 15
shows network simulation result with 256 cores. Booksim
is used again for simulation. Since Routing Algorithm 2
needs to use two VCs to remove cycle, the number of VCs
becomes two in this evaluation. Other parameters are the same
as Table. I. Unlike the case of a single core, the average
degree of Tm[4,4,8,2,2] is smaller than 16x16 mesh. The
throughput of the Tm[4,4,8,2,2] is, thus, lower than that of
16x16 mesh. However, Tm[4,4,8,2,2] improves the latency by
13.8% compared to the mesh when traffic load is light.

C. Full system simulation

The execution time of NPB with multi-core systems with
Tm[4,4,8,2,2] is shown in Fig. 16. Same as the simulation
in the previous section, a GEM5 full-system simulator is
used with the parameters shown in Table. II. The execution
results are normalized to the ones with the 16x16 mesh. The
arrangement of CPU and L2 cache is same to the simulation
with 64 routers in Section IV-A. In all application programs,
the staggered stacking performs the best and outperforms the
16x16 2D-mesh by 6.7% on average, and the TCI(8,8,4) by
3.4%.

TABLE III: Single chip area evaluation (256 cores)

Topology Number of chips Area per chip

16× 16mesh 1 768mm2

Tm[4,4,8,2,2] 64 15.645mm2

D. Chip area and cost
Considering the area used for TCI, the total semiconductor

area for the staggered stacking is larger than that of the 2D
mesh with the same number of cores. However, the cost of
the chip is relational to more than the third power, and the
system consisting of a small chip-stack can cost less than a
large chip. Here, the area and cost of the staggered stacking
are evaluated.

First, the area of TCI is evaluated. The coil for the TCI uses
only two metal layers, and digital circuits can be implemented
in the area of the coil. Thus, the footprint of the coil is
not directly a loss of the chip area. However, here, we
conservatively assume that the total area of coil is only used
for the circuits for the TCI. The size of the coil is determined
with the vertical distance to the opposite coil. Here, we assume
that the chip is 30µm thick and 7.5µm is needed for glue.
In this case, 8Gbps throughput is achieved with a 225µm
x 225µm coil. To achieve the same throughput as the inner
chip network, four coils for receiving data and four coils for
sending data and a coil for the data transfer clock are needed.
In staggered stacking, eight TCI links are needed, and thus,
the total area of inter-chip communication becomes 225µm x
225µm x 72=3.645mm2.

We assume a system with 256 cores each of which is
implemented in an a×b size tile. The total area is represented
by 256ab. On the other hand, in the case of staggered stacking
Tm[4,4,8,2,2], a chip requires 4ab+2.645mm2, so the total
silicon area required becomes 256ab+233.28mm2. That is
233.28mm2 larger than the case of a single chip. From the
reference [16], we assume the area of tile to be a=1.5mm and
b=2.0mm. The cost of a chip is relational to more than the
third power[17]. Thus, if we directly apply this formula, the
semiconductor cost of staggered stacking is less than 1/2000
that of a large single chip. Considering the cost for stacking
which is difficult to estimate now, this shows the possibility to
build a large system economically by using staggered stacking
method.

V. CONCLUSION

A novel chip stacking method called staggered stacking is
proposed to economically form a large multi-core system from
a number of small chips. By using inductive coupling TCI, a
large number of chips can be stacked in x, y, and z directions
by keeping the height a certain number of chips. The network
with 256 nodes formed by the proposed stacking improves
the latency of 2D mesh by 13.8% and the performance of
NAS Parallel Benchmarks by 6.7% on average compared
to 2D mesh. The estimation revealed that the allocation of
the chip greatly influences the performance. Investigating an
allocation method for building large-scale CMPs by using the
chip stacking is our future work.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI S
Grant Number 25220002.

REFERENCES

[1] J. Burns, L. McIlrath, C. Keast, C. Lewis, A. Loomis, K. Warner, and
P. Wyatt, “Three-dimensional integrated circuits for low-power, high-
bandwidth systems on a chip,” in Proceedings of the IEEE International
Solid-State Circuits Conference, Feb 2001, pp. 268–269.

