
Evaluation of MuCCRA-D: A Dynamically Reconfigurable
Processor with Directly Interconnected PEs

Masaru Kato, Yohei Hasegawa, and Hideharu Amano
Department School of Science and Technology, Keio University

3-14-1 Hiyoshi, Yokohama 223-8522, JAPAN
Email: muccra@am.ics.keio.ac.jp

Abstract

Coarse-grained dynamically reconfigurable processor
arrays (DRPAs) have been received an attention as a
flexible and efficient off-loading engine for various types
of System-on-Chips (SoCs). Interconnection in these ar-
chitectures is one of the important factors to be evalu-
ated. MuCCRA-1, the first prototype of MuCCRA(Multi-
Core Configurable Reconfigurable Architecture) project,
uses a typical island-style interconnection in its PE array.
Although the island-style interconnection is flexible, the
large delay time caused by passing multiple switches and
long wires often degrades its clock frequency. In this paper,
MuCCRA-D, a dynamically reconfigurable processor which
uses direct interconnection between neighboring PEs, is
designed and evaluated. The evaluation results show that
the required semiconductor area for MuCCRA-D is 12%
smaller than that of MuCCRA-1 by reducing wiring re-
source in the interconnection. Since higher clock frequency
can be used, DCT, α-Blending, Bubble-Sort and SHA-1
implemented on the MuCCRA-D are 3.84 times faster than
MuCCRA-1 at maximum .

Keywords: Dynamically Reconfigurable Processor,
Interconnection Network

1. Introduction

In recent years, coarse-grained dynamically reconfig-
urable processor arrays (DRPAs) have received an attention
as a flexible and efficient off-loading engine for various
types of System-on-Chips (SoCs). Some devices are com-
mercially available [1], [2], [3], [4], and some of them have
been integrated into digital appliances.

In order to achieve better area- and power-efficiency
compared with traditional field-programmable devices such
as FPGAs, they incorporate the following properties; (1)
a simple coarse grained processor consisting of an ALU,
a data manipulator, a register file and other functional

modules is used as a primitive processing element (PE) of
an array, and (2) dynamic reconfiguration of a PE array
which enables time-multiplexed execution is introduced.
Some of them provide multiple sets of configuration data
called hardware contexts, and switch them in one or a few
clock cycles. A system with such a mechanism is called a
multi-context DRPA.

Unlike common FPGAs, in which Look-Up-Tables
(LUTs) with 4 or 5 inputs and the island-style interconnec-
tion are commonly used, there exist wide design choices
in DRPAs, such as the PE granularity, the number of
hardware contexts which can be switched dynamically, the
total amount of wiring resource, and the size of PE array
itself. Our performance evaluation results revealed that the
optimal PE array size considering the area and power con-
sumption is different by each application [5]. Thus, there
is no all-around architecture in DRPAs, and the structure
should be configurable or customizable for its main target
application. Since DRPAs are assumed to be embedded into
an SoC, customization of architectures will be done at the
design time like a configurable processor.

The object of Multi-Core Configurable Reconfigurable
Architecture (MuCCRA) project is to develop a design
methodology and framework which generate highly con-
figurable DRPAs for various target applications. On de-
signing an architecture, an interconnection between PEs is
an important factor which influences on both performance
and cost. Our prototype chips in the project; MuCCRA-1
and MuCCRA-2[6] adopted an island-style interconnection
similar to FPGAs for its flexibility. However, it has a ten-
dency to enlarge maximum delay due to a long data path.
The other general interconnection between PEs is a direct
interconnection. In this style, a few dedicated channels are
provided between PEs to transfer data. Although current
DPRAs use either of interconnection styles, the evaluation
and comparison based on the real layout and application
have not been well done.

In this paper, we propose directly interconnected PE
array architecture called MuCCRA-D and compare with
MuCCRA-1 which adopted island-style interconnection.

The rest of paper is organized as follows. Section 2 in-
troduces typical interconnection structures used in DRPAs.
Section 3 describes MuCCRA-1 architecture. Section 4
introduces detail of the directly interconnected architecture,
MuCCRA-D. We present an implementation result of two
architectures in Section 5 and evaluation result of two
architectures in Section 6. Section 7 concludes the paper.

