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ABSTRACT
In multi-context Dynamically Reconfigurable Processor Ar-
ray (DRPA), the required number of contexts is often in-
creased by those with low resource usage. In order to ex-
ecute such contexts without wasting a context memory, we
propose a new execution mode called instruction buffer mode
in addition to the normal multi-context mode. In this mode,
a configuration code from the central configuration memory
is stored in the instruction buffer and executed directly. Fur-
thermore, by exploiting a multicast method, a single config-
uration code loaded to the buffer can be executed by multiple
processing elements in a SIMD fashion. We also investigate
a mode selection policy based on simple formulas. From the
result of implementation and evaluation by using a prototype
DRPA called MuCCRA-1, it appears that the total execution
time is reduced 12% by using the instruction buffer mode,
while 12% of the semiconductor area is increased.

1. INTRODUCTION

Dynamically Reconfigurable Processor Arrays (DRPAs) [1,
2, 3, 4] have been started to be utilized as an off-load en-
gine for various types of System-on-Chips (SoCs) in digital
appliances.

In order to achieve better area- and power-efficiency com-
pared with traditional field-programmable devices such as
FPGAs, they incorporate the following properties; (1) a sim-
ple coarse grained processor consisting of an ALU, a data
manipulator, a register file and other functional modules is
used as a primitive processing element (PE) of an array, and
(2) dynamic reconfiguration of the PE array which enables
time-multiplexed execution is introduced. Some of them
provide multiple sets of configuration data called hardware
contexts, from now on referred as contexts, and switch them
in one or a few clock cycles. A system with such a mecha-
nism is called a multi-context DRPA.

In order to switch context quickly, the multi-context DRPA
provides context memory modules in its PEs and switching
elements (SEs) to hold a certain set of configuration data
corresponding to each context. Since the number of con-
texts which can be stored in the context memory is not so
large (from 4 to 64 in general) because of the semiconduc-
tor area overhead required for the context memory, the per-

formance is severely degraded by loading new configuration
data if the number of required contexts is beyond the context
memory size. Virtual hardware mechanisms [5, 6] enable to
transfer new configuration data to an unused part of the con-
text memory during execution and hide the latency of the
configuration data transfer. However, even if one of these
mechanisms is adopted, a large task which requires more
than the context memory size is difficult to execute.

Therefore, the current multi-context DRPAs are only used
to execute a limited core part of an application, and it is one
of the reasons why DRPAs have not overcome their com-
petitors: SIMD (Single Instruction stream, Multiple Data
streams) style accelerators and VLIW (Very Long Instruc-
tion Word) style DSPs in some application fields.

In general, PEs in an array are not always utilized in
every context. For example, the degree of parallelism in ini-
tialization and summarizing the results is not usually large.
This means that contexts with low PE usage exist even in
applications with a large degree of parallelism in total. For
such contexts, the most part of the context memory is oc-
cupied with the idle configuration. If such contexts with a
small number of PEs can work in the different mode which
does not use the context memory, the efficiency of context
memory can be much increased.

Here, we propose a multi-context mechanism with mixed
execution mode. In addition to the normal multi-context ex-
ecution mode, it provides a new mode called the instruction
buffer mode in which a configuration code from a central
configuration memory is stored in the instruction buffer and
executed directly. By using this mode, the context with low
PE utilization ratio can be executed without wasting the con-
text memory. Also, by combining with configuration code
multicasting method [7], a single configuration code loaded
to the buffer can be executed like SIMD machines.

The rest of paper is organized as follows. Section 2 in-
troduces a concept of the instruction buffer mode. Section 3
describes the MuCCRA-1 architecture and implementation
of the mixed execution mode. Finally, we evaluate the effect
of this mode in section4.
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Fig. 1. Timeline of Multi-Context Mode

2. INSTRUCTION BUFFER MODE

2.1. Multi-context DRPAs

Various types of multi-context DRPAs have been developed
[1, 2, 3, 8, 9], and most of them provide distributed context
memory modules which hold several sets of configuration
data for each PE and SE. The configuration data is read out
according to a context pointer from a central control unit,
and a hardware context consisting of operations of func-
tional units in PE and data transfers using SE is switched
in a clock cycle.

