International Journal of Networking and Computing — www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume X, Number Y, pages 501-513, January 20XX

A Co-Processor Design for an Energy Efficient Reconfigurable Accelerator CMA

Mai Izawa, Nobuaki Ozaki, Yusuke Koizumi, Rie Uno, Hideharu Amano

Graduate School of Science and Technology
Keio University
Yokohama-shi 223-8522 Japan

Received: February 20, 2014
Revised: (April 28,2014)
Accepted: (accepted date)
Communicated by Editor’s name

Abstract

Cool Mega Array (CMA) is an energy efficient reconfigurable accelerator consisting of a
large PE array with combinatorial circuits and a small microcontroller. In order to enhance
the energy efficiency of the total system, a co-processor design of CMA called CMA-Geyser is
proposed. By partly replacing the programmable microcontroller by the host processor Geyser
with a dedicated hardware controller, the setting up for the CMA and data transfer can be
efficiently done.

The design using 65nm CMOS process is compared with an off-loading style multicore system
Cube-1. By eliminating the data memory required in Cube-1, CMA-Geyser reduced 21.3% of
semiconductor area. Also, it achieved about 2.7 times performance of Cube-1 by the efficient
data communication between host and the accelerator.

1 Introduction

Coarse-Grained Reconfigurable processor Arrays (CGRA) [5, 2, 6] have received attention as energy
efficient accelerators for various types of battery driven mobile devices, and some of them have
been utilized in commercial products[8, 7]. CMA (Cool Mega Array)[10] is a CGRA architecture
especially designed focusing on energy efficiency.

It provides a large PE (Processing Element) array consisting of combinatorial logic. Data-flow
graphs for target application programs are mapped directly on the array, and computation is done
without storing intermediate results. The energy for storing intermediate results into registers in
PE and clock distribution can be saved. In order to keep the flexibility, a small microcontroller
manages data distribution and collection between data memory and input/output of the PE array.
The supply voltage of the PE array is scaled so that the computation delay in the PE array is well
balanced to the time for data management by the microcontroller.

The first prototype CMA-1 using 65nm CMOS technology achieved 2.7GOPS/11.2 mW sustained
performance, however through the analysis, it appeared that the energy consumption of the micro-
controller which manages data transfer between PE array and data memory occupies a large part of
the total energy as well as data memory itself. Sometimes they become larger than that consumed
with the PE array on which the computation is performed. The microcontroller has another prob-
lem on its programming. Although the micro-code is just for a management of simple data transfer

501

Adaptive Flux Calculation Scheme in Advection Term Computation

control between PE array and data memory, the setup of configuration data and initialization of
constant registers and mapping registers are cumbersome job for the programmer.

Since CMA is designed as an off-loading type accelerator, a host processor is required when it
is embedded in the system. In Cube-1[9], the first scalable heterogeneous multicore system using
multiple CMAs, a MIPS R3000 compatible processor with fine-grained power gating Geyser[3] is
used as a host processor. Although Cube-1 achieved a certain performance improvement with the
use of multiple CMAs, the data transfer time between Geyser and CMAs sometimes limited the
performance.

In order to address all these problems, we propose a co-processor type CMA in which a part of
microcontroller is replaced by the host processor. By tightly coupling with the cache of the host
processor, the total amount of data transfer in the system is much reduced. The programming for
setting up the CMA can be done by using co-processor instructions added to the host processor.
Since the data memory and a part of microcontroller are omitted, the energy consumption of the
total system can be reduced.

The contributions of the paper are as follows:

e A co-processor design of CMA, which is more power-efficient than off-loading style is proposed
and designed considering a real chip implementation.

e Two types of host/accelerator collaboration methods: co-processor style and off-loading style
are quantitatively compared by using the exactly same host and accelerator design.

The rest of this paper is organized as follows: in Section 2, the architecture of CMA and a
multicore system Cube-1 are introduced. After checking current co-processor style CGRAs, the
co-processor style CMA called CMA-Geyser is proposed in Section 3. The area, performance and
power of CMA-Geyser are evaluated and compared with Cube-1 in Section 4. Section 5 concludes
the paper with discussion of future work.