2. Related Work

The existing DRPAs adopt either of two styles for in-
terconnection networks in their PE array; an island-style
connection and a direct interconnection. The island-style
has a switching element on the intersection of vertical
and horizontal global channels and it controls connectivity
according to the configuration data. Data exchange between
a PE and a global channel is done by using a connection
block. This style is generally used in conventional FPGAs.
For DRPAs, Chameleon CS2112[7], NEC Electronics’ Dy-
namically Reconfigurable Processor (DRP)[2] and a part
of PACT XPP[4] interconnection are categorized into this
type. Although the island-style has an advantage of flexibil-
ity on PE-to-PE connections, there are two major problems:
(1) the area of global routing and switches become large,
and (2) the maximum operating frequency is degraded by
the long maximum delay.

Interconnecting PEs directly is also widely used. Hi-
tachi’s Flexible Engine/Generic ALU array (FE-GA) [8]
has 32 PEs including arithmetic logic units (ALU) and
multipliers (MLT) which forms a 2-dimensional array, that
is, each PE is connected with neighboring PEs directly.
IMEC’s Architecture for Dynamically Reconfigurable Em-
bedded System (ADRES)[1] also has direct interconnec-
tions which connect 32-bit Reconfigurable Cells (RCs).
ADRES has special channels that connect remote PEs.
Since the direct interconnection style is able to transfer
data to the connected PE quickly with a constant delay,
the architecture adopting this style can operate with a high
clock frequency. However, the direct interconnection has
disadvantage of taking a few cycles to transfer data to
remote PEs.

3. MuCCRA-1

In this section, we introduce the first prototype chip
of Multi-Core Configuration Reconfigurable Array (MUC-
CRA) project called MuCCRA-1 uses an island style inter-
connection architecture.

3.1. Overview of MuCCRA-1 Architecture

Figure 1 shows PE array structure of MuCCRA-1. For
multi-media processing, the granularity of the whole archi-
tecture is 24 bits, that is, all functional units and channels

SE
30

SE
20

SE
10

SE
00

SE
41

SE
31

SE
21

SE
11

SE
01

SE
42

SE
32

SE
22

SE
12

SE
02

SE
43

SE
33

SE
23

SE
13

SE
03

SE
44

SE
34

SE
24

SE
14

SE
04

MULT3

channel d0/d1
(26bit x 2)

PE
30

PE
31

PE
32

PE
33

PE
20

PE
21

PE
22

PE
23

PE
10

PE
11

PE
12

PE
13

PE
00

PE
01

PE
02

PE
03

MEM0 MEM1 MEM2 MEM3

MULT2

MULT1

MULT0

SE
40

Figure 1. PE Array Architecture of MuCCRA-1

treat 24-bit data except wires for 2-bit carry. MuCCRA-1
has a 4 × 4 PE array, four multipliers (MULT) on the left
side of array and four distributed memories (MEM) which
has 24 bit × 256 entries on the bottom of array. An island-
style interconnection structure like traditional FPGAs is
adopted. That is, each PE is surrounded by programmable
routing wire segments. Connection blocks are provided
between PEs and global routing channels for sending or
receiving to or from PEs. On the intersection of vertical and
horizontal channels, a Switching Element (SE) is placed.
The SE is a set of simple programmable switches in which
an entering channel is connected to the other SEs. There are
two channels for the global routing resources.

3.1.1. PE Structure of MuCCRA-1

Each PE has a programmable PE Core, connection
blocks, and a context memory. In the PE Core as shown in
Figure 2, like a lot of existing DRPA devices, a data manipu-
lator called Shift & Mask Unit (SMU), an Arithmetic Logic
Unit (ALU), and a register file (RFile) are provided. RFile
has 26-bit (24 data bits + 2 carry bits) × 8 entries. A context
memory which is 64-bit × 64-entry holds the configuration
data that is distributed from the configuration memory at the
beginning of the execution.

Each PE is connected with global routing wires via con-
nection blocks. The connection blocks pick up the data from
global routing wires, and distribute to all functional units of
a PE Core. The operation of each functional unit and local
intra-PE connection are statically defined by configuration
data called a context.

3.1.2. SE Structure of MuCCRA-1

Each SE consists of two multiplexer-based pro-
grammable switches (SWs) as shown in Figure 3 and a con-
text memory containing configuration data which specifies
a destination of each SW. In Figure 3, the SW transfers an

24-bit ALU

24-bit SMU

Register File
(8 entries)

24-bit data +
 2-bit carry

portAportB

MUXMUX

MUXMUX

MUX

MUX

M
U

X

24 bit data

2 bit carry

2b’11

00

0

2b’00

data from
right connection
block

data from
left connection
block

}

}

data to output
connection block

Figure 2. PE Core Architecture of MuCCRA-1

M
U

X

M
U

X

MUX

MUX

Reg.

