
DESIGN METHODOLOGY AND TRADE-OFFS ANALYSIS FOR
PARAMETERIZED DYNAMICALLY RECONFIGURABLE PROCESSOR ARRAYS

Yohei Hasegawa, Satoshi Tsutsumi, Vasutan Tanbunheng,
Takuro Nakamura, Takashi Nishimura, and Hideharu Amano

Department of Information & Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan

E-Mail: muccra@am.ics.keio.ac.jp

ABSTRACT
In this paper, we propose a Dynamically Reconfigurable Pro-
cessor Array (DRPA) generator which can generate various
types of DRPAs. Our target DRPA architecture is fully pa-
rameterized. By specifying architectural parameters, it can
automatically generate RTL model, simulation environment,
and finally chip layout. In our DRPA generator, although
the fundamental design of a processing element (PE) and an
inter-PE connection is fixed, the array size, PE granularity,
and connection flexibilities of intra/inter PE are selectable.
In this paper, we have generated various types of DRPAs and
evaluated semiconductor area and speed by using the AS-
PLA/STARC 90-nm CMOS technology. From evaluation
results, fundamental trade-offs between architectural param-
eters and area/delay are analyzed.

1. INTRODUCTION

In recent years, coarse grained dynamically reconfigurable
processor arrays (DRPAs) have been received an attention as
a flexible and efficient off-loading engine for various types
of System-on-Chips (SoCs). Some devices are commer-
cially available [1, 2, 3, 4], and some of them have been
integrated into digital appliances [5].

In order to achieve better area- and power- efficiency
compared with traditional field-programmable devices such
as FPGAs, they incorporate the following properties: (1) a
simple coarse grained processor consisting of an ALU, a
data manipulator, a register file and other functional mod-
ules is used as a primitive processing element (PE) of an
array, and (2) dynamic reconfiguration which enables PE ar-
ray to perform time-multiplexed execution.

Unlike common FPGAs which are based on Look-Up-
Tables (LUTs) and island-style interconnection, there exist
wide design space in DRPAs, such as PE granularity, the
number of hardware contexts which can be switched dynam-
ically, the total amount of wiring resource, and PE array size
itself. Our previous work revealed that the optimal PE array
size considering area and power consumption is different for

each application [6]. Thus, we believe that there is no all-
around architectures in DRPAs, and the structure should be
configurable or customizable for its main target applications.
Since DRPAs are embedded into an SoC, their architectures
should be customized at design time.

The object of our project, Multi-Core Configurable Re-
configurable Architecture (MuCCRA) project, is to develop
a design methodology and framework which generate highly
configurable DRPAs for various target applications. In this
paper, as the first step of the project, we develop a flexible
architecture generator and target DRPAs are modeled and
parameterized. And then, the impact of architectural param-
eters on area and delay is analyzed.

2. DESIGN ENVIRONMENT

Fig.1 depicts our design environment of parameterized DR-
PAs. Our final goal is generating both chip layout of a DRPA
and its programming environment based on designer’s de-
mands. The basic DRPA architecture template is fixed, and
designers can generate their desired DRPAs by controlling
parameters.

At first, our DRPA generator loads architectural param-
eters and generates a synthesizable Verilog-HDL model of
the DRPA. They can be logically and physically synthesized
without any modifications. Since a simple testbench is also
generated, it is feasible to verify the DRPA immediately.
In addition, a DRPA compiler which generates configura-
tion data from C-like description is also created from a re-
targetable compiler generator. But, the DRPA compiler is
under construction and is out of scope in this paper.

3. TARGET ARCHITECTURE TEMPLATE

3.1. PE Architecture

The basic building unit of DRPA is a Processing Element
(PE) shown in Fig.2. Each PE has a programmable PE Core,
connection blocks, and a context memory. In the PE Core,



Architecture Defining Parameters
(Funit, Fpi, Fsw, W, etc)

DRPA Verilog-HDL
Generator

Synthesizable Verilog-HDL
Desicriptions

Template Library
(RAM Macro, MUXs, etc)

Test Bench and
Test Vector

RTL/Net/Chip Simulation
(Cadence NC-Verilog)

Logic Synthesis
(Synopsys Design Compiler)

Placement and Routing
(Synopsys Astro)

Parameters of CMOS
Standard Cell Library

Netlist

Netlist

Timing Analysis
(Synopsys PrimeTime)

GDSII

DRPA Compiler
(under construction)

Application
Programs

Fig. 1. Design Environment

M
U

X

M
U

X

M
U

X

M
U

X

M
U

X

Freg

Fsmu

Falu

Fpi Fpo

Register
File

SMU

ALU

Context Memory

PE Core

Fig. 2. PE Architecture and Intra-PE Flexibilities

like most existing DRPA devices, a data manipulator called
Shift & Mask Unit (SMU), an Arithmetic Logic Unit (ALU),
and a register file are provided. In this paper, it is assumed
that each ALU supports a multiplication operation.

The most fundamental parameter of DRPA is granularity
of PE given by G. G specifies the data width treated in a PE
and interconnection. G is set from 4 to 32 in the most cases.

The flexibility of interconnection within a PE Core can
be defined with the number of selectors provided on inputs
and outputs of functional units such as ALU. Each func-
tional unit of a PE Core has an input selector, and the num-
ber of input channels which can be selected by the unit is
an important parameter. As shown in Fig.2, the input chan-
nel number for SMU, ALU, and register file are represented
by Fsmu, Falu, Freg respectively. These parameters are corre-
sponding to the flexibility of intra-PE local routing.