2 CMA architecture

2.1 The concept of CMA architecture

The CMA architecture is mainly targeted at multi-media processing in battery-driven embedded
systems like current commercial CGRA systems (SRP[7] and STP-engine[8]). The target applications
are image filters and static or dynamic image coders including JPEG, MPEG and H264. In such
processing, a fixed amount of data must be processed in a certain time, but there is no advantage
in reducing the processing time to less than that required. Minimizing the amount of energy used
to process a fixed amount of data is important as it affects battery lifetime. The objective of CMA
design is thus to design an architecture for executing a fixed number of computations in the required
time with the minimum amount of energy.

Since most stream processing involves a large amount of parallelism, the required performance
can be achieved by parallel processing using many PEs. One key concept of the CMA architecture
is reducing the supply voltage of the PE array while still achieving the required computation time.

Another key concept is reducing any energy usage other than that required for computation.
The data to be computed must be transferred from the data memory to the computational module,
where it is computed. The computation results must then be written back into the data memory.
The computation process is indispensable, so it consumes a certain amount of energy. However, all
other energy consumption should be eliminated.

Although the CMA architecture is a type of CGRA, the PE array consists of combinatorial
circuits without registers and context memory unlike other CGRAs. The supply voltage of the PE
array can be scaled without worrying about the effects on the setup time or on the clock skew of the
registers. There are no clock tree for distributing the clock in the PE array. As a result, the power
consumption in the PE array can be much reduced.

Only the input and output data for the PE array are stored in registers. The microcontroller
reads data from the data memory (DMEM) and distributes it to the register attached to the input

502

International Journal of Networking and Computing

of the PE array. It also collects the results from the register attached to the output of the PE array,
and writes them back it to the data memory. It flexibly manages the data transfer between the
memory and registers by using mapping registers and vector operations. With the above structure,
it enables to implement various application programs without power hungry dynamic reconfiguration
in the PE array.

Since the computation in the PE array and data management by the micro controller are done
in a pipelined manner, their execution speeds must be balanced. If the computation delay is shorter
than the data management delay, the voltage supplied to the PE array can be reduced. The total
power required for computation can thus be reduced without degrading computing performance. On
the other hand, if the data management delay is shorter than the computation delay, wave pipelining
in the PE array can be used. The delay time for achieving wave pipelining can be also controlled by
changing the voltage supplied to the PE array.

2.2 Prototype chip CMA-1

The first prototype, CMA-1[10] with 8 x 8 PE array was fabricated in 2.1 x 4.2mm? 65-nm CMOS
technology, and achieved 2.7-GOPS/11.2-mW sustained performance. Figure 1 shows the block
diagram of CMA-1. It consists of PE array, microcontroller, data memory (DMEM) and registers.

PE_ARRAY Passing Links
£ r) ¥ F) il |] l
PE_7 PE_7 PE_7 PE_7 PE_7[YT|PE_7[Y T|PE_7 [Y T| PE_7
. EEE EEE EEE EEE EEE EEE EEE =
)) |] | | |
: PE6[YTIPE6[T|PE6 [T T|PE_6[T T|PE6[T T|PE6[T T|PE6[T T{PE 6| !
|
L = s s L Lt L 2t L 1
" — — — — — — - i
n||PESMETIPES T|PES T|PESS[Y T|PESS[Y T|PES[Y T|PELS[T T{PES|| 1
i 1
Al EEE EEE 444 EEE EEE EEE EEN L
n —s — — —s —s —s - i
m | |PE_4TSTIPE4 T|PE4 T|PE4[Y T|PE_4[I T|PE_4[Y T|PE_4 [T T|PE_4 :H
- n
et i e s = i = i
‘:H PE 31 T|PEL3[Y T|PE3[T T{PE3[Y T|PE3[Y T{PE3[T T|PE3[T T|PE_3 HH
i 4 4 il il 4 4 4|3 1
i T b T b T b T< b piy piy p G TE it
o | " pE 2 [T PE2 [T T PE2 [T HPE2 [T TPE 2 PPE2 [P PE2 [T T PE 2| 1 Q
w HIH Yk ['q
X Ex ry = !
w =5 =0 s E X X s t DS 2 _E3 u
A SO S o S p® S pape S S{pupu & 5
8 c||PECLY T PELL T T PELL [T T PELL[T M PE_L[Y [PELLY [|PELL[] | PEL : o
‘A == o= o= == [y ey ey == o= ,,‘
| | |]) | |
PE_0 [Y | PE_O PE_ O[S T|PEO[YT|PEO[Y | PELO PE O [T T|PEO
|coL o [[coL1 [|coL2 CcoL_3 coL 4 COL 5 COL 6 coL_7
il
m “H Feedback Lines
TTIITIT
CONST_REG - Controller
I
25hit X 1K 25bit X 1K
DMEM
CMA