North

South

West

East

SW0

SW1

Switching Element(SE)

Switch(SW)

d0 d1

d0

d1

Figure 3. SE and SW Architecture of MuCCRA-1

entering data to desired output direction for each channel
(d0, d1). Note that an input from the North is latched into
a register in order to avoid combinatorial loops in the inter-
connection network, while inputs from other directions are
unrestricted. The detail structure of the inter-PE connection
network of the MuCCRA-1 is mentioned in the next subsec-
tion. In general, a multiplexer-based switch consumes larger
area than a programmable switch of FPGAs in which a bidi-
rectional data transfer using transfer gates. However, it is
commonly used for island-style dynamically reconfigurable
processor since short-term conflicts of outputs at dynamic
reconfiguration can be avoided. The configuration data for
a context of SE is 16-bit wide, and each context memory of
SE can hold up to 64 contexts as similar to PE.

3.1.3. Inter-PE Connection Network

The inter-PE connection network of the MuCCRA-1 is
illustrated in Figure 4. Each PE can select and take data
from vertical global routing resources (d0, d1) in both sides
of the PE via an internal input connection block called
PICKIN. On the other hand, all outputs of ALU, SMU, and
RFile of a PE can be transferred to horizontal channels in
any direction via the output connection block (PICKOUT).

In order to avoid combinatorial loops, this network uses
the same policy for deadlock avoidance as the Turn model
[9]. The connection turns from the down direction to hori-
zontal direction is only latched in an internal register of the

SE
(x+1,y)

SE
(x+1,y+1)

SE
(x,y+1)

SE
(x,y)

Context Memory

P
IC

K
IN

_L

P
IC

K
IN

_R

24-bit
PE Core

PICKOUT
d0

West-East

PICKOUT
d1

West-East

PICKOUT
d0

East-West

PICKOUT
d1

East-West

d0 d1 d0 d1

d0 d1d0 d1

PE(x,y)

Figure 4. Inter-PE Connections

destination SE, while other connections are allowed without
any restrictions. Similarly, data from an upper PE to a lower
PE must be stored in a RFile of the lower PE, while outputs
of the lower PEs are allowed to connect to inputs of upper
PEs without any restrictions.

These restrictions are naturally fulfilled if the following
typical datapath structure is mapped on to the PE array.
The source data is read out from distributed memories, pro-
cessed upward with several PEs, and computation results
are written into RFiles or MEMs via feedback lines from
the topmost SEs.

3.1.4. Context Switching Mechanism

Each PE and SE in MuCCRA-1 equip their context
memory in which the configuration data for a particular op-
eration is held. The central controller broadcasts a context
pointer to all of the reconfigurable elements including PEs
and SEs. The configuration data for a context is read out
from the context memory according to the context pointer,
and they are reconfigured in parallel. This type of dynamic
reconfiguration is called a multi-context scheme, and a lot
of current devices support this scheme. In the multi-context
devices, the dynamic reconfiguration can be done in only
one clock cycle by distributing the context memory into
each reconfigurable element.

For high speed configuration data distribution, a multi-
cast mechanism called RoMulTiC[10] is adopted. The con-
text control and configuration data distribution mechanism
are common in all MuCCRA chips, and cannot be changed
except the size of context memory which influences the area
of PE and SE.

4. MuCCRA-D

Since the maximum delay path of MuCCRA-1 is various
because of the difference in the length of data path on the

PE

PE

PE PE

PE PE PE

PE PE

PE

PE

PE

PE PE PE PE

MEM2 MEM3

MEM0 MEM1

26bit channel x 326bit channel x 1

Figure 5. PE Array Architecture of MuCCRA-D

island-style interconnection, the maximum clock frequency
varies by applications. In addition, it is noted that wire
resource shortage occurs when PE utilization becomes high.

In this section, a dynamically reconfigurable processor
MuCCRA-D with another interconnection type; direct in-
terconnection is introduced. For comparison, MuCCRA-D
has the same fundamental architecture with MuCCRA-1,
but in order to fit its direct interconnection structure, some
changes have been made.