Since the context memory module is provided for each
PE and SE in a PE array, the depth of memory module corre-
sponding to the number of contexts is limited. For instance,
three in DAPDNA-2 [3], four in FE-GA [9, 10], eight in
CS2112 [8], 16 in DRP-1 [2], 32 in ADRES [1], and 64
in MuCCRA-1. The configuration data sets in the context
memory are transferred from the central configuration mem-
ory before execution like Fig. 1. If the number of available
context slots is not enough, the execution is suspended, and
new configuration data are loaded, and then the execution is
resumed. However, since it often takes hundreds of clock
cycles to load a task, this step severely degrades total per-
formance.

The virtual hardware mechanism was proposed to mit-
igate this problem [5, 6]. During execution of a task, the
configuration data for the next task is transferred to an empty
space of the context memory, and it starts immediately when
the current task is finished. However, it only works effi-
ciently when the execution time for the current task is long
enough, and there is a sufficient space in the context memory
to load the configuration data for the next task. A large task
which cannot be stored in the context memory is difficult to
be executed [6].

2.2. Instruction buffer mode

Evaluation results of the current multi-context DRPAs show
that the number of utilized PEs varies depending on the con-
texts. For example, the usage of PEs of NEC’s DRP-1 was
less than 50% in average even in applications with a large
degree of parallelism such as 2-Dimensional Discrete Co-
sine Transform. Note that several sequential steps can be
mapped into a single context to increase the resource usage
in DRP-1, but the results were not much improved. Thus,
most applications include sequential steps which do not re-
quire a lot of PEs.
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The instruction buffer mode is a mechanism to save the
context memory space by using the buffer which stores and
directly executes configuration code from the central config-
uration memory. As shown in Fig. 2, in this mode, the con-
figuration data from the central configuration memory is not
written into the context memory but stored into an additional
register called instruction buffer, and executed immediately.
Of course, it requires hundreds of clock cycles to fill the in-
struction buffer corresponding to the whole PE array, but if
only a few PEs are used, execution can start only with a few
cycles delay as shown in Fig. 3. After steps with a low PE
usage are executed with the instruction buffer mode, a pro-
grammer can switch the mode, and parallel processing with
a large number of PEs is done in the multi-context mode.

2.3. Configuration data multicasting

Most dynamically reconfigurable processors adopt a sequen-
tial configuration scheme giving a serial address to context
memory modules and transferring configuration data to the
address in order. In this method, configuration speed is lim-
ited by configuration data bus width, and the configuration
data for one or a few PEs can be transferred in a clock cycle.

However, if multiple PEs use the same configuration data,
the time for data transfer can be reduced by multicasting.
RoMultiC [7] uses row and column multicast bits to specify
configured targets instead of mapping a sequential address to
PEs/SEs. As shown in Fig.4, configuration data is received
by the targets where the row and column multicast bits are
both ‘1’.

The configurable area is restricted in a rectangle, but by
devising the transfer order, any complex configuration pat-



0 0 1 0 1 0 0 0

0

0

0

1

0

1

0

0

Column Multicast Bits (8bits)

R
ow

 M
ul

tic
as

t B
its

 (8
bi

ts
)

Configured PE

Unconfigured PE

Configured Line

Fig. 4. RoMultiC

tern can be configured because the configuration data can
be overwritten and the latest configuration data are valid.
In addition, with this feature, RoMultiC can reduce further
configuration data transfer cycles by scheduling their order
and configuration patterns.

By using RoMultiC with the instruction buffer mode, the
SIMD-like instruction can be used. That is, if PEs specified
as a rectangle shape with RoMultiC multicast bits execute
the same operation, they can work just after a clock cycle to
transfer the same configuration data to the instruction buffer.
With this function, the number of contexts can be reduced
without degrading the parallelism.

