
Exploring the optimal size for multicasting configuration data of Dynamically
Reconfigurable Processors

T. Nakamura, T. Sano, Y. Hasegawa, S. Tsutsusmi, V. Tunbunheng, and H. Amano
Department of Information & Computer Science, Keio University

3-14-1 Hiyoshi, Kohokuk-ku, Yokohama, 223-8522 Japan
email: muccra@am.ics.keio.ac.jp

Abstract

The configuration data transfer time of a dynamically re-
configurable processor often bottlenecks the hardware con-
text switching time and degrades its computation perfor-
mance. In order to reduce data transferring time from a
central memory to hardware context memory modules in all
Processing Elements (PEs) and Switching Elements (SEs),
a multicasting mechanism called RoMultiC (Row-Muticast
Configuration) was proposed. However, the original Ro-
MultiC used the whole PE or SE as a unit of multicast, the
reduction of transfers is limited. Here, the trade-off between
the granularity of multicast and hardware increase are eval-
uated, and the best way to make the multicast bit-map is
explored. Evaluation results show that time for transfer is
reduced up to 42% compared with the original RoMultiC
with only 2% hardware overhead.

1. Introduction

Coarse-grained dynamically reconfigurable processor
arrays (DRPAs) have received an attention as a cost-
efficient off-loading engines for media-rich applications on
a System-on-a-chip (SoC). Some devices are commercially
available, and some of them are widely used in digital
appliances[1].

In such SoCs integrating an MPU and DRPA into a
small chip area, a high speed dynamic configuration scheme
of the DRPA, that is, changing the configuration data for
each processing element and interconnect mechanisms of
the DRPA, is essential to accommodate a variety of appli-
cations. Particularly, configuration data transfer time may
often be a bottleneck of the system performance in such re-
configurable systems.

To address this problem, a multicast configuration
scheme called RoMultiC (Row-Multicast Configuration)[2]
for DRPAs has been proposed. Simular to the configuration

compression scheme using Wildcard Registers[3] proposed
for FPGAs, RoMultiC exploits the fact that there exist iden-
tical configuration data of Reconfigurable Elements (REs),
such as Processing Elements (PEs) and Switching Elements
(SEs), in an application with high parallelism. RoMul-
tiC has been employed in MuCCRA[4] and WPPA[5], and
scheduling methods to fix the order of multicasting config-
uration bit-map has been also proposed[6].

There is another possibility to improve the efficiency of
RoMultiC by making the best use of PE structure in DRPAs.
Unlike the FPGA, each PE is consisting of several compo-
nents; ALU, data manipulator and register files. In conven-
tional RoMultiC, the configuration data is only transferred
to multiple PEs at a time only when all these components
require the exact same configuration data. By using sepa-
rated bit-map for each component, the possibility of mul-
ticast will increase. On the other hand, the extra buses and
multiplexers needed for increasing number of bit-maps may
increase the chip area.

In this paper, the trade-off between the granularity of
multicast and increasing of the hardware is evaluated, and
the best way to give the multicast bit-map is explored.

2. RoMultiC

All reconfigurable devices are needed to transfer config-
uration data to the configuration memory modules. Unlike
FPGAs, dynamically reconfigurable processors, in which
configuration data is needed to be sent quickly tends to pro-
vide a common large configuration memory inside the chip.
Configuration data is transferred from such common con-
figuration memory to configuration memory modules each
of which is provided in each PE or SE.

Most dynamically reconfigurable processors employ a
sequential configuration scheme giving a serial address to
configuration data memory and transferring configuration
data to the address in order. For example, DRP-1[7], a
coarse-gained dynamically reconfigurable processor core

0 0 1 0 1 0 0 0

0

0

0

1

0

1

0

0

Column Multicast Bits (8bits)

R
ow

 M
ul

tic
as

t B
its

 (8
bi

ts
)

Configured PE

Unconfigured PE

Configured Line

Figure 1. RoMultiC

released by NEC Electronics, equips multicontext configu-
ration scheme and has a distributed context memory in each
PE. The context memory has a unique address with which
configuration data is written through the configuration data
bus sequentially. In this method, configuration speed is lim-
ited with the configuration data bus width.