4.1. PE Array Architecture

The architecture shown in Figure 5 illustrates the
MuCCRA-D architecture which has a 4 × 4 PE-array and
4 distributed memories on top and bottom of the array.
Distributed memories have 24 bit × 256 entries; that is, the
same as those in MuCCRA-1.

As shown in Figure 5, each PE is connected to its nearest
neighbors and also connected to the other PEs in the same
row and same column to reduce the delay for transferring
data to the remote PE. Unlike MuCCRA-1, every output of
PE has a register, and the data to be transferred must be
stored in it. Only with channels for neighboring PEs, data
transfer to the distant PEs will require too many hops at the
intermediate PEs. The similar channels are also provided in
ADRES[1]. As described later, three independent channels
are provided for the nearest neighbors while there is only a
channel for one-hop distant PE.

4.1.1. PE Architecture

Each PE of MuCCRA-D consists of a programmable PE
core, a context memory and an inner-PE switch that selects
destination of output data from functional units.

Each PE core has the same 24-bit functional units as
MuCCRA-1: ALU, SMU and RFile. Note that an ALU
in the all PEs can execute a multiplier operation while

24-bit ALU

24-bit SMU

Register File
(8 entries)

24-bit data +
 2-bit carry

portAportB

MUXMUX

MUXMUX

MUX

MUX

M
U

X

register register register

Inner-PE Switch

}

carry-in from
neighbor PEs
and 1-hop PEs

}

output from
neighbor PEs

}

output from
neighbor PEs

output from
neighbor PEs

output to
North PE’s unit

output to
East PE’s unit

output to
West PE’s unit

output to
South PE’s unit

output to
1-hop PEs

24 bit data

2 bit carry

carry-in from
neighbor PEs
and 1-hop PEs

}

}

output from
1-hop PEs

Figure 6. PE Core Architecture of MuCCRA-D

MuCCRA-1 has four multipliers on an edge of the PE array.
This change had made in order to reduce the overhead
for transferring data to distant multipliers through direct
interconnection channels.

As mentioned before, all outputs of functional units
are buffered with registers. Stored data in the register is
transferred to the PE in the next clock cycle according to
the configuration data. These output registers are useful to
reduce the critical path on the PE array, and to prevent from
forming combinatorial circuit loops through the network.

Inputs of the ALU are selected from four nearest neigh-
bors, two 1-hop distant PEs, the SMU and RFile in the
same PE. Also, the SMU inputs receive data from four
nearest neighbors, two 1-hop distant PEs or RFile in the
same PE. RFile inputs are selected from ALU and SMU in
the same PE, and data from a connected PE. These selection
is controlled according to the configuration data of the PE.

The 64-bit configuration data of each PE in the
MuCCRA-D decides operations of each functional unit and
destination PE to which the data from functional units is
transferred. Since the configuration data for inner-PE switch
and selection of direct interconnected channels is almost the
same as those for interconnect control information in island
style interconnection, the amount of configuration bits is the
same as those for MuCCRA-1. The configuration data is
stored in a 64-bit × 64-entry context memory in every PE.

4.1.2. Inner-PE Switch

The inner-PE switch in the PE transfers output data from
ALU, SMU and RFile to destination PEs designated by
the configuration data. Each inner-PE switch has 14 output
channels as shown in the top of Figure 6. Three channels
are connected to each of four neighboring PEs respectively;
that is, 12 channels are used. The remaining two channels

are used for 1-hop distant PEs in the horizontal and vertical
direction. Three channels to a neighboring PE are connected
with the input of three functional units : ALU, SMU and
RFile, respectively. Through the inner-PE switch, an output
of ALU, SMU and RFile is connected to one of these
14 channels. Thus, the configuration data of the inner-PE
switch decides not only the target PE but also the target
functional unit in the PE. For different functional units
in the target PE, output data from the different functional
unit in the source PE can be transferred simultaneously.
Of course, more than two outputs from the same PE can
not be transferred to the same functional unit in the target
PE. In the inner-PE switch, data is transferred only to one
destination, that is, data broadcasting is forbidden.

Although only a channel is provided for the 1-hop neigh-
bor, the data can be selected as input of all three functional
units of destination PE.