——* 25bit Data Channel
— — — —* 17bit Constant Value Data

Connect to/from Host CPU

Figure 1: Block diagram of CMA-1
Here, the operation of microcontroller is described in detail.

As shown in Figure 2, the microcontroller is consisting of a controller, Fetch register, Launch
register and Gather register. First, it reads from DMEM and distributes them to entries of Fetch

503

Adaptive Flux Calculation Scheme in Advection Term Computation

(2) computation in the PE array
PE array 1

I.a.u.ric.H .re.gi.st.ér(

) data distributio

DMEM |24bit X 1K

“, @, 06 O, 0,6 (1)

@, 0
—_— - — - — —_— -— —_ -
- - -—— - — - - > >
_____________ £ 2
(a) All stages are balanced (b) computation in the PE array (c) data manupilation
is short by the micro controller is short
->Voltage Scaling -> Wave Pipelining

Figure 2: Operations of the microcontroller of CMA-1

register. The data distribution and collection by the micro controller was designed to be flexible to
enable arbitrary mapping between the address of the data memory and the input of the PE array
using address mapping registers. Stride vector access operations are also supported. When the input
data in Fetch register is ready, it is transferred to Launch register and the computation starts in the
PE array. After a certain time interval, the result of PE array is stored into Gather register, and the
results in the entries of Gather register are written back into DMEM. (1) Distribution from DMEM
to Fetch register, (2)computation in the PE array and (3) written back of the results to DMEM
from Gather register are done in the pipelined manner. Supply voltage scaling to PE array is used
to balance the time for stage (2) with other two stages.

The data distribution and collection time by the microcontroller is balanced with the execution
time in the PE array when the supply voltage is 0.8V. In this case, the ratio of the power of
microcontoller and data memory is about 40% of the total power. Since the energy consumed in the
datapath on the PE array is difficult to reduce, the target for further energy reduction must be the
microcontroller.

The second problem is in the programming. In CMA, we used BlackDiamond compiler[12] to
map, place and route the application into PE array. C-like source code with some restriction can
be used for programming. The micro-code for the microcotroller is used only for controlling data
transfer between data memory and Fetch/Gather register. Similar codes can be used for various
applications just by changing the time interval of data collection according to the complexity of the
data flow graph on the PE array. However, the setting up the configuration data for PE array, and
initialization of the constant registers and map registers are cumbersome job for programmers.

2.3 Cube-1

Cube-1[9] is the first prototype of a heterogeneous multicore system using a host processor Geyser
and multiple CMA accelerators. Cube-1 uses a 3-D SiP (System in Package) structure to connect
multiple chips. Unlike other SiPs, it uses a flexible inter-chip network with inductive coupling wireless
interconnects. The number of CMAs can be scalable according to the performance requirement.
Now, a system with two chips (1 Geyser + 1 CMA) is available, and one with four chips (1 Geyser
+ 3 CMAs) shown in Figure 3 is under debugging. The host processor, Geyser[3], is a MIPS
R3000 compatible microprocessor with standard 5-stage in-order pipeline. 4Kb 2-way set associative
instruction cache and data cache with the same structure are provided as well as a shared TLB with

504

International Journal of Networking and Computing

Figure 3: Cube-1 with 1 Geyser-Cube and 3 CMA-Cubes

32 entries. The most interesting feature of Geyser is its fine-grained power gating mechanism, but
it is out of scope of this paper.

