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ABSTRACT

The power consumption of Dynamically Reconfigurable Pro-
cessing Array (DRPA) is quantitatively analyzed by using a
real chip layout and applications taking into account the re-
configuration power. Evaluation result shows that process-
ing power for PEs is dominant and reconfiguration power is
about 20.7% of the total dynamic power consumption.

Based on the above evaluation results, we proposed two
dynamic power reduction techniques: functional unit-level
operand isolation and selective context fetch. Evaluation re-
sults demonstrate that the functional unit-level operand iso-
lation can reduce up to 20.8% of the dynamic power with
only 2.2% area overhead. On the selective context fetch, the
power reduction is limited by the increasing of the additional
hardware.

1. INTRODUCTION

Coarse grained dynamically reconfigurable processor arrays
(DRPAs) have been received an attention as a flexible and
efficient off-loading engine for various types of System-on-
Chips (SoCs). Some devices are commercially available [1,
2, 3, 4, 5, 6, 7], and some of them have been used in devices
for consumer electronics [8].

In order to achieve better area- and power-efficiency com-
pared with traditional field-programmable devices such as
FPGAs, they incorporate the following properties; a sim-
ple coarse grained processor consisting of an ALU, a data
manipulator, a register file and other functional modules is
used as a primitive processing element (PE) of an array, and
dynamic reconfiguration of an PE array which enables time-
multiplexed execution is introduced.

Since the main target of DRPAs is streaming processing
used in battery driven hand-held devices, power consump-
tion is one of essential issues. Such devices have natural ad-
vantages for low power operation. First, by using efficient
parallel processing with PE array, high performance can be
achieved with relatively low clock frequency. Second, by
using time multiplexing operation with dynamically recon-
figuration, only required part of algorithm is performed on
the relatively small amount of hardware. It saves the power
consumption for clock distribution and leakage required by
large hardware. On the other hand, DRPAs require extra

power for dynamic reconfiguration especially in a multi-
context style DRPA which changes its configuration frequently.

Although consuming power of particular DRPAs has been
reported[1][9][10], the power used for dynamic reconfigu-
ration, PEs and interconnection network has not been well
analyzed. The effect of applying low power techniques pro-
posed for traditional processors and FPGAs have not been
well investigated.

Here, we analyze the power consumption of a DPRA
with realistic layout and practical applications. Then, low
power techniques are applied, and their effects are evalu-
ated.

2. A TARGET ARCHITECTURE: MUCCRA-P

Here, a model architecture for power analysis, MuCCRA-
P is introduced. MuCCRA-P is a small scale, multicontext
DPRA designed for this power analysis. The architecture is
almost the same as MuCCRA-2[11] which is now working
on a real chip, but chip dependent design optimization is
eliminated for analyzing a common design. The evaluation
and modification can be done using the layout of the chip
design.

2.1. PE ARRAY

As shown in Figure 1, MuCCRA-P has a 4 × 4 PE array and
four distributed memories (MEMs) which have 32 bit × 256
entries on the bottom of array. For multi-media processing,
the granularity of the whole architecture is 32 bits, that is, all
functional units and channels treat 32-bit data except wires
for 2-bit carry. Task Configuration Controller(TCC) and
Context Switching Controller(CSC) are provided to manage
task and context switching.

An island-style interconnection structure like traditional
FPGAs is adopted for connecting PEs and MEMs. That is,
each PE is surrounded by programmable routing wire seg-
ments. Connection blocks are provided between PEs and
global routing channels for sending or receiving to or from
PEs. On the intersection of vertical and horizontal chan-
nels, a Switching Element (SE) is placed. The SE is a set of
simple programmable switches in which an entering link is
connected to the other SEs. There are three channels for the
global routing resources.
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Fig. 2. PE Core Architecture

2.2. PE Structure of MuCCRA-P

Each PE is consisting of a programmable PE Core, connec-
tion blocks, and a context memory. In the PE Core as shown
in Figure 2, like a lot of existing DRPA devices, a data ma-
nipulator called Shift & Mask Unit (SMU), an Arithmetic
Logic Unit (ALU), and a register file (RFile) are provided.
RFile has 34-bit (32 data bits + 2 carry bits) × 8 entries.
A context memory which is 64 bits × 32 entries holds the
configuration data that is distributed from the configuration
memory at the beginning of the execution.

Each PE is connected with global routing wires via con-
nection blocks. The connection blocks pick up the data from
global routing wires, and distribute to all functional units of
a PE Core. The operation of each functional unit and local
intra-PE connection are defined by configuration data stored
in the context memory.

