Black-Diamond: a Retargetable Compiler using Graph with Configuration Bits for

Dynamically Reconfigurable Architectures

Vasutan Tunbunheng

Hideharu Amano

Dept. of Information and Computer Science,
Keio University
Yokohama, 223-8522, Japan

vasutan @am.ics.keio.ac.jp

Abstract— For developing design envionment for various types
of Dynamically Reconfigurable Processor Arrays (DRPAs), the GCI
(Graph with Configuration Information) is proposed to represent
configurable resource in the target dynamically reconfigurable ar-
chitecture. The function unit, constant unit, register, and routing
resource can be represented in the graph as well as the configura-
tion information. The restriction in the hardware is added in the
graph by using “DisCounT” port which is limited the possible con-
figuration bits at the port controlled by the other ports.

A prototype compiler called Black-Diamond with GCI is now
available for three different DRPAs. It translates data-flow graph
from C-like front-end description, applies placement and routing
by using the GCI, and generates configuration data for each ele-
ment of the DRPA in the form of multicasting. Implementation re-
sults of simple applications show that Black-Diamond can generate
reasonable designs for three different architectures.

I. INTRODUCTION

In recent years, coarse grained Dynamically Reconfigurable
Processor Arrays (DRPAs) have been received an attention as
a flexible and efficient off-loading engine for various types of
System-on-Chips (SoCs). Some devices are commercially avail-
able [1, 2, 3, 4], and some of them have been integrated into
digital appliances [5].

In order to achieve better area- and power-efficiency com-
pared with traditional field-programmable devices such as FP-
GAs, they incorporate the following properties; (1) a simple
coarse grained processor consisting of an ALU, a data manip-
ulator, a register file and other functional modules is used as a
primitive Processing Element (PE) of an array, and (2) dynamic
reconfiguration of an PE array which enables time-multiplexed
execution is introduced. Some of them use a multicontext facil-
ity which can change its configuration with a single clock cycle.

Unlike common FPGAs, in which the island-style structure
using Look Up Tables (LUTs) with 4 or 5 inputs are commonly
used, there are exist wide design choices in DRPAs, such as the
PE granularity, the number of hardware contexts which can be
switched dynamically, the total amount of wiring resource, and
the size of PE array itself. Our performance evaluation results
revealed that the optimal PE array size considering the area and
power consumption is different for each application [6]. Thus,
there is no all-around architecture in DRPAs, and the structure
should be configurable or customizable for its main target appli-
cation. Since DRPAs are embedded into an SoC, their architec-

hunga@am.ics.keio.ac.jp

ture should be customized at the design time.

For such customized DRPAs, the programming environment,
especially a compiler, must be also customized. A retargetable
compiler which generates configuration data from C-like de-
scription is the most important component for such customized
DRPAs. Unlike compilers for common CPUs, the core of com-
pilers for DRPAs is mapping and place/routing functionality like
common FPGA design tools. A direct graph which represents
the target architecture is used. Unlike uniform FPGAs, DR-
PAs equip various types of components each of which has dif-
ferent restrictions. For example, the interconnections between
networks and components are often limited by reducing config-
uration data. Even in the switching element, the flexibility is
often limited. Although some retargetable compilers for DRPAs
have been announced [7] [8], it is difficult to optimize the rout-
ing and generate the configuration data from such direct graph
with various restrictions.

Here, we propose a retargetable compiler which can generate
various kind of configuration data of DRPAs easily. In the com-
piler, a special graph called Graph with Configuration Informa-
tion (GCI) whose node has configuration bits for generating the
configuration data is used. By applying a technique to control
selecting configuration at each node called Disabling Configura-
tion Testing (DisCounT), the restriction in the target architecture
can be easily treated. The registers which can be used for trans-
ferring data between contexts can be also elegantly represented.

The organization in this paper is followed: the GCI is pro-
posed and discussed in Section II. The coarse-grained multicon-
text reconfigurable architectures called MuCCRA as a case study
is shown in Section III. The simple retargetable compiler called
Black-Diamond was developed and used to map application into
the architecture is described in Section IVand V. Finally, this
work is concluded in Section VI.