Although the wireless inter-chip links support enough bandwidth (8Gbps) and DMA block data
transfer mechanisms are provided in the router, it appeared that the data transfer time between
Geyser and CMAs sometimes occupies more than 20% of total execution time[9].

3 Related Work

All problems around the CMA can be solved by replacing the microcontroller of CMA by the host
processor itself. By tightly coupling the host and the CMA, the total amount of data transfer in
the system can be reduced. Since the host processor can manage the CMA setup by introducing
co-processor instructions, the programming environment is much improved. Since the data memory
is not required any more, the total amount of hardware is reduced resulting in the total energy
saving.

Before the design, some co-processor style CGRAs are reviewed. S5/S6 engine by Stretch[1] is a
typical example of co-processor style CGRA. Tensilica’s configurable processor is used as an extensi-
ble host processor, and CGRA unit is attached by sharing the general purpose registers of the host.
Programmers can specify parts of the program to be accelerated and define instructions executed
on the CGRA. Although tightly coupling is achieved by using shared registers, the bandwidth to
and from CGRA unit is limited in this approach. CHIMAERA[15] also connects a reconfigurable
function unit to the processor core by sharing registers. Shadow register file, a copy of the register
file in the processor core is used for data transfer. Although multiple registers can be read by the
reconfigurable function unit, only a register can be used for writing the result.

In Garp[11], a main processor and reconfigurable array are relatively loosely coupled. The data
transfer between cache and reconfigurable array is explicitly controlled by the main processor. In
ADRES]I5] and SRP[7], a row of PE array can be used as a VLIW processor. The operations which
does not require a large degree of parallelism are executed on a VLIW processor rather than the
PE array. The sharing data between VLIW processor and PE array can be naturally done, since
the VLIW processor is a part of PE array. However, since VLIW processor itself is specialized for
computation, another host processor is needed for operating system, I/O and user interface.

505

Adaptive Flux Calculation Scheme in Advection Term Computation

| F » | D » EX VEM—»{ V\B
A A
rfile | e———=—x
. R W ' Geyser
“lcMA-CTRL |
Y
| PEarray [
CMA [A
v v

Instruction Data
Cache Cache

4 L)

Main Memory

Figure 4: The pipeline structure of CMA-Geyser

4 CMA-Geyser

4.1 The structure of CMA-Geyser
4.1.1 Design policy

The straight forward design of co-processor style CMA is just replacing the microcontroller by the
host CPU. However, if the data transfer to Fetch register or from Gather register is completely
controlled by the host CPU, the host cannot operate any other jobs during the execution of CMA.
So, we separated functions of the current microcontroller into two parts: the data management
during CMA operation and configuration management before CMA execution. The former part is
implemented with a hardware module CMA-CTRL, and the latter part is done with newly added
co-processor instructions.

Figure 4 shows the diagram of CMA-Geyser. The PE array and CMA-CTRL are provided in
parallel with the EX stage of the 5-stage pipeline.

We adopted an approach to share the data cache between CMA and Geyser CPU. CMA-CTRL
and Geyser CPU share a segment of address space, and both are connected with the data cache
directly. The priority is given to the Geyser CPU, and CMA-CTRL is stalled during the access by
the host. Also, if cache miss occurs, the access from both is stalled. The benefit of using data cache
instead of data memory in CMA is that the programmer does not have to make the data block so
as to fit the data memory space. The expensive two port data memory can be omitted from CMA
architecture. On the other hand, data distribution and write-back of the results cannot be executed
simultaneously.

Compared with register sharing used in Stretch and CHIMAERA, the sharing data cache is
relatively loose interconnection. However, sharing the cache is suitable for the block data transfer
including stride vector transfer operation supported for scatter/gather in the PE array of CMA. A
large total throughput of the data transfer can be kept with the method.