4.1.3. Distributed Memory

Distributed memories are placed at both top and bottom
of the PE array. Each MEM is connected to the nearest
two PEs as shown in Figure 5. MEM is a 2-read/1-write
memory, that is, two data can be read out from different
addresses at the same time, but only one data can be
written exclusively. This is because writing data to memory
requires data and address, and there is only two PEs that
are connected to each memory. Either PE will make data
or address which is decided from the configuration data.
Two PEs can not read data from the same address at
the same time, but there is a copy function which copies
and transfers the data read out from one address to two
connected PEs. Whether to copy the data from memory
or not is also decided by the configuration data. These
implementations are made to manage data more flexibly on
directly interconnected PE array.

4.1.4. Control Mechanism of MuCCRA-D

The control mechanism of MuCCRA-D is almost the
same as MuCCRA-1. There is no switching elements in
the PE array of MuCCRA-D, therefore, the mechanism
to transfer the configuration data to switching elements is
removed.

5. Implementation

MuCCRA-1 and MuCCRA-D were designed individu-
ally onto a 5.18-mm square die in Rohm 0.18um CMOS
technology with 189 I/Os. The same design tools were used
for both architectures. The RTL models of the both archi-
tectures are described in Verilog-HDL. Synopsys Design
Compiler 2006.06-SP2 and Cadence SoC Encounter 5.2
were used for logic synthesis and layout, respectively.

Table 1. Comparison of Cell Usage and Area

MuCCRA-D MuCCRA-1
Num. of Cells 132624 120166

　　 Num. of Gates 987089 1122458
Area[mm2] 9.55 10.86

Table 2. Area of module(mm2)

MuCCRA-D MuCCRA-1
Ctrl. 1.00 (10.4%) 1.09 (10.1%)

MEM ×4 1.46 (15.3%) 1.45 (13.4%)
MULT ×4 - 0.17 (1.6%)

SE ×25 - 1.80 (16.5%)
PE ×16 7.09 (74.3%) 6.35 (58.4%)

Table 1 shows the number of cells and area of both
architectures. Table 2 shows area of each module and its
percentage. Ctrl. in Table 2 shows the area for the control
module in both architectures.

From Table 2, area of a PE module accounts for more
than half of both architectures. Since MuCCRA-D’s PE
provides inner-PE Switch and a multiplier inside, it leads
its hardware amount larger than that of MuCCRA-1. How-
ever, MuCCRA-D provides no SEs which account for the
second largest part of MuCCRA-1, therefore total area of
MuCCRA-D is 12% smaller than MuCCRA-1.

Table 3 describes the length of wire segments used in
both architectures. In Table 3, Interconnection is a total
length of nets used in only the interconnection and Average
is an average length of wire per net in the interconnection.
PE Array is a total length of nets used in the whole archi-
tecture including interconnection, PE modules, and other
modules. In regard to the segment length of interconnection
on MuCCRA-D, 51% is for connection to nearest neigh-
bors, 26% is for 1-hop connection and 23 % is for 2-hop
connection. Since neighboring connections are dominant
in MuCCRA-D, the average length is smaller than that in
MuCCRA-1. As examined later, it enables to use a high
frequency.

6. Evaluation of application

6.1. Application and Environment

This section describes an application design environment
and evaluation results based on it. We implemented several

Table 3. Segment Length of Interconnection and PE
array(mm)

MuCCRA-D MuCCRA-1
Interconnection 5869.1 6689.5

Average 1.14 1.58
PE Array 25163.0 23443.7

Figure 7. GUI of Black Diamond Compiler

applications on both MuCCRA-D and MuCCRA-1; dis-
crete cosine transform (DCT) used in JPEG coder, a simple
image processing program α-Blender (αBlend), a secure
hash function (SHA-1) and bubble-sort (Bsort).

On the application implementation, we used GUI tool
called Comap and Black Diamond compiler[11] developed
for MuCCRA. In Comap, application implementation is
done manually by selecting PE operation and connect-
ing PEs in every context. After all selections and con-
nections are finished, Comap generates configuration data
for MuCCRA-D which is needed in the simulation. The
Black-Diamond is a retargetable compiler which generates
configuration data from a C-like description. The context
scheduling, placement of operations into PEs, and routing
are automatically done by the compiler. Programmers can
check the results by using the GUI shown in Figure 7,
and optimize them by inserting pragmas in the front-end
description.