II. GrAPH WITH CONFIGURATION INFORMATION

A. Graph Representation of Target Architectures

Deep into the long history of placement and routing, both fine-
grained and coarse-grained architectures need a directed graph
for representing routing resource of target architecture. There
are nodes at input and output ports of Functional Unit (FU),
and switching modules are also represented with a collection
of nodes. Figure 1 shows a graph representing an array struc-
ture with four FUs connected in an island style interconnection

network. In this figure, a path between a source node to a sink
node represented with bold lines is found in the router, and after
the routing, the configuration bits to control transferring at each
node is generated.

Node

Fig. 1. Example of direct graph for representing routing resource (the bold line
shows example of routing path from source port to sink port)

In such graphs, nodes without any configuration information
are used for applying routing algorithms separately from config-
uration generation. This elegant approach adopted in DRESC
[71[8] is suitable for an ideal architecture without any routing re-
striction. However, in most dynamically reconfigurable systems,
there are various kind of restrictions for reducing configuration
data and representing register files or distributed shared memory
modules. They make both routing and configuration data gener-
ation difficult especially when the graph without any configura-
tion information is used for representing the target architecture.

B. Graph with Configuration Information

Here, a directed graph called Graph with Configuration Infor-
mation (GCI) is proposed for representing a target architecture.
In the GCI, every node called port has input links which has a
certain digit of data corresponding to its configuration. Links
in the GCI are real links which are the target of the routing, or
virtual links which are fixed and not the target of routing. The
configuration data associated to the input links is defined so that
they can be directly used for the operation code of Functional
Units (FUs) or control code of multiplexers. In other words, all
possible configuration bits of the target architecture are embed-
ded in the GCI. Note that, the selecting input data is broadcasted
to all output links.

Figure 2(a) shows the representation of an FU with four op-
erations. The input port A and B receive data from other FUs
or network. Each input link has configuration bits for selecting
the input data, thus, it is used as a control information of input
functions. Here, four operations of the FU are represented with
2 bits and associated with virtual links of the output port. Fixing
the operation is corresponding to the selection of a virtual link.
For a function which generating a constant data, it can be repre-
sented as Figure 2(b). Each virtual input link is associated with
a constant data, and selecting one of them is deciding generated
constant data. Note that, the configuration bits at the virtual links
are corresponded to the constant bits.

Output Constant

Configuration
Bits

Constant

Porr

Operation
Port

Fig. 2. (a) Operation port, and (b) Constant port (the dash arrows are virtual
links and not actual connected in the graph because the input data does not
transfer from any exist port)

From the results of placement and routing, the configuration
data is directly generated by just combining the configuration
bits of a selected link at each port in a specific order. If the target
component is not used, the port generates default configuration
bits to fulfill the entire code of the configuration data.

C. Disabling Configuration Testing

In order to embed the whole information of the target archi-
tecture into GCI, the restriction of the target architecture must be
represented. For example, a register file is a common component
of DRPA, and often consisting of two-port structure, that is, a
port A can be used both for reading and writing, but port B can be
used only for reading. In this case, when port A is used for writ-
ing data, it cannot be used for reading simultaneously except that
the reading address and writing address are the same. In order
to represent such a situation, a Disabling Configuration Testing
(DisCounT) port and control link are introduced. Each control
link sends information whose input links of the target DisCounT
are disabled. This information is depending on the selected in-
put link of the source port. A control link is activated when an
input link of the source port is selected temporarily and the corre-
sponding inputs of the DisCounT port are disabled. A DisCounT
port can be controlled by multiple source ports. When multiple
control links are activated, only control information which re-
sults at least one enable input at the DisCounT port is accepted.
If the control information is not accepted, the selection of some
source ports are canceled. Note that, the DisCounT port must
select an enable input for configuration generating.

Figure 3 shows a GCI representation of a one-port register file
with 4 entries. A register address is used for both reading and
writing. The shaded port is the DisCounT port which generates
the address instead of output port. If input from “R3” is selected
at the “Output” port in Figure 3, the control link disables all
virtual links other than R3 at the DisCounT port. In this case,
only a control link from “Write Port” corresponding to R3 is
acceptable. With similar manner, it is found from the graph that
connections are allowed only when the register selected in the
“Output” and the register address of “Write Port” are the same.

(Read Port)

(Write Port)

Control Links

O w/E

@ DisCounT Port
S \\\
RAVERNAN

. [N
00! 01! 10! 11!