506

International Journal of Networking and Computing

4.1.2 Execution on CMA-Geyser

The following co-processor instructions are provided for preparation of CMA operation:

e CMA_SET Rx: transfers the configuration/control data in the address specified by Rx to con-
figuration registers, constant registers, microcode registers and mapping registers in CMA_CTRL.

o CMA_RUN: starts the CMA.

e MF Cx Rx (Move From CMA to Rx) gets the data from a CMA register to a general purpose
register in Geyser. This is used for small data transfer between CMA and Geyser.

e MT Cx Rx (Move To CMA from Rx): transfers data to the CMA register from a general
purpose register Rx. It is used for small data transfer between CMA and Geyser.

The execution code of CMA; configuration code, constant data, initial data for address map
registers and microcode for CMA-CTRL are prepared in a certain address, and transferred by using
the CMA_SET instruction. RoMulTiC[13], data multicast by using two dimensional bit-map is
used for quick configuration data transfer. Then, Geyser starts the CMA by executing CMA_RUN
instruction. Note that during the CMA execution, Geyser can execute its own instructions since
the execution of CMA is controlled by microcode in the CMA-CTRL. The data transfer to Fetch
register, execution in PE array and written back from Gather register are done independently by
CMA-CTRL. When new data are fetched or results are written, the data cache will miss and the data
are continuously transferred from the main memory. Unlike the original CMA, the data cache is not
a dual port memory, and three stage pipeline operation in CMA is hard to be implemented. Thus, in
CMA-Geyser, two stages: data fetch from the data cache and computation in PE array/write-back
to the data cache are executed in the pipelined manner. In this implementation, the execution time
is stretched because of the bottleneck in the second stage when execution time on the PE array is
large. Thus, in CMA-Geyser, the supply voltage of PE array is set to be higher than that in CMA-1
for avoiding the bottleneck. When the execution of CMA is finished, Geyser receives an interrupt
signal. Busy waiting is also supported.

If the data set processed by the CMA is enough small, Geyser can avoid the overhead of un-
necessary write back or fill in from/to data cache by using MT or MF instruction. However, these
instructions are provided mostly for exceptional control or debugging, and are not used in common
programs.

5 Evaluation

Here, CMA-Geyser is compared with Cube-1 from the viewpoint of area, execution time and power
consumption.

5.1 Implementation of CMA-Geyser

As shown in Table 1, CMA-Geyser is implemented with the same CMOS 65nm process as Cube-1
using the same tools. The size of PE array, instruction cache, and data cache are also the same.
The layout of CMA-Geyser is shown in Figure 5. The CPU is distributed around the PE array of
CMA.

A major difference of them is that Cube-1 provides inductive coupling links to connect Geyser
and CMA. In this evaluation, the area and power for inductive coupling of Cube-1 is excluded from
the evaluation for the fair comparison. On the other hand, those for routers and network interface are
included, since they are substantially required to connect a host CPU and off-load style accelerators.
Another difference is that there is a real chip of Cube-1, while CMA-Geyser has not yet. For fair
comparison, both chips are compared with the post-layout simulation and analyzed by Synospsys
Primetime.

507

Adaptive Flux Calculation Scheme in Advection Term Computation

PE ARRAY

Figure 5: The layout of CMA-Geyser

5.2 Comparison Results
5.2.1 Area

The required number of gates used for CMA-Geyser and Cube-1 is compared in Figure 6. Note that
in this evaluation, the router and through-chip wireless interconnect of Cube-1 are excluded. Thus, it
is assumed that the host Geyser is connected with a single CMA directly through interface modules
in Cube-1. This structure minimizes the hardware requirement at the sacrifice of the flexibility.

Data memory and almost a half of the microcontroller used in CMA in Cube-1 is eliminated in
CMA-Geyser. Also, interface modules with DMA function is not needed. As a result, compared
with Cube-1, CMA-Geyser reduces the area 25.4% in CMA part, 9% in Geyser part and 21.3% in
total.