6.2. Application Implementation Results

We generated the configuration data of each application
with the tools described above, and executed simulation
using the post-layout netlist. Execution cycles and maxi-
mum delay are evaluated. MuCCRA-D buffers every PE
outputs into the register and this guarantees a constant
frequency. On the other hand, the length of data path on
MuCCRA-1 varies, and this causes different frequency in
each application.

Table 4 shows the number of contexts which are needed
to implement each application and execution cycles (Cycle)
with the block size (Bsize[bit]) of both MuCCRA-1 and
MuCCRA-D. The block size is the data size which is used
in each application. Figure 8 shows a performance improve-
ment of MuCCRA-D. The performance in this figure is
normalized by that of MuCCRA-1.

From Table 4, the number of contexts is increased in
MuCCRA-D. This is because MuCCRA-D stores every
outputs of PE in the register. DCT and αBlend are stream

Table 4. Number of Contexts and Execution Cycles

MuCCRA-D MuCCRA-1
Bsize[bit] Context Cycles Context Cycles

DCT 1024 56 253 39 192
αBlend 8192 11 1027 8 644
Bsort 720 18 4441 8 1801

SHA-1 512 24 727 12 418

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

DCT aBlend Bsort SHA-1

S
pe

ed
up

Application

Figure 8. Application Speedup of MuCCRA-D

processing which requires a lot of multiplications, and they
can be executed in the pipelined manner. So, in these appli-
cations, increasing number of contexts is not so large com-
pared with MuCCRA-1. On the other hand, Bsort and SHA-
1 need twice more contexts to implement on MuCCRA-D
than MuCCRA-1. This comes from many branch operations
used in both applications. In MuCCRA-D, it takes a few
contexts to transfer the branch signal to special PE, which
is located rightmost of the PE array, for controlling branch
operation. An application like Bsort that has many branches
and data moving is not effective on MuCCRA-D whose PEs
are connected directly.

As the number of required context increases, the execu-
tion cycle grows. Although MuCCRA-D takes more cycles
to execute than MuCCRA-1 as shown in Table 4, execution
time on MuCCRA-D is smaller than that on MuCCRA-1.
This is because MuCCRA-D operates with several times
higher frequency than that with MuCCRA-1. The result
shows MuCCRA-D is 3.84 times faster at maximum on
DCT and 1.32 times faster at minimum on Bsort than
MuCCRA-1. The execution speed of MuCCRA-D is about
7.75 times faster on DCT compared with the Texas Instru-
ment’s digital signal processor (TMS320C6713)[6] which
works at 225MHz.

6.3. Evaluation of Energy Consumption

The energy consumption are evaluated by using Syn-
opsys’s Power Compiler with the switching probability
extracted from the simulation. On the evaluation of the
performance, the configuration data of each application and
netlist that is generated after place and route are used.

Energy([nJ]) is a metric to compare MuCCRA-D and
MuCCRA-1 which are calculated as a product of execution

time and power consumption(Power[mW]) in unit time.
The supply voltage is set to be 1.8V.

Table 5 shows the ratio of power consumption in each
module and Table 6 shows energy consumption when ex-
ecuting each application on both architectures. Each ar-
chitecture is assumed to work at the maximum frequency
clock.

Table 5. Ratio of Power Consumption in Each Module

MuCCRA-D
Freq. PE SE MULT MEM Ctrl. Other

DCT 125MHz 89.8 - - 2.0 1.5 6.7
αBlend 125MHz 76.1 - - 4.7 3.3 15.9
Bsort 125MHz 73.3 - - 4.8 3.7 18.1
SHA1 125MHz 86.8 - - 2.4 2.3 8.5

MuCCRA-1
Freq. PE SE MULT MEM Ctrl. Other

DCT 25MHz 69.1 12.5 3.6 3.2 1.8 9.8
αBlend 42MHz 65.0 11.8 4.1 4.0 2.3 12.8
Bsort 38MHz 63.4 13.1 4.4 3.7 2.4 13.0

SHA-1 20MHz 62.1 14.8 3.2 3.6 2.6 13.7

Table 6. Evaluation Results of Energy Consumption

　
MuCCRA-D MuCCRA-1

Power[mW] Energy[nJ] Power[mW] Energy[nJ]
DCT 497.5 995.1 85.1 653.6
αBlend 211.0 1733.8 103.3 1583.9
Bsort 185.3 6582.7 95.9 4489.5

SHA-1 392.4 2275.7 50.6 423.0

The result shows that MuCCRA-D which has high
frequency consumes much more power than that with
MuCCRA-1. And this leads the high energy consumption in
MuCCRA-D, although MuCCRA-D has smaller execution
time than that of MuCCRA-1.