. Input

'
Virtual Links

Fig. 3. An example of register file with four entries (the read port receives input
data from the write port of previous context)

III. A Case Stupy: MUCCRA ARCHITECTURE

Here, as a case study, an example of representing a dynam-
ically reconfigurable processor called MuCCRA (Multi-Core
Configurable Reconfigurable Architecture) [9] based on the GCI
is shown. Since MuCCRA is a project investigating an optimal
structure of DRPA for a given application, several prototypes
with different structures have been designed. Three different
MuCCRA structures: MuCCRA-1, MuCCRA-2 and MuCCRA-
D are treated as targets. Since MuCCRA-1 has been explained
many articles [9], here, MuCCRA-2 which is 16 bits architecture
with 16 processing elements implemented with ASPLA’s 90nm
process technology is introduced as an example.

A. PE Architecture

The basic building unit of MuCCRA-2 is a Processing Ele-
ment (PE) shown in Figure 4(a) and Distributed Memory Module
(MEM) shown in Figure 4(b). Each PE has a programmable PE-
Core, connection blocks, and a context memory. In the PE-Core,
like a lot of existing DRPA devices, a data manipulator called
Shift & Mask Unit (SMU), an Arithmetic Logic Unit (ALU), and
a Register File Unit (RFU) are provided. Note that, the ALU in-
cludes multiplier operation. MuCCRA-2 uses a 16 bits architec-
ture, and links for data communication are basically 16 bitwidth.
Each PE is connected with global routing wires via connection
blocks. The connection blocks pick up the data in global routing
wires, and distribute to all functional units of a PE-Core.

Each PE equips its context memory which provides multi-
ple sets of configuration data corresponding to the operation of
ALU, SMU, register file, and interconnection. The Central State
Controller (CSC) broadcasts a context pointer to all PEs. The
context is read from the context memory according to the con-
text pointer, and they are reconfigured in parallel. This type of
dynamic reconfiguration is called a multicontext scheme, and a
lot of current devices support it. In the multicontext devices,
the dynamic reconfiguration can be done in only one clock cy-
cle by distributing the context memory into each reconfigurable
module. In MuCCRA-2, 16 contexts can be held in the context
memory.

Carry
out N

Routing Channel

Carry PE - Carry
out My e Pick].. o E

RFU SMU ALU

Routing Channel

Touueyy Butnoy

Carry i : :
In W - s I Carry
....... [§ PCY PR | R nE

Routing Channal
o
I
o
&
>
o
- b5
o
o
w
Teuueyy Hutanoy

-

Fig. 4. A Target (a) PE-Core and (b) MEM and corresponding GCI

The GCI models of ALU and SMU are shown in Figure 5
and 6, respectively. In the ALU, some functions are selected
depending on the carry signal since they can pass “Carry In”
to output. So, a DisCounT port for selecting the operation is
controlled by the link from the port “Carry Out”.

In SMU graph, 4 DisCounT ports are used to represent two
types of operation code. In order to avoid the redundancy in
configuration code, SMU uses two modes of operations: “Short-
Constant” with 6 bits operation code and 14 bits constant value,
and “Long-Constant” with 4 bits operation code and 16 bits con-
stant value. DisCounT ports are used to selecting one from two
modes. In this case, the virtual input which generates an empty
string (NULL) is enabled when the corresponding mode is not
selected, and thus, all other virtual input links are disabled in

DisCounT ports.
A
Data Carry
Out Out
O Q
o¥ .
ALU o A
Coﬁ‘f’«-'
% % Operation
e ,,,’, ', (5 bits)
el ‘10111 .
S
D
41 00001
=
00000
In A In B ycarry
N N

Fig. 5. A Target ALU architecture and corresponding GCI

A
H
Data \ Carry
out 1 Out
0000 ~. O _.--0000000000000000
0001 =~ T~ © 7 .--0000000000000001
.. Constant -
0110 (16 bits)
R Operation 22 1111111111111111
(NULL) --=""" a8 pits) --
TS---- (NULL)
100000 -m e | ?ESE?E;’" B 00000000000000
R T=-=--00000000000001
100001-- (14 bits) “<3r~o.
n A in B Carry In Ce.11111111111111
101110 -° -

B Tl (nuLL)
(NULL) <

mom o

Fig. 6. A Target SMU Architecture and Corresponding GCI graphs

B. Array Architecture and Switching Elements

Fig. 7. MuCCRA-2 array structure

An island-style interconnection structure like traditional FP-
GAs is adopted in MuCCRA-2. As shown in Figure 7, an island-
style 2-dimensional interconnection is provided, and each PE is
surrounded by programmable routing wire segments. As men-
tioned, connection blocks mediate the connection between PEs
and global routing resources. On the intersection of a vertical
and a horizontal channel, a Switching Element (SE) is placed.
The SE is a set of simple programmable switches in which an
entering link is connected to the other SEs. In MuCCRA-2, three
bi-directional routing channels are provided.