2.3. Interconnection Network

The inter-PE connection network of the MuCCRA-P con-
sists of Connection Blocks and SEs. Each PE can select
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Fig. 3. Context control of MuCCRA-P

and take data from vertical global routing resources (d0, d1,
d2) in both sides of the PE via an internal input connec-
tion block called PICKIN. On the other hand, all outputs of
ALU, SMU, and RFile of a PE can be transferred to hori-
zontal links in any direction via the output connection block
(PICKOUT).

Output data from a PICKOUT of a PE is transferred to
PICKINs of other PEs through SEs. Each SE consists of
four multiplexer-based programmable switches (SWs) and a
context memory containing configuration data which speci-
fies a destination of each SW. The SW transfers an entering
data to desired output direction for each link (d0, d1, d2).
Note that an input from the North is latched into a register
in order to avoid combinatorial loops in the interconnection
network, while inputs from other directions are unrestricted.
The configuration data for a context of SE is 15-bit wide,
and each context memory of SE can hold up to 32 contexts
as similar to PE.

2.4. Context Switching and Task Control

In MuCCRA-P, 32 hardware context are controlled by CSC
(Context Switching Controller) which uses a simple context
counter. Reconfigurable modules including PEs and SWs
load configuration data from context memory according to
a context pointer generated from the context counter in the
CSC. It is also reconfigurable module, and the configuration
data for context control is also loaded for itself.

The context counter is simply incremented when the branch
is not specified or not taken in the context. In MuCCRA-P,
the branch address and branch condition signals are com-
puted in the PE array and sent from the special PE to the
CSC. If the branch is taken, the branch address is added
with the context pointer in the CSC. By using the mecha-
nism, a table jump according to the computation results can
be implemented as well as simple loop structures.

TCC (Task Configuration Controller) provides 1K depth
central configuration memory for storing configuration data
for each task, and the configuration code is multicast using



the bitmap[12] to the context memory modules in PEs and
SEs before starting the task.

2.5. Area

MuCCRA-P was designed for a 5.00-mm square die in As-
pla 90nm CMOS technology. The area of MuCCRA-P core
is almost 4mm × 4mm. The RTL model is described in
Verilog-HDL. Synopsys Design Compiler 2006.06-SP2 and
Synopsys Astro 2007.03-SP3 are used for logic synthesis
and layout, respectively. Note that the standard clock gating
supported by Design Compiler is applied. That is, clock is
stopped when the module is not available.

Table 3 (in Section 4) shows detail numbers of cell area.
See the column ”MuCCRA-P” for the original MuCCRA-P.
Area of a PE module except context memory accounts for
32% of total area, context memories and CSC module for
reconfiguration is about 20%. The ratio of context memories
are 37% on PEs and 43% with each other.

3. POWER ANALYSIS OF MUCCRA-P

3.1. Power Classification on MuCCRA-P

First, in order to analyze power consumption on an architec-
tural level, we classified power as shown below.

• Processing power is consumed in arithmetic compo-
nents in PEs; ALUs, SMUs and output of RFiles. The
power for distributed memory module is shown as
”MEM”.

• Interconnection power is for data communication be-
tween PEs or PEs and MEMs through SEs.

• Reconfiguration power is total power for the context
switching. As shown in Figure 3, the context switch-
ing is performed as follows: first, the context pointer
for the next context is computed in CSC and broad-
casted to the context memory modules. Then, the
configuration data is read out from the context mem-
ory, and the functions in PEs and interconnects are
changed. Thus, reconfiguration power is consisting
of three components: 1) power consumed in CSC, 2)
power for read and set the configuration power, and
3) clock and leakage power for the context memory.
The power for changing the datapath on the PE array
is included in processing power.

• Standby power includes power for clock distribution
and leakage in the total PE array except the context
switching mechanism.

3.2. Power Analysis

3.2.1. Evaluation environment

For evaluation, we used four programs: discrete cosine trans-
form (DCT) used in JPEG coder, a simple image process-
ing program called alpha blender (Alpha), a hash function

Table 1. Resources used in applications
Context Cycle ALU SMU RFU PE

DCT 29 99 567 385 1152 1208
35% 24% 72 % 76%

SHA-1 8 490 2920 1633 1604 6018
37% 21% 71 % 77%

DWT 8 136 1046 660 538 1256
48% 30% 25% 58%

ALPHA 6 15 82 98 92 146
34% 41% 38% 61%
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used in encryption (SHA-1) and discrete Wavelet transform
(DWT) used for data compression. All of them were de-
scribed in a C-like hardware description language and im-
plemented using the Black-Diamond retargetable compiler[13].
For optimization, pragma description to specify the location
of PEs is used. The resources used in each application are
shown in Table 1.

The flow of analyzing the power consumption is shown
in Fig. 4. First, MuCCRA-P post-layout netlist with back
annotation data is simulated using the configuration data set
for each application. Then, Synopsys’s PrimePower is ap-
plied to analyze the consuming power.