5.2.2 Performance

We evaluated performance of CMA-Geyser and Cube-1 with two application programs. One is a
simple image filter (gray-scale filter) which changes a color RGB image into a gray-scale image. The
other is a commonly used JPEG coder for 400 x 400 pixels images.

Figure 7 shows the number of execution cycles when a simple image filter: the gray scale filter
for 1024 pixels is executed in CMA-Geyser, Cube-1 with a single CMA and Geyser without any
accelerator. CMA-Geyser achieved 3.6 times performance as Geyser and 2.27 times as Cube-1,
respectively. In Cube-1, the data transfer between the host and CMA can be overlapped with
a processing time in CMA. In Figure 7, "processing” of Cube-1 shows the part which cannot be
overlapped by the data transfer time. Nevertheless, it appears that the data transfer bottlenecks
the performance in Cube-1.

The execution time on CMA in Cube-1 itself is faster than that of CMA-Geyser, since the data

Table 1: Specifications of CMA-Geyser and Cube-1

Chip Technology Fujitsu e-shuttle
65-nm 12-metal CMOS
System Clock freq. | 100 MHz
CMA | Supply Voltage 0.6-1.2 V for PE array
PE Array 8 x 8
Geyser | Data/Inst. Cache | 4KB 2-way
TLB 16 entries shared
Tools Synthesis Synopsys’s Design Compiler
Layout Synopsys’s IC Compiler

508

International Journal of Networking and Computing

700000
600000
% 500000
&
© 400000
8 | Geyser
£ 300000 mCMA
=
©
L 200000
<
100000
0
CMA-Geyser Cube-1
Figure 6: The required area of total gates
50000
H Result transfer
0 [CMA-=Geyser)
Processing
w 30000 —
o
S B image data
“ 20000 - 1 I transfer (Geyser-
=CMA)
. ECMA
1o00n - initialization
: - |

CMA-Geyser Cube(1-CMA) Geyser

Figure 7: Execution cycles of Gray Scale Filter

distribution and collection can be done simultaneously by using dedicated data memory. Also, the
operation time of CMA-Geyser includes the time for data transfer between data cache and main
memory, since it is hard to be separated. However, including the overhead of data transfer between
the cache memory in the host and data memory of the accelerator, the execution time of CMA-Geyser
is much shorter.

Next, evaluation results of JPEG coder is shown. Figure 8 shows the task flow of JPEG decoder.
First, the header of JPEG image is analyzed. Then, the image data are divided into the unit of MCU
(Minimum Coded Unit), according to the header information. For each MCU, Huffman decoding,
the inverse quantization, the inverse DCT and the YUV to RGB conversion are applied in order.
Considering the operation time and parallelism, three tasks: inverse quantization, inverse DCT and
convert YUV to RGB are accelerated with CMA. For inverse quantization, four data are processed
in the PE array. In the inverse DCT, Chen’s algorithm is applied, and eight data are processed in
parallel. Format transform from YUV to RGB is executed for two data sets are processed because
of the limitation of inputs/outputs of the PE array. C-like Program for each application is compiled,
mapped and routed by using Blackdiamond[12] compiler.

When three tasks are executed in Cube-1 with only a CMA in order, the overhead of configuration

509

Adaptive Flux Calculation Scheme in Advection Term Computation

| nput Jpeg | mage

Anal yze Header

Define Huf f man Tabl e

Def i ne
Quantization Table

Decode Body

Deconpose to MCU

MCU Process|
CVA
I nverse
Quanti zation
v
I nverse DCT
)
Convert YUV to RGB

Cut put PPM | mage

Figure 8: Task flow for JPEG decoder

transfer becomes large and enough acceleration is not achieved. So, in Cube-1, only YUV to RGB
data transfer is executed on a single CMA. On the other hand, by using CMA-Geyser, the data
setup required for execution can be done quickly by using co-processor instructions. Thus, three
tasks can be switched quickly and executed on a single PE array. Figure 9 shows the execution
cycles when JPEG decoder is executed.