The SE can route data in 4 directions (NEWS) base on cross-
bar connection without loop back to the input direction. In
MuCCRA-2, the fully routing capability is not allowed for re-
ducing the configuration bits, and only the switching pattern
shown in the table (Figure 8(b)) is allowed.

The no,so,eo, and wo are output ports and the ni,si,ei, and
wi are input ports. There is a register at the north direction to
store input data before transferring to east and west direction to
avoid combinatorial loop in the interconnection network. The ni
is write port to transfer input data to read port (“nR”) of the next
context. The configuration bits 00000 is used in the case that no

conf.| no | so| eo| wo

no 00000 | == [== | —=| —-
00001 | si | ni| wi| ei

(Write Port) é
00010 | si |ei| wi| NR
00011 | si |wi| NR| ei

(Read Port) nR
QQ 00100 | ei | ni| NR| ei
V.

7V 00101 | ei [ni| si| ei
\ V) 00110 | ei [ni| wil| si

d / /474 00111 | ei | ni| wi| ei
wo N . - et 01000 | ei |ei| NR| ei
$ / yi 01001 | ei [eif si| ei

4 01010 | ei [ei| wi| ei
01011 ei |wi| NR| si
01100 | ei |wi | NR| ei
01101 ei |wi| si| NR
01110 | ei |wi| si| ei
s D 01111 | ei | wi| wi| ei

7 P\ A RS A 10000 | wi | ni| si ei
i — v 1A eo 10001 | wi | ni | wi| NR
A/ ~ P 10010 | wi | ni| wil| si

ry . N 10011 | wi | ni| wi| edi
10100 | wi | ei| NR| si
10101 wi ei si NR
10110 | wi | ei | wi| NR
10111 | wi | ei| wil| si
5 1 2 11000 | wi |ei| wil ei
. SW0, SW1, SW 11001 | wi | wi| wi| NR

se South s 11010 | wi |wi| wi| si
11011 | wi |wi| wil| ei

East

Fig. 8. (a) Switch box architecture, and (b) Routing table

input to be routed by sending zero value instead to save energy.

The corresponding GCI is shown in Figure 8(a). DisCounT
ports (“SWO0”, “SW1”, and “SW2”) are used to represent the
restriction shown in Figure 8(b). The connecting path can be es-
tablished from input to output if there is still one or more enable
inputs after other control information disables virtual input links
at the DisCounT port.

C. Array Architecture of MuCCRA-D

In three MuCCRA architectures, the MuCCRA-1 is almost
the same structure as the MuCCRA-2 except number of routing
channal, bitwidth, and no restriction on the SE module. The
multiply units do not include in ALU but connected on the left
side of PE array.

L PE

[—' 30 “\\

L PE > pE > PR > Sp !
U 20 = 21 - % 22 |- 2 -]
[~ = 713

™ PE PE PE »tsp

[-'—' 10 11 < 12 < 1

Gy

[—

Fig. 9. MuCCRA-D array structure

Unlike island-style interconnection adopted in MuCCRA-1
and MuCCRA-2, MuCCRA-D architecture uses Nearest Neigh-
bour (NN) interconnection network in order to transfer data be-

tween the PEs quickly as shown in Figure 9. There are 3 rout-
ing channels in 4 directions (NEWS) input to ALU, SMU and
RFU at the neighboring PE respectively. The restriction in GCI
is applied to limit transferring output of each component in the
PE-Core to only 1 direction for reducing the configuration data
size. In order to reduce the number of hops for transferring data
to distant PEs, one routing channel is connected on both hori-
zontal and vertical direction to the next neighboring PE, while
torus connection is available on only horizontal direction.

Register to store the output data at each component before
transferring to the other PEs allows MuCCRA-D executing at
high clock frequency. The MEM modules are connected on up-
per and lower side of the PE array, and the computation flow
can go both up and down direction to exchange data between the
memory modules unlike MuCCRA-1 and MuCCRA-2.