XPP[8] from PACT XPP Technologies, Inc. is also a
coarse-grained dynamically reconfigurable processor con-
sisting of 2D PE array. XPP employs the Wave Reconfig-
uration technology which configures PEs according to the
data flow on the array. Configuration data are transferred
from memory modules in parallel to decrease configuration
time, and it supports partial configuration for unused PEs.
Although the method allows the overlap between computa-
tion and configuration, it is hard to be used in multicontext
DRPAs.

In the template reconfiguration[9], configuration data in
a centralized configuration memory is shared with multiple
contexts. Although it both saves the required memory and
time for configuration delivery, an address transform table
which often forms the critical path is needed to share the
configuration data.

RoMultiC (Row-Multicast Configuration) uses row and
column multicast bits in order to specify configured targets
instead of mapping a sequential address to PEs. As shown
in Fig.1, configuration data is received by the PEs where the
row and column multicast bits are both ’1’. By multicasting
configuration data, configuration data transfer time can be
substantially shortened.

The amount of multicast bits is greater than that of ad-
dress bits for serial addresses, and hence, the required mem-
ory size seems to become large. In most cases, however,
since the configuration data transferred with multicast are
shared with multiple PEs, the total configuration data will
be greatly reduced compared to the case that whole config-
uration data are held without sharing.

The configurable area is restricted in a rectangle, but by

devising the transfer order, any complex configuration pat-
tern can be configured because the configuration data can be
overwritten and the latest configuration data are valid. With
this feature, RoMultiC can reduce further configuration data
transfer cycles by scheduling their order and configuration
patterns. Scheduling methods to find the efficient order
of multicasting bit-maps has been proposed[6]. By using
such methods, it can reduce the number of cycles for mul-
ticasting 40% at maximum. From the viewpoint of imple-
mentation, RoMultiC does not require large extra hardware
compared with the common configuration delivery method,
since only a wire from the bit-map register is required in a
row and a column of the PE array. Thus, it is adopted in
MuCCRAs[10] and WPPA[5].

3. The granularity of RoMultiC

There is another possibility to improve the required clock
cycles for multicasting in RoMultiC. In coarse-grained DR-
PAs, a PE is consisting of several components; ALU, data
manipulator register files and multiplexers for connecting
components, and the configuration data commonly becomes
50 bits - 200 bits. RoMulTiC can multicast configuration
data only when all configuration bits are completely the
same. For PEs with long configuration bits, it is difficult
to find the completely matched pattern. In practical appli-
cations, a few bits for multiplexers sometimes differ even if
all other components work similarly.

In order to address this problem, we separate each field
of configuration data and search the same pattern to be mul-
ticasted as shown in Fig 2. The possibility to find the same
pattern is increased when small field is used. Configuration
data for PEs whose function is almost the same but only in-
terconnection to outside is different can be efficiently done
by multicasting the common part first, then sending differ-
ent small field later. The requirement of the common mem-
ory entries used to store the configuration data can be also
saved, since shared data is not needed to stored in multiple
entries.

On the other hand, as also shown in Figure 2, multicast
bitmap is needed for all fields which are separately multi-
casted. Since the size of multicast bitmap is increased as
the size of array, the increasing of multicast bitmap for each
field requires hardware overhead especially for a large PE
array. Thus, the granularity to attach the bitmap must be
carefully selected considering the reduction of configura-
tion data transfer and the increase of the multicast bitmap.

4. A target architecture: MuCCRA-2.32b

In order to evaluate the trade-off on the granularity of
multicast, practical and typical DRPA must be assumed.

MultiCastBit

Configuration Data

A B C D

C

BA

D

Figure 2. An example of fine grain RoMultiC

SE
40

SE
30

SE
20

SE
10

SE
00

SE
41

SE
31

SE
21

SE
11

SE
01

SE
42

SE
32

SE
22

SE
12

SE
02

SE
43

SE
33

SE
23

SE
13

SE
03

SE
44

SE
34

SE
24

SE
14

SE
04

data channel d0/d1/d2
(32bit x 3)

PE
30

PE
31

PE
32

PE
33

PE
20

PE
21

PE
22

PE
23

PE
10

PE
11

PE
12

PE
13

PE
00

PE
01

PE
02

PE
03

MEM0 MEM1 MEM2 MEM3

carry channel
 (2bit)

Figure 3. PE Array Architecture

Here, a model architecture, MuCCRA-2.32b (Multi-Core
Configurable Reconfigurable Array-2.32b) is introduced
for this purpose. MuCCRA-2.32b is a small scale, mul-
ticontext DPRA designed for analyzing various kinds of
trade-off on DRPA architectures. For example, in [11],
the consuming power of MuCCRA-2.32b is analyzed with
some improvement methods. It is almost the same as
MuCCRA-2[10] which is now working on a real chip, but
chip dependent design optimization is eliminated for ana-
lyzing a common design. The evaluation and modification
can be done using the real layout of the chip design de-
scribed later.