As shown in Figure 9, the data transfer time of Cube-1 is much reduced compared with the case
shown in Figure 7, since it is hidden by computation time in the CMA. DMA transfer mechanism
between host processor and CMA is efficiently used in this application. Thus, CMA-Geyser achieved
4.1 times performance as Geyser and 2.7 times as Cube-1, respectively.

5.2.3 Power Consumption

Figure 10 shows the average power consumption of CMA-Geyser and Cube-1 when the gray scale
filter is executed. Although the original Cube-1 provides a ring based NoC to connect Geyser and
CMA[9], the power consumption of routers and wireless interconnect is eliminated in this evaluation
as they are not needed to 1-to-1 interconnection. Here, the power for the interface which can be
used to connect host and accelerator directly is included. Thus, the total power consumption of
Cube-1 is slightly better than that of CMA-Geyser.

Figure 11 compares the power consumption of CMA-Geyser and Cube-1 when JPEG decoder
is executed. In this application, since the computation in Geyser is larger than that in Gray Scale
filter, the ratio of Geyser in power becomes larger, but the tendency is almost the same.

Note that since off-loading style accelerators commonly use a network or bus for keeping the
scalability. In this case, the power consumption of network must be added.

510

International Journal of Networking and Computing

800000

700000

600000

500000

400000

Clock Cycles

300000

200000

100000

CMA-Geyser

Geyser

W image data trans

M processing

m collect result

B huffman decode

M inverse quatization
inverse dct

M store intermediate

M convert yuv to rgb
W other

Cube-1 CMA-Geyer

Figure 9: Execution cycles of JPEG decoder

Cube-1

m Network
B CMA

W Geyser

35
30
25
20

10

[l

CMA-Geyser Cube-1

W Network
m CMA
W Geyser

Figure 10: Power Consumption of Gray Scale Ex- Figure 11: Power Consumption of JPEG Decoder
Execution

ecution

511

Adaptive Flux Calculation Scheme in Advection Term Computation

5.2.4 Discussion

As far as we know, there is no previous report on quantitative comparison between co-processor style
accelerator and corresponding off-load type. One of reasons is that the fair comparison is difficult
since the architecture of accelerators is largely influenced which type is adopted. Fortunately, in
CMA, PE array and microcontroller are relatively independent, thus, two types of systems using
completely the same PE array can be compared. For generalization of the results, the problem is
that Cube-1 uses a specialized through chip network. Although it provides 4Gbps bandwidth which
can transfer a word (32bit) per a clock cycle in the block transfer mode, the latency is slightly larger
than that of a network in the same chip. Thus, the performance difference between Cube-1 and
CMA-Geyser becomes small if the Cube-1 was implemented in a single chip.

The energy efficiency of CMA-1 has been compared with other accelerators[14][4] and it achieved
the best energy efficiency in accelerators with 65nm standard CMOS process[10]. Thus, CMA-
Geyser can be also the energy efficient system with a CPU and an accelerator if the system size is
limited. The drawback of co-processor type accelerator is its poor scalability. While the number
of accelerators which can be connected directly to the data cache is strictly limited, Cube-1 can
extend its size just stacking chips. Thus, the advantage of CMA-Geyser is limited in a small system.
Introducing extendability in the co-processor type is generally difficult but it is our future work.

6 Conclusion

A co-processor design of low power reconfigurable accelerator CMA, called CMA-Geyser is proposed.
By introducing co-processor instructions, hardware controller and direct interconnection between
data cache, setting up and execution of CMA can be done efficiently.

The design using 65nm CMOS process is compared with an off-loading style multicore system
Cube-1. By eliminating the interfaces and routers required in Cube-1, CMA-Geyser reduced 24.8%
semiconductor area. When the consuming power of the network is eliminated, the power consump-
tion of Cube-1 is slightly better than that of CMA-Geyser. However, CMA-Geyser achieved about
2.7 times performance of Cube-1 by the efficient data communication between host and the acceler-
ator.