IV. A RETARGETABLE COMPILER: BLACK-DIAMOND

A. The outline of the compiler

We have developed a simple retargetable compiler called
Black-Diamond based on the GCI, and now it can generate con-
figuration codes of three different models of DRPA; MuCCRA-
1, MuCCRA-2 and MuCCRA-D.

The flow of compilation is shown in Figure 10. Although
common placement and routing algorithms used for FPGAs can
be applied on the GCI, we adopt the simplest method in order to
develop the retargetable compiler as quick as possible by making
the best use of the characteritics of the GCL

Source Code File

Text File Text Files

‘ Parser K Reading Library Files

Operation Flow

‘ Placement Initialization ‘

Placement Optimization

Net-List

Generating Confiquration Data)-

Text File

Configuration Data File

Fig. 10. Compile flow of the Black-Diamond Compiler

The target application is described in a C-like language as
shown in Figure 11. After giving source code file into the com-
piler, library file corresponding to header file name in the source
code is read out. It is consist of GCI and library functions to be
placed in the target architecture. Once the application is mapped
into the architecture, the compiler generates configuration data
in text format as output.

Unlike common tools for FPGAs, it can fix the placement and
routing at the same time. Since the GCI is a kind of constraints
graph, searching the possible selection on the GCI is correspond-
ing to fix everything. Like the common placement and routing
algorithms, the Simulated Annealing (SA) algorithm [10] is used
to find better selections iteratively. Once the optimized selection
can be obtained, the configuration bits can be generated imme-
diately from the GCL.

The configuration data can be generated in RoMultiC form
[11] in order to reduce the number of configuration clock cycles.
Since the MuCCRA architecture supports RoMultiC only on the
PE and SE configuration, some ports in the element are declared
to be bitmap type to indicate different configured position us-
ing for the RoMultiC form. The duplicated configuration data
found in the different elements can be configured in parallel by
combining the active bitmap patern. The port which does not
select input link during the placement and routing can become
the same selection as in another element to reduce the number of
configurations.

B. The front-end Language

The parser used to translate the input source code to a data
flow graph is developed by using LEX & YACC [12] in Linux.
The data flow graph represents dependency by connecting the
nodes corresponding to operations (library functions), and it is
corresponding to the application. The output port of a node is
linked to connect input port of the other operations by using a
variable. The same variable name can be used to connect many
different pairs of source and sink ports.

i #include <MuCCRA_1.h>
i //#include <MuCCRA_2.h> @
i //#include <MuCCRA_D.h>

int address=0;
int data,constant;

int branch_back=(0-2);
//int branch_back=(0-8);

// for MuCCRA_1,2
// for MuCCRA_D

{[@5] call [address] REGISTER4 (address);} @
$ // Context dividing

icall [). FETCH_MEMOA (address.);! <§>
call [constant] ASSIGN <3> (); // "3" is assigned at constant field

int increase=1; // it is equal to "call [int increase] ASSIGN <1> ();"

$ // Context dividing

{call.l.data.].READ_MEMOA_ (). @
calculate data = data << constant;

call [] WRITE_MEMl (address , data);

calculate address = address + increase;

i[@ "PE_11"] call [address] REGISTER4 (address); // for MuCCRA_1,2 ¢4®
i//[@ "PE_10",2] call [address] REGISTER4 (address); // for MuCCRAD i

call [] BRANCH_CONTEXT (branch_back); // for MuCCRA_L,2
//[@12] call [] BRANCH_CONTEXT (branch_back); // for MuCCRA_D

Fig. 11. An example input source code ((1) header file for indicating
architecture name, (2 and 5) register used in looping, (3) giving reading address
to memory, and (4) reading data from memory)

There are 3 parameter fields to call a function: output field (in
front of function name), input field (behind function name), and
constant field (between function name and input field if needed).
The output field can return multiple variables since pointers and
structures are not allowed, and the input field can receive mul-
tiple variables to link the return data from other functions. The
constant field is provided to tell the compiler to select an input
link at the constant port type in placement position correspond-
ing to the giving constant value.

C. Placement Initialization

In order to map application into the architecture represented in
GCI, the application is translated into a directed graph represent-
ing the data flow between computational nodes called data-flow
graph as shown in Figure 12(a). In this research, a computational

node is called an operation since almost of library functions se-
lect an operation at the target placement (in ALU or SMU) to
perform computation on the datapath.

Configuration Port

Constant Port

Add

' \ Assign
Operation !