2.4. Mode selection policy

Since the instruction buffer mode increases the execution
time, the mode selection must be done with enough con-
sideration. If a task contains just a single inter context loop,
the total execution cycle including transfer cycles for a task
in the case of both modes; Cyclemulti and Cycleinstbu f can be
roughly estimated.

Here, let Con ftask be a total number of configuration data
of the task, Contextloop be the number of contexts in the in-
ter context loop, and Contextseq be that for the rest of part,
Niteration be the number of iterations, respectively.

Cyclemulti can be expressed in the following equation:

Cyclemulti = Cycletrans f er +Cycleexecution, (1)

where

Cycletrans f er =























0 if the configuration data
remain in the context memory

Con ftask otherwise
(2)

and

Cycleexecution = Contextseq + (Niteration ·Contextloop). (3)

In order to decide Cycleinstbu f easily, we define Con fcontext
as the average number of configuration data per a context
with the following equation:

1. total of contexts > context memory size?
No

end

2. Search for a task with low
efficiency of the context memory

Yes

3. Set found task to be executed
in instruction buffer mode

Found

No
end

Fig. 5. Search process flow for instruction buffer mode task

Con fcontext =
Con ftask

Contexttask
. (4)

Contexttask is given by Contextseq +Contextloop. Thus,

Cycleinstbu f = Con fcontext · Cycleexecution. (5)

In order to reduce the total execution cycles, configu-
ration data should be kept in the context memory within
the time computed with expression (2), and the instruction
buffer mode helps it. However, equation (5) shows that the
execution cycles of the instruction buffer mode is tightly
depending on the number of iterations, and so a task with
a large iteration will much increase the execution cycles.
Thus, a programmer must select carefully which tasks are
executed in the instruction buffer mode with the following
steps illustrated in Fig.5.

1. If the total sum of all tasks’ contexts is less than the
size of the context memory, obviously there is no rea-
son to execute in the instruction buffer mode.

2. Search for a task which does not use the context mem-
ory efficiently compared to other tasks. Usage of the
context memory, Cyclecontext, is given by the follow-
ing equation(6):

Cyclecontext =
Cycleexecution

Contexttask
. (6)

Cyclecontext means that how many times a configura-
tion data is loaded from the context memory aver-
agely.

3. If a low usage task is found, the task should be ex-
ecuted with the instruction buffer mode. Iterate the
above steps until the number of contexts is less than
the context memory size.

3. IMPLEMENTATION EXAMPLE

We added the instruction buffer mode to MuCCRA-1 [11], a
prototype multi-context DRPAs. Although the MuCCRA-1
chip is now under re-designed to fix bugs in the layout, the
successor chip MuCCRA-2 [11] is now available.
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Fig. 6. PE Array Architecture of MuCCRA-1

3.1. Overview of MuCCRA-1 Architecture

Fig.6 shows the PE array structure of MuCCRA-1. The
granularity of the whole architecture is 24 bits so as to fit
multi-media processing, that is, all functional units and chan-
nels treat 24-bit data except wires for 2-bit carry. MuCCRA-
1 has a 4 × 4 PE array, four multipliers (MULT) on the
left side of the array and four distributed memories (MEM)
which has 24-bit × 256 entries at the bottom of the array. An
island-style interconnection structure like traditional FPGAs
is adopted; each PE is surrounded by programmable rout-
ing wire segments. Connection blocks are provided between
PEs and global routing channels for sending or receiving to
or from PEs. At the intersection of vertical and horizontal
channels, a Switching Element (SE) is placed. The SE is a
set of simple programmable switches in which an entering
channel is connected to the other SEs. There are two chan-
nels for the global routing resources.

Each PE has a programmable PE Core, connection blocks,
and a context memory. In the PE Core as shown in Fig.7,
like a lot of existing DRPA devices, a data manipulator called
Shift & Mask Unit (SMU), an Arithmetic Logic Unit (ALU),
and a register file (RFile) are provided. RFile has 26-bit
(24 data bits + 2 carry bits) × 8 entries. A context mem-
ory which is 64-bit × 64-entry holds the configuration data
which is distributed from the configuration memory at the
beginning of an execution.