The fine-grained power gating mechanism used in Geyser can be almost directly applied to PE
array of CMA-Geyser. Reducing the leakage power of a large PE array by using power gating is
another possibility of this work.

Acknowledgment

This work was partially supported by JSPS KAKENHI S Grant Number 25220002. This work is also
supported by VLSI Design and Education Center (VDEC), the University of Tokyo in collaboration
with Cadence Design Systems, Inc.

References

[1] J. M. Arnold. S5: The Architecture and Development Flow of a Software Configurable Proces-
sor. In Proceedings of the International Conference on Field Programmable Technology (FPT),
pages 121 — 128, 2005.

[2] C.Ebeling, D.C.Cronquist and P.Franklin. Rapid -Reconfigurable Pipelined Datapath. In Proc.
of the FPL 2004, 2004.

[3] D.Ikebuchi, et.al. . Geyser-1: A MIPS R3000 CPU core with fine grain runtime power gating.
In Solid-State Circuits Conference, 2009. A-SSCC 2009. IEEE Asian, pages 281-284. IEEE,
2009.

512

International Journal of Networking and Computing

[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

F. Clermidy, et al. A 477mW NoC-Based Digital Baseband for MIMO 4G SDR. In Proc. of
ISSCC Dig. Tech. Papers,, pages 278-279, 2010.

F.J.Veradas, M.Scheppler, W.Moffat, B.Mei. Custom Implementation of the Coarse-Grained
Reconfigurable ADRES architecture for multimedia Purposes. In Proc. of International Con-
ference on Field Programmable Logic and Applications (FPLO05), pages 106111, 2005.

H. Amano, Y. Hasegawa, S. Tsutsumi, T. Nakamura, T. Nisimura, V. Tunbunheng, A. Parimala,
T. Sano and M. Kato. MuCCRA Chips: Configurable Dynamically-Reconfigurable Processors.
In Proc. of ASSCC, pages 384-387, Nov. 2007.

H-S.Kim, M.Ann, J.A.Sratton, W.Mei, W.Hwu . ULP-SRP: Ultra Low Power Samsung Re-
configurable Processor for Biomedical Applications. In Prof. of ICFPT 2012, pages 329-334,
2012.

M. Motomura. STP Engine, a C-based Programmable HW Core featuring Massively P aral-
leland Reconfigurable PE Array: its Architecture, Tool, and SystemImplicatio ns. In Prof. of
CoolChips XII, 2009.

N. Miura, et al. A-Scalable 3D Heterogeneous Multicore with an Inductive ThruChip Interface.
In IEEE Micro, Vol.33, No.6, pages 6-15, 2013.

N.Ozaki, et.al. Cool Mega-Arrays: Ultralow-Power Reconfigurable Accelerator Chips. [FEFE
Micro, Vol.31, pages 6-18, 2011.

T.Callahan, J.Hauser, and J.Wawrzynek . The Garp architecture and C compiler. In [FEFE
Computer, Vol.33,, pages 62-69, 2000.

V. Tunbunheng and H. Amano. Black-Diamond: a Retargetable Compiler Using Graph with
Configuration Bits for Dynamically Reconfigurable Architectures. In Proc. of The 14th Work-
shop on Synthesis And System Integration of Mized Information technologies (SASIMI), pages
412-419, 2007.

V.Tunbunheng, M.Suzuki, H. Amano. RoMultiC: Fast and Simple Configuration Data Multicas-
ting Scheme for Coarse Grain Reconfigurable Devices. In Proc. of IEEE ICFPT, pages 129-136,
2005.

Y. Tuyama, et al. A 45nm 37.3GOPS/W Heterogeneous Multi-Core SoC. In Proc. of ISSCC
Dig. Tech. Papers,, pages 100-101, 2010.

Z.Ye, A.Mohovos, S.Hauck, and P.Banerjee . CHIMAERA: A high-performance architecture
with a tightly-coupled reconfigurable functional unit. In Int. Symposium on Computer Archi-
tecture, pages 225-235. ACM/IEEE, 2000.

513