From Table 5, power consumption of PE in both architec-
tures accounts for more than 60%. Control module (Ctrl.)
only accounts for a few percent that is the same tendency
as area, and this indicates that the power of controller
(Ctrl.) is not dominant in both architectures. On the other
hand, other including clock network and buffer inserted
between PE and SE interconnection occupies relatively high
ratios; 6 to 18%, This shows that power consumption on
interconnection is not negligible in both architectures.

7. Conclusion
In this paper, we described two dynamically reconfig-

urable processors that have different interconnection net-
works; MuCCRA-D using a directly interconnection net-
work and MuCCRA-1 using an island-style interconnection
structure. Both architectures were designed and evaluated
on area, wire-length, execution cycles of applications and
power consumption.

Evaluation results show that MuCCRA-D is less than
MuCCRA-1 by 12% on area. In regard to wire segment

length, MuCCRA-D has less interconnections than that of
MuCCRA-1. Considering the total wire-length, however,
MuCCRA-D requires more wires. On application perfor-
mance, MuCCRA-D achieved higher performance than that
on MuCCRA-1, 3.84 times faster at a maximum. On the
other hand, energy consumption of MuCCRA-D is larger
than MuCCRA-1 due to its high operating clock frequency.

Acknowledgments:
This work is supported in part by Japan Science and

Technology Agency(JST). The authors thank to VLSI De-
sign and Education Center (VDEC).

References
[1] F. Veredas, M. Scheppler, W. Moffat, and B. Mei, “Cus-

tom Implementation of the Coarse-Grained Reconfigurable
ADRES Architecture for Multimedia Purposes,” in Proc. of
FPL, Aug. 2005, pp. 106–111.

[2] M. Motomura, “A Dynamically Reconfigurable Processor
Architecture,” Microprocessor Forum, Oct. 2002.

[3] T. Sugawara, K. Ide, and T. Sato, “Dynamically Recon-
figurable Processor Implemented with IPFlex’s DAPDNA
Technology,” IEICE Trans. on Information & System, vol.
E87-D, no. 8, pp. 1997–2003, May 2004.

[4] M. Petrov, et al., “The XPP Architecture and Its Co-
simulation within the Simulink Environment,” in Proc. of
FPL, Aug. 2004, pp. 761–770.

[5] Y. Hasegawa, S. Abe, S. Kurotaki, V.M. Tuan, N. Katura, T.
Nakamura, T.Nisimura, H.Amano, “Performance and Power
Analysis of Time-multiplexed Execution on Dynamically
Reconfigurable Processor,” in Proc. of RAW, Apr. 2006.

[6] H.Amano, Y.Hasegawa, S.Tsutsumi, T.Nakamura,
T.Nisimura, V.Tanbunheng, A.Parimala, T.Sano, and
M.Kato, “MuCCRA Chips: Configurable Dynamically-
Reconfigurable Processors,” in Proc. of ASSCC 2007, Nov.
2007, pp. 384–387.

[7] X.Tang, M.Aalsma, and R.Jou, “A compiler directed ap-
proach to hiding configuration latency in Chameleon Pro-
cessors,” in Proc. of FPL, Sept. 2000, pp. 29–38.

[8] T. Takanobu et al., “Overview of Reconfigurable Processor
FE-GA for Digital Media,” in Proc. of RECONF, vol. 105,
no. 451, Dec 2005, pp. 37–42.

[9] C. J. Glass and L. M. Ni, “The Turn Model for Adaptive
Routing,” Proc. of Int’l Symp. on Computer Architecture, pp.
278–287, 1992.

[10] V. Tanbunheng, M. Suzuki, and H. Amano, “RoMultiC: Fast
and Simple Configuration Data Multicasting Scheme for
Coarse Grain Rec onfigurable Devices,” in Proc. of FPT,
Dec. 2005, pp. 129–136.

[11] V. Tanbunheng and H. Amano, “ DisCounT: Disable Config-
uration Technique for Representing Register and Reducing
Configuration Bits in Dynamically Reconfigurable Architec-
ture,” in Proc. of SASIMI 2007, Oct. 2007.