4.1. PE Array

As shown in Figure 3, MuCCRA-2.32b has a 4 × 4 PE
array and four distributed memories (MEMs) which have 32
bit × 256 entries on the bottom of array. For multi-media
processing, the granularity of the whole architecture is 32
bits, that is, all functional units and channels treat 32-bit

RF SMU ALU

carry channel (2bit)
data channel (32bit)

carry_from_west

carry_from_south

10

data_from_north

data_from_south
data_from_north

data_from_south

0 0 0 010000

Figure 4. PE Core Architecture

data except wires for 2-bit carry. Task Configuration Con-
troller (TCC) and Context Switching Controller (CSC) are
provided to manage task and context switching.

An island-style interconnection structure like traditional
FPGAs is adopted for connecting PEs and MEMs. That
is, each PE is surrounded by programmable routing wire
segments. Connection blocks are provided between PEs and
global routing channels for sending or receiving to or from
PEs. On the intersection of vertical and horizontal channels,
a Switching Element (SE) is placed. The SE is a set of
simple programmable switches in which an entering link is
connected to the other SEs. There are three channels for the
global routing resources.

4.2. PE Structure of MuCCRA-2.32b

Each PE is consisting of a programmable PE Core, con-
nection blocks, and a context memory. In the PE Core as
shown in Figure 4, like a lot of existing DRPA devices,
a data manipulator called Shift & Mask Unit (SMU), an
Arithmetic Logic Unit (ALU), and a register file (RFile) are
provided. RFile has 34-bit (32 data bits + 2 carry bits) ×
8 entries. A context memory which is 64 bits × 32 entries
holds the configuration data that is distributed from the con-
figuration memory at the beginning of the execution.

Each PE is connected with global routing wires via con-
nection blocks. The connection blocks pick up the data
from global routing wires, and distribute to all functional
units of a PE Core. The operation of each functional unit
and local intra-PE connection are defined by configuration
data stored in the context memory.

4.3. Interconnection Network

The inter-PE connection network of the MuCCRA-2.32b
consists of Connection Blocks and SEs. Each PE can select
and take data from vertical global routing resources (d0, d1,

d2) in both sides of the PE via an internal input connec-
tion block called PICKIN. On the other hand, all outputs of
ALU, SMU, and RFile of a PE can be transferred to hori-
zontal links in any direction via the output connection block
(PICKOUT).

Output data from a PICKOUT of a PE is transferred to
PICKINs of other PEs through SEs. Each SE consists of
four multiplexer-based programmable switches (SWs) and a
context memory containing configuration data which speci-
fies a destination of each SW. The SW transfers an entering
data to desired output direction for each link (d0, d1, d2).
Note that an input from the North is latched into a register
in order to avoid combinatorial loops in the interconnection
network, while inputs from other directions are unrestricted.
The configuration data for a context of SE is 15-bit wide,
and each context memory of SE can hold up to 32 contexts
as similar to PE.

4.4. Context Switching and Task Control

In MuCCRA-2.32b, 32 hardware context are controlled
by CSC (Context Switching Controller) which uses a simple
context counter. Reconfigurable modules including PEs and
SWs load configuration data from context memory accord-
ing to a context pointer generated from the context counter
in the CSC. It is also reconfigurable module, and the con-
figuration data for context control is also loaded for itself.
The context switching is done as follows; (1) the next con-
text number is fixed, (2) the context pointer is transferred
to PE array, and (3) the configuration data in the context
memory is read out. Since MuCCRA-2.32b has 32 entries
in each context memory, 32 hardware context can be stored
and switched without delay.

The context counter is simply incremented when the
branch is not specified or not taken in the context. In
MuCCRA-2.32b, the branch address and branch condition
signals are computed in the PE array and sent from the spe-
cial PE to the CSC. If the branch is taken, the branch address
is added with the context pointer in the CSC. By using the
mechanism, a table jump according to the computation re-
sults can be implemented as well as simple loop structures.