! Operation

{?\

Output Port

Multiply !
Operation !
' Input Port

: a + [register]
a*b

: [register]
11 : [constant]

Port with virtual links
for representing OPERATION

Read B from
previous
context

Target
Element

Read A from
previous
context

Write C to
next context

Port with virtual links
for representing CONSTANT

Register

(b)

Fig. 12. (a) Operation flow, and (b) Example placing in the target architecture
(The output of FU corresponding to the selecting at OPERATION port)

The operation has a list of ports in different types; output
ports, input ports, constant ports, and configuration ports with
selecting information. The output and input ports are source and
sink ports to be connected to form the datapath in the data-flow
graph. Some operations such as initial constant data (assign op-
eration) or shifting operation require assigning constant value.
The constant ports are used to indicate the port to be assigned the
value. The configuration port comes with static constant value
to configure the port corresponding to the computation.

In the placement and routing problem, there are many possible
targets to place an operation in the target architecture. The possi-
ble target placement is called farget element as shown in Figure
12(b). It is a group of ports to be refered as the port types in op-
eration. Many operations can have the same target element. In
this example, the target element are 4 FUs consisting of 7 ports
and it can be refered to be placed all operations. The list of PEs
become target elements and be attached to the operation used in
order to find possible placement solution. At the output port of
FU, there is input from the read port of register. With the same
manner as in the ALU of MuCCRA architecture, when the out-
put data is routed from the register, the control link disables all

virtual input links except “10” at the “OPERATION” port. The
selection at “OPERATION” port of lower right FU is set without
placing operation.

From the data-flow graph, the connection transfer data from
an output port of an operation to input port of the successor op-
eration. The placement start searching from the first context.
Each operation is tried to be placed in architecture according to
the list of target elements in order to route the connection. If the
first target element can not be placed, it tries to place in the next
target element until finding the first possible placement that all
inputs can be routed successful. A user can control to arrange
the placement by inserting a pragma in source code to change
the placement to the next possible target element instead. The
port which is configured by placing the operation or routing is
marked, and it can not be target of the next operation any more.
In case that all target elements can not be placed, it tries to place
in the next context. Then, the next operation returns to be placed
from the first context again. The error is reported in the case
that it requires exceeding limited available contexts in the target
architecture, or in other words, the operation can not be placed.

D. Routing Algorithm

In order to find the minimum cost path in the GCI, the
shortest-path algorithm with obstacle avoidance [13] is used.
The path is searched by using Breadth First Search (BFS) to
source port from the sink port. The algorithm is started by adding
the sink port into the searching list which is empty when starting.
If there is not any source port in the list, the minimum propaga-
tion cost port is replaced by its input ports which has not already
searched yet. The process is repeated until the source port is
found or no more un-reachable input port (not found). If there
exists the connecting path, it can be obtained by backtracking
from the finding the source port.

All ports on the connecting path are set to select configuration
related to the backtracked input port. Since the GCI represents
a constraint graph using DisCounT ports, input ports whose ac-
tive control link to disable all the rest enable input links resulted
from pre-routing connection at any DisCounT port are not added
into the searching list. If all input ports on the connecting path
become disable except the selected routing input port, the rest of
enabling input port in pre-routing connection can be shared to
route to the same source port.

E. The Example Application

Figure 11 shows an example application for shifting all data
stored in MEMO and writing result into MEMI at the same ad-
dress. By changing the header file declared at Figure 11(1), the
same application can be mapped into different target architec-
tures. The placement of each function can be automatically de-
cided based on the restriction of GCI. The first possible place-
ment position is selected, however, a user can control to place
into the other positions by using pragma.

The “@” pragma controls shifting the placement to be another
position. In the example at Figure 11(2), the shifting value is 5
and the followed calling function is placed into the sixth possible
position. (placing at “PE11” in MuCCRA-1 and MuCCRA-2,
and at “PE10” in MuCCRA-D) If the sixth possible position is
not available in the first context, it tries to find in the next context

by routing input data via register automatically. The shifting
pragma can also control the placement into a target element by
indicating its name as shown at Figure 11(5).

The context looping can be performed by calling
“BRANCH_CONTEXT” function to transfer negative value
related to the next executed context. Even the register can be
automatically assigned to transfer data to the next context, the
current version of compiler can not automatically assign the
same register for storing data between the last context in the loop
and the first context in the next iteration. The “REGISTER4”
function shown at Figure 11(2) and 11(5) is used to ensure that
the register for holding the counting value “address” at the last
context in the loop and reading at the first context in the loop are
the same.