Each PE is connected with global routing wires via con-
nection blocks. The connection blocks pick up the data from
global routing wires and distribute to all the functional units
of a PE Core. The operation of each functional unit and
local intra-PE connection are statically defined by configu-
ration data called a context.

Each SE consists of two multiplexer-based programmable
switches (SWs) and a context memory containing configu-
ration data which specifies a destination of each SW.
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Fig. 7. PE Core Architecture of MuCCRA-1

3.1.1. Context Switching Mechanism

Like the other multi-context DRPAs, each PE and SE in
MuCCRA-1 equip their context memory in which the con-
figuration data for a particular operation is held. The depth
of the context memory is 64, and thus, 64 hardware con-
texts can be held. The central controller broadcasts a context
pointer to all of the reconfigurable elements including PEs
and SEs. The configuration data for a context is read out
from the context memory according to the context pointer,
and they are reconfigured in parallel.

3.1.2. Configuration Data Distribution Mechanism

As described in the previous section, for high speed con-
figuration data distribution, a multicast mechanism called
RoMulTiC[7] is adopted. The context control and configu-
ration data distribution mechanism are common in all MuC-
CRA chips and cannot be changed except the size of context
memory which influences the area of PE and SE.

3.2. Implementing the instruction buffer mode

We implemented the instruction buffer with a collection of
flip-flops since just an entry is required. A signal called
mode flag decides the target into which the configuration
data is written: the context memory or the instruction buffer.
The mode flag is generated by the controller consisting of
the state machine which works as shown in Fig.8. First, the
controller reads information containing the mode flag of a
task which is about to be executed. When the mode flag
is ‘0’, it means that the task will be executed in the multi-
context mode, and configuration data for all contexts of the
task must be transferred into the context memories before
execution. During the execution, the controller pre-loads
the configuration data of the task to be executed. Other-
wise, when the mode flag is ‘1’, just one configuration data
is transferred to the instruction buffer and executed immedi-
ately. The controller repeats this process until the task fin-
ished.
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Table 1. Area Comparison
total area flip-flops

(um2) area ratio
original MuCCRA-1 2,761,169 15.6%
with proposed mode 3,089,248 18.9%

3.3. Hardware overhead

The MuCCRA-1 with the instruction buffer mode is also im-
plemented using Verilog-HDL, and verified with Cadence
NC-Verilog 5.83. In order to evaluate area overhead com-
pared to MuCCRA-1 with the instruction buffer mode, we
synthesized the RTL code with Rohm CMOS 180nm pro-
cess technology by Synopsys Design Compiler 2007.03-SP4.

As shown in Table1, the total area of MuCCRA-1 with
the instruction buffer mode increases about 11.9% compared
to the original one. The main hardware increase comes from
flip-flops for the instruction buffer and multiplexers imple-
mented in all modules, PEs, SEs, MULTs, MEMs and STC.

In order to reduce this overhead, it is possible to use an
entry of the context memory as the instruction buffer. In this
method, a transferred instruction overwrites another task’s
context. However, a PE can begin to process the task after
only the overwritten data is transferred again.

4. PERFORMANCE EVALUATION

4.1. Execution cycles in the case of a single task

We evaluated the execution cycles in the instruction buffer
mode using three applications: 2D-DCT(Discrete Cosine
Transform), Alpha-Blender, SHA-1, shown in Table 2. The
term ”block size” in the table means the target data size used
in the calculation, and other parameters have been explained
in section 2. Generally, 2D-DCT application could be im-
plemented as 2 tasks, 1D-DCT and Transposition, but our
current implementation, row and column direction of 1D-
DCT are made as independent tasks, since some parameters
are different from each other. And SHA-1 contains 2 inter
context loop. We manually implemented these applications
with a mapping tool which we developed.