Since MuCCRA-2.32b is a multicontext DRPA, the con-
text switching is done with a clock cycle. However, the
configuration data must be transferred from the configura-
tion memory to each context memory module before the
application starts.

TCC (Task Configuration Controller) provides 1K depth
central configuration memory for storing configuration data
for each task, and the configuration code is multicast using
RoMultiC to the context memory modules in PEs and SEs.
During the configuration transfer, the task cannot start and
it can be a bottleneck of the system. Although virtual hard-
ware technique enables to overlap the execution and con-

4 0

0

0

10

22

11

PECONF (64)
row
(4)

col
(4)

conf_type (2)

cntxt
(4)

SECONF0(15)
row0
(5)

col0
(5)

MEMCONF0
(16)

PE

SE

SPE

6

cntxt
(4)

cntxt
(4)

82

680

4

4

14

61631364156616681

unused(1)

82

78

MEMCONF1
(16)

MEMCONF2
(16)

MEMCONF3
(16)

385470

CSCCONF
(10)

unused(2)

82

unused(4)

SECONF1(15)
row1
(5)

col1
(5)SECONF2(15)

row2
(5)

col2
(5)

Figure 5. Configuration data types

OUT(11)

ope
(5)

input select
(9)

input select
(9)

address
(6)

input
select

(4)

ope
(4)

const
(16)

ALU(14) SMU(29) RF(10)

output select
(11)

64bit

Figure 6. Field structure of PE configuration
data

figuration data transfer, the configuration data transfer time
often cannot be perfectly hidden[12] in some applications.

4.5. Configuration data

As shown in Figure 5, three different types of config-
uration data are used; for PE, for SE and for SPE. The
configuration data for SPE defines the context control for
conditional branches of the context pointer. The configura-
tion data is followed by the bits for identification of types
(conf type), context number (cntxt), and the multicast bit
map for RoMultiC (row/col) described lator. SE needs only
15bits configuration data for each module, thus three sets
are transferred in parallel in order to save the number of
data transfer. The detail field of configuration data for PE is
shown in Figure 6.

The configuration data for PE is consisting of 64bits;
14bits for ALU operation, 29bits including 16bits constant
for SMU operation, 10bits for RFile unit, and 11bits for out-
put selection (OUT).

4.6. Implementation

MuCCRA-2.32b was designed for a 5.00-mm square die
in Aspla 90nm CMOS technology. The area of MuCCRA-
2.32b core is almost 4mm × 4mm. The RTL model
is described in Verilog-HDL. Synopsys Design Compiler

Table 1. Specification of target applications
CNTXT PE util PE conf RoMultiC

DCT 29 63.8 277(67.1) 413
SHA-1 8 73.4 88(65.2) 135
DWT 8 21.2 38(52.8) 72
FFT 13 49.5 94(63.5) 148
AES 32 73.0 325(63.6) 511

2006.06-SP2 and Synopsys Astro 2007.03-SP3 are used for
logic synthesis and layout, respectively.

Here, PE CMEM and SE CMEM stand for the configu-
ration memory modules used to store the configuration data
for PE and SE, respectively. MEM is distributed memory
modules for storing data for computation as described be-
fore.

5. Trade-off analysis

5.1. Target applications

Here, RoMultiC is applied to MuCCRA-2.32b in various
grain, and the cycles needed for configuration is evaluated.
Five target applications[13]: 2 dimensional DCT (Discrete
Cosine Transform), SHA-1 (Secure Hash Algorithm 1), 1
dimensional DWT (Discrete Wavelet Transform) FFT (Fast
Fourier Transform) and AES (Advanced Encryption Stan-
dard) are adopted.

A retargetable compiler for DRPA called Black-
Diamond[14] is used for application design. It compiles
programs described in a C-like language, makes place-and-
routing for the target DRPA, and generates the configura-
tion data. Note that in RoMultiC, the multicast bitmap is
overwritten with the one transferred later, and the number
of multicast can be reduced by scheduling the order of mul-
ticast. Here, the fundamental scheduling called Pattern Sep-
aration Scheduling[6] is used.