In many architectures, the PE array can read data from
memory module with a clock delay. The reading address is
sent, and the reading data can be available in the next context
since the multicontext architecture can switch context within
a clock. A user can insert pragma “$” between the function
“FETCH_-MEMOA” and “READ_MEMOA” to place them in dif-
ferent contexts.

Since the interconnection architecture of MuCCRA-1 and
MuCCRA-2 are almost the same but different from the
MuCCRA-D architecture, the number of context usage and
placement are different. 3 contexts are used in the MuCCRA-
1 and MuCCRA-2, while 9 contexts are used in the MuCCRA-
D. In the case of MuCCRA-D, different set of pragmas which
is commented out in the source code is used. By activing these
lines, the code can be used for MuCCRA-D.

E Graphic User Interface

Mapping of application on to the PE array can be controlled
by the programmer in Black-Diamond compiler. As the initial
placement, it maps operations to the first possible places to be
routed automatically. However, the user may want to arrange the
placement manually, for example, in order to reduce the loading
configuration time in RoMultiC scheme or increasing usage of
PE in a context. In this case, the user can insert pragma in the
source code to control the place of mapping.

For such cases, Black-Diamond supports Graphic User Inter-
face to show the placement and routing graphically. An example
is shown in Figure 13. The target architecture is shown in 3-
dimensional graphic. It can show the list of operations placed
in each context with the same variable name in the source code.
There is a pointer to show the port of operation in the target
placed element corresponding to each variable at the parameter
fields. By selecting input port, the routed path is highlighted in
the picture, so, the user can easily trace the path. This GUI is
also helpful for debugging.

V. EVALUATION

It is difficult to demonstrate the benefit of the retargetable
compiler, that is, how it can treat various target architectures eas-
ily. By using the GCI, Black-Diamond can treat three different
types of DRPAs: MuCCRA-1, MuCCRA-2 and MuCCRA-D.
Since the aim of MuCCRA project is investigating the design
trade-off of various types of DRPAs, all three architectures are

Fig. 13. Screen shot of the Black-Diamond Compiler

different as shown in Table I. Although an array with 16 PEs are
used in all architectures, the bit-width, the type of operations,
interconnection, and configuration bit structure are different.

TABLE I
THE DIFFERENCE BETWEEN MUCCRA-1 aND MUCCRA-2 ((a) BIT-wiDTH, (B)
CoNTEXTS, (¢) PE STRUCTURE, (D) INTERCONNECTION, AND (E) PROCESS)

| [MuCCRA-1 MuCCRA-2 MuCCRA-D
(a) 24 bits 16 bits 24 bits
(b) 64 16 64
Heterogeneous: | Homogeneous: Homogeneous:
(©) including All PE provides All PE provides
Multiplier PE a Multiplier a Multiplier
(d) 2 bi-direction 3 bi-direction NN-interconnection
(e) || Rohm’s 0.18um | ASPLA’s 90nm Rohm’s 0.18um

Black-Diamond can generate configuration bits for all archi-
tectures just by changing the definition files. Here, applica-
tion implementation examples on both architectures are shown.
Since MuCCRA architecture is developed for multimedia pro-
cessing, 3 applications are used here for evaluation: Alpha-
Blender combines 2 input images depending on a constant al-
pha. Three pairs of color data (RGB) can be combined in paral-
lel. Discrete Cosine Transform (DCT) is a part of JPEG coder,
and treats 8 X 8 image matrices. First, 1 directional DCT is com-
puted in the row direction, then the similar computation is done
to the transposed matrix. Thus, it is consisting of two processes:
1D-DCT and transpose. Contrast is “Histogram Equalization”
used to enhance contrast of input image. It includes 2 iterations,
one is for uniforming the histogram and the other is for replacing
color.