In order to analyze effect of the instruction buffer mode,

Table 3. Performance Results of Single Task
Cyclemulti Cycleinstbu f Cyclecontext

Task (estimation)
1D-DCT(row) 237 1106 (1008) 6.9
Transposition 227 208 (208) 1.0
1D-DCT(column) 244 1114 (1056) 6.5
Alpha-Blender 711 6406 (5120) 80.3
SHA-1 670 3473 (5368) 21.5

we evaluated the case when only a task is executed. From
the implementation, Cycleinstbu f can be estimated by expres-
sion (5), and Cyclecontext is from equation (6). They are also
shown in Table 3. Since the ratio, Cycleinstbu f /Cyclemulti is
roughly proportional to Cyclecontext, it appears that the es-
timated Cycleinstbu f can be used to decide which tasks are
processed in the instruction buffer mode. The errors be-
tween the results and the estimated values of Alpha-Blender
and SHA-1 are relatively large. It is caused by complicated
branch structure and considerable variation of PE usage be-
tween contexts in these tasks.

4.2. Execution cycles in the case of multiple tasks

Table 4 shows execution cycles of the following three cases
when five tasks listed in Table 3 are executed sequentially
10 times one by one.

• Case 0: all five tasks are executed in the multi-context
mode. Total number of contexts is 72. It exceeds the
context memory size of 64 entries.

• Case 1: the transposition task is executed in the in-
struction buffer mode. In this case, the total number
of contexts decreases to 55.

• Case 2: 8 contexts for initialization of SHA-1 is exe-
cuted in the instruction buffer mode.

From the results of Case 0, it appears that the back-
ground transfer mechanism in the MuCCRA-1 works effi-
ciently because it takes more than 8000 cycles just for trans-
ferring configuration data. Furthermore, in the both Case 1
and Case 2, although cycles for computation are increased,
we achieved 3-11.7% improvement of the total execution cy-
cles including the configuration data transfer, since all con-
texts could be held in the context memory. Here, any data
path optimization for the instruction buffer mode were not
applied in every case. Therefore, optimization could achieve
further performance improvement.

5. RELATED WORK

There are several researches based on the same motivation
as the instruction buffer mode.

IMEC ADRES can use the first row of PE array as a
VLIW processor [1] to execute tasks with small parallelism



Table 2. Application Properties
Task block size[bits] Conftask Contexttask Contextsequential Contextloop iteration time Con fcontext

1D-DCT(row) 1536 146 13 2 11 8 11.2
Transposition 1536 208 17 17 0 0 12.2
1D-DCT(column) 1536 151 14 2 12 8 10.8
Alpha-Blender 8192 67 8 3 5 128 8.4
SHA-1 512 244 20 12 2/6 20/75 12.2

Table 4. Performance Results of Sequential Tasks
Case total cycle transfer cycle execution cycle
0 15,316 2,666 12,650
1 14,857 297 14,560
2 13,527 607 12,920

without wasting the contexts. Compared with this approach,
the instruction buffer mode can select all PEs as the target
which support SIMD operations. In Morphosys [12], a cer-
tain rows or columns of PEs work in the SIMD mode. How-
ever, since the same configuration data is used for all PEs in
a row or a column, the flexibility is limited. The instruction
buffer mode based on RoMultiC can select PEs which work
with the same instruction more flexible than the simple row
and column selection in Morphosys.

By introducing the instruction buffer mode, the multi-
context style DRPA can combine the ability of configuration
data delivery style DPRAs like PACT XPP [4]. As the im-
plementation example shows, it can introduce advantages of
configuration data delivery style as well as SIMD operations
with a small hardware overhead.

6. CONCLUSION

In this paper, the instruction buffer mode is proposed for effi-
cient use of context memory in multi-context DRPAs. In this
mode, a configuration code from the central configuration
memory is stored in the instruction buffer and executed di-
rectly. Adding this mode to the normal multi-context mode
results in the improvement of the context memory usage.

The evaluation results revealed that the total execution
cycles are reduced by 3-12% without any modification of
the applications, while 12% of the semiconductor area is in-
creased. We also investigated a mode selection policy based
on simple formulas.

As a future work, we will implement this mode on the
next version of MuCCRA chip and evaluate the impact to
power consumption. The future work includes the design
tool which supports the SIMD execution for the instruction
buffer mode for more performance improvement.
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