Table 1 shows the number of contexts (CNTXT), the
average utilization of PE in a context (PE util, %), and
the number of cycles for transferring the configuration data
when the original RoMultiC is utilized (RoMultiC).

5.2. Fixed fielding and functional fielding

Here, two field selection methods; fixed fielding and
functional fielding are tried, and the number of configu-
ration cycles and the total amount of configuration data
are evaluated. In the fixed fielding, the configuration data
for each PE is divided into fixed size fields, and the mul-
ticast bitmap is attached to each field. Here, four sizes:
8bit, 16bit, 24bit and 32bit are evaluated. In the functional
fielding, the configuration data is divided by the functional

Table 2. The length of each field
ALU CNST SMU RF OUT

F1 14 - 29 10 11
F2 14 16 13 10 11

boundaries, and the multicast bitmap is attached. Here F1
in Figure 7 and F2 in Figure 8 are evaluated. The fine grain
configuration multicast is only applied to PE configuration
data. Table 2 shows the length of each field divided by F1
and F2.

MultiCastBit
64bit

ALU SMU RF OUT

RF

ALU SMU

OUT

Figure 7. Functional fielding: F1

5.3. Fixed position

Here, the configuration bus is assumed to be 64bits, and a
bitmap is attached to each field. Figure 9 shows an example
of using 16bits fixed fielding. Since a field carries the fixed
part of configuration data, this method is called the fixed
position multicast (Fixed-Pos).

The cycles reduction ratio for configuration data transfer
compared with the traditional RoMulTiC using 64bit field
is shown in Figure 10. While the configuration data is re-
duced by increasing the possibility of multicast, the addi-
tional bitmap increase the total bits transferred in a cycle.
The total configuration data to be transferred is shown in
Figure 11.

Figure 10 shows that with 8-bit fixed fielding, the num-
ber of configuration transfer cycles can be reduced 20% at

MultiCastBit
64bit

ALU

SMU

RF OUT

RF

ALU

CNST

SMUCNST

OUT

Figure 8. Functional fielding: F2

A B C D

MultiCastBit64bit

16bit

A B C D

Figure 9. An example of attaching bitmaps
(16bit fixed fielding)

 0

 5

 10

 15

 20

 25

F1F2 8 16 24 32 F1F2 8 16 24 32 F1 F2 8 16 24 32 F1 F2 8 16 24 32 F1 F2 8 16 24 32

T
ra

ns
fe

r C
yc

le
 R

ed
uc

tio
ns

 [%
]

Granularity
DCT SHA-1 DWT FFT AES

Figure 10. The transfer cycle reduction
ratio(Fixed-Pos)

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

F1F2 8 16 24 32 F1F2 8 16 24 32 F1 F2 8 16 24 32 F1 F2 8 16 24 32 F1 F2 8 16 24 32

C
on

fi
gu

ra
tio

n
D

at
a

V
ar

ia
tio

ns
 [%

]

Granularity
DCT SHA-1 DWT FFT AES

Figure 11. The size of configuration
data(Fixed-Pos)

maximum. However, by using more than 16-bit fielding, the
reduction ratio is less than 10% except DCT in which sim-

ilar configuration pattern can be easily found. On the other
hand, Figure 11 shows that the amount of configuration data
is increased up to 40% except the case of DCT with 32-bit
fielding.

This comes from the fact that the configuration data to be
transferred is depending on the largest number to be trans-
ferred in all fields. For example, in Figure 9, even if a lot of
same configuration data were found in A, B and C, the num-
ber of transferring configuration data is not reduced when
the field D is different in all PEs. In this case, the config-
uration data, whose field D is only effective and others are
filled with padding, is transferred many times.

5.4. Free position

By providing multiplexers for each part of bus corre-
sponding to fields, the configuration data can be transferred.
In order to control the multiplexer, position bits are required
for each field as shown in Figure 12. This method to multi-
cast the configuration data is called the free position here.

C

MultiCastBit
16bit

B B D

PositionBit

Figure 12. An example of the free position
(16bit fixed fielding)

Unlike fixed position, the order and type of each field
can be decided freely. In this example, fields are used for C,
B, B and D, respectively. Position bits shows the location
of the field in 64bits data. In functional fielding F1 and F2,
the field length is set to be the largest fields. That is, in the
case of F1, two 29bits are used. If the field is used for 10bit
RF, the remaining 19bits just carries the padding bits. Thus,
the free position accompanies some overhead for functional
fielding.