Table II, III, and IV show the required contexts, maximum
clock frequency and execution time. Alpha-Blender is available
in all architectures, DCT is not available on MuCCRA-2 since it

TABLE II
MAPPING AND EXECUTION RESULTS ON MUCCRA-1

Application || Contexts | Clk(MHz) | Exe. time (nsec) |
Alpha-Blender 6 38MHz 6682
DCT:1D-DCT 12 27MHz 3240
DCT:Transpose 6 45MHz 924

TABLE III

MAPPING AND EXECUTION RESULTS ON MUCCRA-2

Application || Contexts | Clk(MHz) | Exe. time (nsec) |

Alpha-Blender 5 90MHz 5643
Contrast 11 76MHz 5057

requires to be executed on 24 bits architecture, and instead of it,
Contrast is implemented on MuCCRA-2. The clock frequency
of MuCCRA-2 is larger than those of MuCCRA-1, since it is
designed with more advanced process. In MuCCRA-D, there is
register to store data before transferring it to other PEs, thus, all
applications are executed in the same clock frequency.

The execution time of every application is superior to those
from TI's DSP which works at 220MHz. Those results demon-
strate that the practical applications can be developed using
Black-Diamond with multiple architectures.

VI. CoNCLUSIONS

The GCI is proposed to represent configurable resource in
the target dynamically reconfigurable architecture. The function
unit, constant unit, register, and routing resource can be repre-
sented in the graph as well as the configuration information. The
restriction in the hardware is added in the graph by using “Dis-
CounT” port which is limited the possible configuration bits at
the port controlled by the other ports.

A prototype compiler called Black-Diamond with GCI is now
available for three different dynamically reconfigurable architec-
tures. It translates data-flow graph from C-like front-end descrip-
tion, applies placement and routing by using the GCI, and gen-
erates configuration data for each element of the DRPA in the
form of multicasting. Implementation results of simple applica-
tions show that Black-Diamond can generate reasonable designs
for three different architectures.

TABLE IV
MAPPING AND EXECUTION RESULTS ON MUCCRA-D

| Application || Contexts | Clk(MHz) | Exe. time (nsec) |
Alpha-Blender 11 125MHz 7200
DCT:1D-DCT 17 125MHz 928
DCT:Transpose 23 125MHz 184

(1]

(2]

(3]

(4]
(3]

(6]

(7]

(8]

(9]

[10]

[11]

(12]
[13]

REFERENCES

M. Motomura, “A Dynamically Reconfigurable Processor Archi-
tecture,” Microprocessor Forum, October 2002.

T. Sugawara, K. Ide, and T. Sato, “Dynamically Reconfigurable
Processor Implemented with IPFlex’s DAPDNA Technology,” IE-
ICE Trans. on Inf. & Syst., Vol.E87-D”, pp.1997-2003, 2004.

M. Petrov, et al., “The XPP Architecture and Its Co-simulation
within the Simulink Environment,” Proc. of FPL, pp.761-770, Au-
gust 2004.

Rapport, Inc., http://www.rapportincorporated.com

Y. Kurose, et al., “A 90nm Embedded DRAM Single Chip LSI
with a 3D Graphics, H.264 Codec Engine, and a Reconfigurable
Processor,” Hot Chips 16, September 2004.

Y. Hasegawa, et al., “Performance and Power Analysis of Time-
multiplexed Execution on Dynamically Reconfigurable Proces-
sor,” Proc. of IEEE Int’l Parallel and Distributed Processing Sym-
posium (IPDPS), April 2006.

B. Mei, et al.,, “Dresc: A Retargetable Compiler for Coarse-
Grained Reconfigurable Architectures,” Proc. IEEE Intfl Conf.
Field-Programmable Technology, IEEE Press, pp.166-173, 2002

B. Mei, et al., “Architecture Exploration for a Reconfigurable Ar-
chitecture Template,” IEEE Design & Test of Computers pp.90-
101, March.April 2005.

Y. Hasegawa and H. Amano, “Design Methodology and Trade-
offs Analysis for Parameterized Dynamically Reconfigurable Pro-
cessor Arrays,” in Proc. of FPL.

J. Rose, W. Klebsch, and J. Wolf, “Temperature Measurement
and Equilibrium Dynamics of Simulated Annealing Placements,”
Computer-Aided Design, vol.9, no.3, pp.253-259, 1990.

V. Tunbunheng, M. Suzuki, and H. Amano, “Data Multicasting
Procedure for Increasing Configuration Speed of Coarse Grain
Reconfigurable Devices,” IEICE Transactions on Information and
Systems, vol.LE90-D, no.2, pp.473-481, February 2007.

“YACC,” http://dinosaur.compilertools.net

H. Ishikawa, et al., ”Shortest Path Algorithm on Parallel Reconfig-
urable Processor DAPDNA-2,” Technical Report IEICE, NS2005-
162, pp.17-20, March 2006.