Here, all applications are assumed to run with 33MHz
clock. The power for I/O and loading configuration data to
the configuration memory is omitted.

3.3. Evaluation results

3.3.1. Power consumption of each application

First of all, power consumption with the above classification
is shown in Fig 8 (This figure is placed in Section 4 with
the structure with power reduction techniques. The pow-
ers of MuCCRA-P without power reduction techniques are
shown in the left most position.) The total power consump-
tion is less than 60mW. The performance of each application
is from 2-6 times as that of TI’s DSP TMS320C6713 which
works at 225MHz clock. Since the consuming power of the
catalog specification of TMS320C6713 is 1.1W, the perfor-



mance per energy of MuCCRA-P is much better than the
DSP.

For all applications, the most power consuming compo-
nent is processing power(note that, the power for distributed
memory modules are shown as ”MEM” in the graph), but
the ratio is depending on the utilization of PEs. It becomes
about 50% in DCT that requires a lot of PEs in each context,
while it is small in SHA-1 which is difficult to utilize a lot
of PEs in a context. Unlike FPGAs, interconnect power is
about 17%, and not dominant in the total power consump-
tion.

Reconfiguration power consumes about 15mW indepen-
dent of applications. It occupies about 20%, and is not a
dominant factor in the total power consumption. Consid-
ering that contexts are switched almost every clock in ap-
plications implemented here, the claim that the power for
context switching dominants the multicontext DRPA is just
a myth. The power required for changing datapath dynam-
ically will be analyzed lator. Standby power also consumes
about 10mW independent of applications. Although the clock
gating is applied, the power is mainly consumed in the clock
tree, and it is difficult to be reduced without using special
clock distribution method.

The analysis results suggest that the power consumption
by the data-path for computation formed on the PE array
is dominant factor, and so the power reduction techniques
for the data-path in common microprocessors would be also
useful in MuCCRA-P.

3.3.2. Power for changing datapath dynamically

From the above evaluation results, the power consumption
for context switching itself; that is, managing context con-
trol in CSC, reading and setting configuration data from the
context memory, clock for context memory and leakage of
hardware amount for context management; is about 20% of
the total power. However, it does not include the power for
changing datapath on the PE array dynamically. In general,
just after changing the datapath by switching the configura-
tion data, the computation starts continuously in the same
clock cycle. So, it is difficult to separate the power for
changing the datapath from the computation on the PE ar-
ray. In order to separate the effect of switching datapath, the
following three cases were evaluated.
Case 1: no context switch. A computation is done contin-
uously in the same context without context switching (Fig-
ure 5 (1)) .
Case 2: context is switched but the datapath is not stitched.
Context A and Context B executes exactly the same compu-
tation with the same mapping, and are switched every clock
cycle (Figure 5 (2)) .
Case 3: both context and datapath are switched. Context A
and Context C executes exactly the same computation but
the mapping is different. They are switched every clock cy-
cle (Figure 5 (3)) . Here, the datapath is simple total sum
with constant values with 8 PEs, and the clock frequency is
also set to be 30MHz.

Table 2 shows the result of power for each case. The dif-

ference between Case 1 and Case 2 comes from reconfigura-
tion power. Although context switching is not performed in
Case 1, the power for CSC and clock distribution to the con-
text memory are required, and configuration pattern is dif-
fernt from Case 1. On the other hand, the difference between
Case 2 and Case 3 comes from changing datapath. The eval-
uation results show that the power by changing the datapath
is not so large compared with reconfiguration power.

Table 2. Reconfiguration power match-up of test pattern
Test Power
Pattern [mW]
Case 1 28.2
Case 2 41.3
Case 3 44.0

4. POWER REDUCTION TECHNIQUES

Here, we tried to apply to power reduction techniques based
on the analysis results.

4.1. Operand Isolation in PE

The analysis results suggest that conventional power reduc-
tion techniques for microprocessor datapath will work effi-
ciently. Operand isolation which fixes the input of functional
units is typical power reduction technique for microproces-
sor datapath. SMU and ALU in a PE provide 32 functional
units in total. Although some units share resources, most
units work only for their own operation, and the power con-
sumption by unnecessary output toggles can be reduced by
operand isolation. In this mechanism, each instruction unit
has AND units to choose the input data from PICKIN or fix
data ’0’.

Fig. 6 shows operand isolation for the ALU. A simple
decoder is provided and gives ’1’ to an input of AND units
for a selected unit, thus, the inputs of other units are fixed
to data ’0’. By using the mechanism, the outputs of unused
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PEs are also fixed by fixing their inputs, we don’t have to
provide buffer to fix the output data.