Similar to the case of fixed position, cycles reduction ra-
tio for configuration data transfer compared with the tradi-
tional RoMulTiC using 64bit field is shown in Figure 13
and the configuration data size is shown in Figure 14, re-
spectively.

Figure 13 shows that the number of cycles can be much
reduced compared with the results with the fixed position.
In DCT and AES which can find a lot of similar pattern
in configuration data, 8-bit fixed field achieves more than
40% reduction. Although the PE utilization of AES is larger
than that of DCT, the parallel execution is efficiently done in
DCT. Thus, the cycle reduction of DCT is more than that of
AES. Although the reduction ratio is degraded with larger
bit fields, more than 10% reduction is achieved even with
32-bit except DWT.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

F1F2 8 16 24 32 F1F2 8 16 24 32 F1 F2 8 16 24 32 F1 F2 8 16 24 32 F1 F2 8 16 24 32

T
ra

ns
fe

r C
yc

le
 R

ed
uc

tio
ns

 [%
]

Granularity
DCT SHA-1 DWT FFT AES

Figure 13. The transfer cycle reduction
ratio(Free-Pos)

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

F1F2 8 16 24 32 F1F2 8 16 24 32 F1 F2 8 16 24 32 F1 F2 8 16 24 32 F1 F2 8 16 24 32

Granularity
DCT SHA-1 DWT FFT AES

C
on

fi
gu

ra
tio

n
D

at
a

V
ar

ia
tio

ns
 [%

]

Figure 14. The size of configuration
data(Free-Pos)

Although the functional fielding has a certain overhead,
it achieves reasonable reduction ratio of transfer cycles.
This comes from the fact that there are a lot of functional
modules executing the same operation in a context. F2
which uses shorter fields is better than F1 at 4% in aver-
age. In general, when the free position is used, the shorter
fields are advantageous because of its flexibility.

Figure 14 shows that configuration data can be reduced
in a half cases. F1 with a large overhead of miss-aligned
fields increases the configuration data in all cases. In order
to analyze the data amount in detail, the breakdown of the
configuration data required with the free position is shown
in Figure 15. When shorter fields are used, the amount of
bitmaps increases. From the viewpoint of cost per perfor-

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000
 26000
 28000
 30000
 32000
 34000
 36000
 38000
 40000
 42000

F1F2 8 16 2432 F1F2 8 16 2432 F1F2 8 16 2432 F1F2 8 16 2432 F1F2 8 16 2432

Position Bit
Padding Bit

MultiCast Bit Bit
Data Bit

Granularity
DCT SHA-1 DWT FFT AES

C
on

fi
gu

ra
tio

n
D

at
a

[b
it]

Figure 15. The breakdown of configuration
bits (Free-Pos)

mance, 16-bit fixed field is advantageous. F1 requires a
large amount of bits for padding, and F2 is advantageous
clearly with the free position.

5.5. Evaluation of cost

The overhead of using short fields is as follows: (1) The
bus width must be stretched for additional bitmaps, and ad-
ditional logic for control is needed. (2) The multiplexers are
needed to each field for selecting data in the free position.
(3) The register is needed to cope with the variable field
in the functional mode. (4) The amount of configuration
memory modules will be increased for storing additional
bitmaps.

The last item was evaluated with the configuration data
size shown in the previous subsection. In order to evaluate
the area overhead, MuCCRA-2.32b with proposed fielding
is designed and synthesized by using the same process and
tools for the original design. The results are shown in Ta-
ble 3. ”Original” shows the original design with a single
Ratio shows the area overhead to the total area of the origi-
nal MuCCRA-2.32b.

The 8-bit fixed fielding requires a certain overhead, al-
though the cycle reduction ratio is the largest. However, the
area overhead is only 2% at maximum. Note that the evalu-
ated area dose not include for increasing wires. The impact
of increasing wires is hard to be evaluated, since it often
makes impossible to finish automatic place-and-routing, but
sometimes there is no influence. In this case, the wire must
be routed to all SEs and PEs distributed in the PE array,
and impact is large. Considering this overhead of wires, 16-
bit fixed fielding/free position or F2 functional fielding/free
position is advantageous in most cases.