[2] Y. Take, H. Matsutani, D. Sasaki, M. Koibuch, T. Kuroda, and
H. Amano, “3-D NoC with Inductive-Coupling Links for Building-Block
SiPs,” IEEE Transactions on Computers (TC), vol. 63, no. 3, pp. 748–
763, Mar. 2014.

[3] N. Miura, H. Ishikuro, T. Sakurai, and T. Kuroda, “A 0.14pJ/b Inductive-
Coupling Inter-Chip Data Transceiver with Digitally-Controlled Precise
Pulse Shaping,” in Proceedings of the International Solid-State Circuits
Conference (ISSCC’07), Feb. 2007, pp. 358–359.

[4] K. Niitsu, Y. Shimazaki, Y. Sugimori, Y. Kohama, K. Kasuga, I. Nono-
mura, M. Saen, S. Komatsu, K. Osada, N. Irie, T. Hattori, A. Hasegawa,
and T. Kuroda, “An inductive-coupling link for 3d integration of a
90nm cmos processor and a 65nm cmos sram,” in Proceedings of the
IEEE International Solid-State Circuits Conference, Feb 2009, pp. 480–
481,481a.

[5] Y. Kohama, Y. Sugimori, S. Saito, Y. Hasegawa, T. Sano, K. Kasuga,
Y. Yoshida, K. Niitsu, N. Miura, H. Amano, and T. Kuroda, “A scalable
3D processor by homogeneous chip stacking with inductive-coupling
link,” in Proceedings of the VLSI Circuits Symposium, June 2009, pp.
94–95.

[6] N. Miura and et al, “A Scalable 3D Heterogeneous Multicore with an
Inductive ThruChip Interface,” in IEEE Micro, Vol.33, No.6, 2013, pp.
6–15.

[7] M. Saito, Y. Yoshida, N. Miura, H. Ishikuro, and T. Kuroda, “47% power
reduction and 91% area reduction in inductive-coupling programmable
bus for nand flash memory stacking,” Proceedings of the IEEE Trans-
actions on Circuits and Systems, vol. 57, no. 9, pp. 2269–2278, Sept
2010.

[8] H. Amano, “Castle of Chips: A New Chip Stacking Structure with
Wireless Inductive Coupling for Large Scale 3-D Multicore Systems,”
in Proceedings of 15th International Conference on Network-Based
Information Systems, 2012, pp. 820–825.

[9] J.Nguyen, J.Pezarts, G.Pratt, and S.Ward, “Three-Dimensional Network
Topologies,” Parallel Computer and Communication (K.Bolding and
L.Synder, eds), vol. 853, pp. 101–115, 1994.

[10] W. Lacy, J. L. Cruz-Rivera, and D. Wills, “The Offset Cube: A Three-
Dimensional Multicomputer Network Topology Using Through-Wafer
Optics,” IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 9, no. 0, pp. 893–908, 1998.

[11] P. P. Pande, “Performance evaluation and design trade-offs for network-
on-chip interconnect architectures,” IEEE Transactions on Computers
(TC), vol. 54, no. 8, pp. 1025–1040, Aug. 2005.

[12] C. J. Glass and L. M. Ni, “The Turn Model for Adaptive Routing,” in
Proceedings of 19th International Symposium on Computer Architecture,
1992, pp. 278–287.

[13] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2004.

[14] H. Jin, M. Frumkin, and J. Yan, “The OpenMP Implementation of NAS
Parallel Benchmarks and Its Performane,” in NAS Technical Report NAS-
99-011, Oct. 1999.

[15] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. Hill, and D. Wood, “The gem5 Simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,
May 2011.

[16] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts,
Y. Hoskote, N. Borkar, and S. Borkar, “An 80-tile sub-100-w teraflops
processor in 65-nm cmos,” IEEE Jounal of Solid-State Circuits, vol. 43,
no. 1, pp. 29–41, Jan 2008.

[17] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition
: A Quantitative Approach. Morgan Kaufmann, 2011.