4.2. Selective Context Fetch

Analysis results also suggest that a large part of power con-
sumption for context switching comes from the reading con-
figuration data from the context memory. Although MuCCRA-
P has 16 PEs and 25 SEs, all of them are not used in a certain
context. For such unused units, the context memory can be
in the stand-by mode by disabling CE (Chip Enable), and
default configuration data is replaced with the data from the
context memory.

In this mechanism, which is called selective context fetch,
as shown in Fig 7, all PE and SW module have flag registers
corresponding to the context depth which indicates whether
it will be used in the context or not. These flags are treated
as a part of configuration data, and transferred from con-
figuration memory in TCC in advance. When the context is
changed according to the context pointer, the flag is checked,
and only required context memory is enabled and the con-
figuration data is read out. Otherwise, the default configu-
ration data is used. Since it takes a clock to read the con-
text memory as common synchronous memory, the delay
for checking flag must be added to the latency. However, in
MuCCRA-P, the access time is much smaller than the delay
for the datapath on PE array, and the operational frequency
is not influenced.

4.3. Evaluation of power reduction techniques

Both techniques increase the hardware which will lower the
effect of power reduction. Table 3 shows the number of
cells of each module of the original MuCCRA-P, one with
the operand isolation (MuCCRA-OI) and one with both the
operand isolation and selective context fetch (MuCCRA-
SF). Note that figures in the table come from the layout and
includes buffers for clock tree and timing ajustment to fix
the hold time error.

In MuCCRA-OI, small (about 3%) overhead of area by
additional logic provided at inputs of each unit is required.
On the contrary, in MuCCRA-SF, a considerable overhead
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Table 3. Cell area(µm2)
Module MuCCRA- MuCCRA- MuCCRA-

P OI SF
PE ×16 935,328 988,672 1,116,512
PE CMEM ×16 351,136 351,136 351,136
SE ×25 283,650 283,125 379,625
SE CMEM ×25 219,075 219,075 219,075
MEM ×4 697,364 658,784 707,392
MEM CMEM 34,466 34,466 34,466
CSC 11,618 11,619 12,072
etc 243,538 212,872 252,844

(15% in PE, 34% in SE) is required by an array of flip-flops
for flags, multiplexers for addressing, and additional buffers
for forming the clock tree.

Figure 8 shows the power consumption of three struc-
tures (MuCCRA-P, MuCCRA-OI and MuCCRA-SF) using
four applications. The operand isolation reduces the power
from 30% to 40% of processing power and 10%-20% in to-
tal. On the other hand, the selective context switch reduces
reconfiguration power, but the impact to the total power is
less than 8%. Two reasons degrade the power reduction ef-
fect by the selective context switch: (1) the large additional
hardware for flags requires stand-by power and static power,
and (2) if the implementation of algorithm is well optimized,
not so many PEs and SEs can stop fetching the configuration
data. Table 4 shows average numbers of PEs and SEs which
can stop fetching the configuration in a datapath. It shows
that the total numbers are not so large in common applica-
tions.
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Table 4. Average numbers of units which can stop fetching
Application PE SE Reduction

[mW]
DCT 0.2 3.2 0.1
SHA-1 3.8 7.9 3.2
DWT 6.5 12.2 5.1
ALPHA 6.0 6.4 1.7

Now, let’s verify the possible improvement of the selec-
tive context fetch. When it negates the chip enable of con-
text memory modules, dynamic power can be reduced up to
90%. Let the power consumed in the context memories be
Pcmem, power of the hardware of selective context switch be
Poverhead, and the applicable ratio of the selective context
fetch be n, respectively. The break-even point of power gain
with the selective context switch is represented as follows:

Pcmem ∗ 0.9 ∗ n ≥ Poverhead

From the evaluation, the Poverhead becomes 2.5[mW] in
static power, and 8.1[mW] in dynamic power. The result of
DWT shows that the power of context memories for PEs is
9.2[mW] and those for SEs are 2.4[mW], Thus, the formula
can be rewritten as follows.

(9.2 + 2.4) ∗ 0.9 ∗ n ≥ 2.5 + 8.1

From this formula, n must be at least 77% in order to achieve
power reduction. Considering the results from Table 4, it is
difficult to reduce the power by using the selective context
fetch in this architecture and resource utilization.

5. CONCLUSION

The power consumption of DRPA is quantitatively analyzed,
and two dynamic power reduction techniques; functional
unit-level operand isolation and selective context fetch are
proposed. Evaluation results demonstrate that the functional

unit-level operand isolation can reduce up to 20.8% of the
dynamic power with only 2.2% area overhead. On the se-
lective context fetch, the power reduction is limited by the
increasing of the additional hardware.
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