Table 3. The area overhead
Granularity Area increased Bus Width Ratio

(µm
2) (bit) (%)

Original - 72 0
8-Fixed 1142 128 0.055
16-Fixed 587 96 0.0284
24-Fixed 280 88 0.0136
32-Fixed 125 80 0.00605
8-Free 45198 128 2.19
16-Free 12136 96 0.588
24-Free 4907 88 0.238
32-Free 3878 80 0.188

F1-Fixed 587 88 0.0289
F2-Fixed 644 96 0.0312
F1-Free 8417 88 0.410
F2-Free 587 96 0.0284

6. Conclusion

The trade-off between the granularity of configuration
data multicast and hardware increase are evaluated with
a dynamically reconfigurable processor MuCCRA-2.32b.
Fixed-fielding and functional fielding are tried both with
fixed position and free position. Evaluation results show
that time for transfer is reduced up to 42% compared with
the original RoMultiC with only 2% hardware overhead.
Considering the overhead of configuration bus width, it ap-
pears that 16-bit fixed fielding/free position or F2 functional
fielding/free position is advantageous in most cases.

Acknowledgments: This work is supported in part by
Japan Science and Technology Agency (JST). The authors
thank to VLSI Design and Education Center (VDEC).

References

[1] K.Kurose and et al., “A 90nm embedded dram single
chip lsi with a 3d graphics, h.264 codec engine, and a
reconfigurable processor,” in Hot Chips 16, 2004.

[2] V. Tanbunheng, M. Suzuki, and H. Amano, “RoMul-
tiC: Fast and Simple Configuration Data Multicasting
Scheme for Coarse Grain Rec onfigurable Devices,” in
Proc. of FPT, Dec. 2005, pp. 129–136.

[3] S.Hauck, Z.Li, and E.Schwabe, “Configuration com-
pression for the xilinx xc6200 fpga,” in IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems, Vol.18, No.8, Aug 1999, pp. 1107–1113.

[4] Y. Hasegawa and et.al, “Design Methodology and
Trade-offs Analysis for Parameterized Dynamically
Reconfigurable Processor Arrays,” in Proc. of FPL
2007, Sept. 2007.

[5] D. Kissler and F. Hannig and A. Kupriyanov and J.
Teich, “A highly parameterizable parallel processor
array architecture,” in IEEE International Conference
on Field Programmable Technology 2006 (FPT 2006),
December 2006, pp. 105–112.

[6] S.Tsutsumi and et.al., “Overwrite Configuration Tech-
nique in Multicast Configuration Scheme for Dynam-
ically Reconfigurable Processor Arrays,” in Proc. of
FPT, Dec. 2007, pp. 273–276.

[7] M. Motomura, “A Dynamically Reconfigurable Pro-
cessor Architecture,” Microprocessor Forum, Oct.
2002.

[8] M. Petrov, et al., “The XPP Architecture and Its
Co-simulation within the Simulink Environment,” in
Proc. of FPL, Aug. 2004, pp. 761–770.

[9] M.Suzuki and et. al, “A Cost-Effective Context Mem-
ory Structure for Dynamically Reconfigurable Proces-
sors,” in Proc. of the RAW2006, Apr. 2006.

[10] H.Amano et al., “MuCCRA Chips: Configurable
Dynamically-Reconfigurable Processors,” in Proc. of
ASSCC 2007, Nov. 2007, pp. 384–387.

[11] T.Nishimura and et. al. , “Power reduction techniques
for Dynamically Reconfigurable Processor Arrays ,”
in Proc. of Int’l Conf. on Field Programmable Logic
and Application (FPL), Sept. 2008.

[12] H.Amano, S.Abe, Y.Hasegawa, K.Deguchi,
M.Suzuki, “Performance and Cost Analysis of
Time-multiplexed Execution on the Dynamically
Reconfigurable Processor,” in Proc. of the FCCM
2005. Springer, Berlin, April 2005.

[13] M.Suzuki, et.al., “Stream Applications on the Dynam-
ically Reconfigurable Processor.” Proc. on IEEE IC-
FPT2004, Dec. 2004.

[14] V. Tanbunheng and H. Amano, “ DisCounT: Disable
Configuration Technique for Representing Register
and Reducing Configuration Bits in Dynamically Re-
configurable Architecture,” in Proc. of SASIMI 2007,
Oct. 2007.