Each PE is connected with global routing wires via con-
nection blocks. The connection blocks pick up the data from
global routing wires, and distribute to all functional units of
the PE Core. We define the number of inputs and outputs
that can be connected to the connection blocks as Fpi and
Fpo. If the connection blocks can get the data from global
routing wires in 4 directions, the number of connections in

SE SE

SE

SE

SE

SE

PE

PE

PE

PE

SE

SE

SE

SE

SE

SE

SE

PE

PE

PE

PE

SE

SE

SE

SE

SE

PE

PE

PE

PE

SE

SE

SE

SE

SE

PE

PE

PE

PE

SE

SE

Hard
Macro

Hard
Macro

Hard
Macro

Hard
Macro

Hard
Macro

Hard
Macro

Hard
Macro

Hard
Macro

IO

IO

IO

IO

IO

IO

IO

IO

Programmable
Routing Wires

Fig. 3. DRPA Architecture with 4 × 4 PEs

each direction is Fpi/4. In this work, Fpo is defined by the
total number of outputs of functional units, i.e., 4. The oper-
ations of each functional unit and local intra-PE connection
are statically defined by configuration data called a context.

3.2. Array Architecture

Our DRPAs have a two-dimensional PE array, and its size
is denoted by (M,N). And, an island-style interconnection
structure like traditional FPGAs is adopted. Fig.3 shows an
example of the DRPA with (4, 4). As shown in this figure,
each PE is surrounded by programmable routing wire seg-
ments. And, connection blocks in each PE mediate the con-
nection between PEs and global routing resources.

On the intersection of a vertical and horizontal channel,
a Switching Element (SE) is placed. The SE is a set of sim-
ple programmable switches in which an entering link is con-
nected to the other SEs. The number of channels in global
routing resources is denoted by W, and each SE provides W
independent switches. For each switch, an entering link can
be connected to Fsw other links, where Fsw means the SE
flexibility or the flexibility of inter-PE global routing.

In many released DRPAs, a certain number of distributed
memory modules are installed for some group of PEs. For
example, NEC Electronics’ DRP-1 has 8 distributed mem-
ory modules called VMEMs and HMEMs per 8 × 8 PE
array. Here, we similarly assume that distributed memory
modules are provided for a certain number of PEs.

3.3. Context Switching Mechanism

Each PE and SE in a DRPA equips its context memory in
which the configuration data for a particular operation is
held. The central controller broadcasts a context pointer to
all of reconfigurable elements including PEs and SEs. The



context is read from the context memory according to the
context pointer, and all reconfigurable elements are recon-
figured in parallel. This type of dynamic reconfiguration is
called a multicontext scheme, and a lot of current devices
support it. In multicontext devices, the dynamic reconfigu-
ration can be done in only one clock cycle by distributing the
context memory into each reconfigurable element. In this
paper, the number of contexts is defined with the parameter
C.

4. EVALUATION RESULTS AND ANALYSIS

In this section, we show the evaluation results and analyze
the fundamental trade-offs of DRPAs. We generated DRPAs
with the following parameters;

• Granularity G = 8, 16, 24, 32,
• PE Unit Flexibility Funit = 4, 5, 6, 7, 8,
• PE Input Flexibility Fpi = 4, 8, 12, 16,
• SE Flexibility Fsw = 2, 3, 4, 5, 6.

Because of space limitations, the other parameters are
fixed; the channel number W = 4, the array size (N,M) =

(4, 4), and the number of contexts C = 32. In this work, the
analysis is limited only in PE array, and distributed memory
modules provided in the edge of PE array are excluded.

4.1. Granularity and Area/Delay

The PE granularity G is usually decided to match the data
size mainly treated in the DRPA. Fig.4 shows the area of
PE array with various G. The area is increased almost lin-
early with G independent of the SE flexibility (Fsw). The
area becomes exactly double when G becomes 4 times (8bit
to 32bit) with any Fsw. Given G = 32, only 1.5mm-2mm
square die area is needed. This fact demonstrates that the
DRPA is enough small to be used as an IP core in an SoC.

As shown in Fig.5, the critical path delay versus G is also
increased with G, but the impact is rather modest compared
with the case of area. If G is increased by 8bit, the delay
increases about 2nsec in the 90-nm CMOS technology. This
suggests that the large granularity is advantageous from the
viewpoint of the critical path delay. The delay is also not so
sensitive with Funit.

4.2. Intra-PE Flexibility and PE Area

Fig.6 shows the total cell area of a PE for each G and Funit.
As prospected, the area becomes large with increasing G
and Funit. Funit influences the area of input selectors of each
functional unit and that of output selectors of connection
blocks. In Fig.6, increasing area mainly comes from selec-
tors.

Increasing Funit also enlarges the area for a context mem-
ory as shown in Fig.7. However, it is not so severe compared

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

8 16 24 32

To
ta

l C
el

l A
re

a 
of

 A
rr

ay
 [u

m
2 ]

Granularity (G)

Fsw=6
Fsw=5
Fsw=4
Fsw=3
Fsw=2

Fig. 4. Granularity vs. Total Array Area

 7

 8

 9

 10

 11

 12

 13

 14

8 16 24 32

C
rit

ic
al

 P
at

h 
D

el
ay

 P
E

 [n
s]

Granularity (G)

Funit=8
Funit=7
Funit=6
Funit=5
Funit=4

Fig. 5. Granularity vs. Critical Path Delay of PE

with increasing of the cell area for a PE. That is, the increase
of configuration bits is not sensitive to the increasing gran-
ularity. Moreover, additional configuration data for the PE
Core is a certain constant value when G becomes double.
Hence, from the viewpoint of the context memory, a large G
is area-efficient.

4.3. Inter-PE Flexibility and Array Area

As discussed before, SE Flexibility or inter-PE flexibility
Fsw gives an impact to the area of PE array. Fsw which
shows the flexibility of the interconnection between PEs in-
fluences the area of SE and global routing resources, but
does not directly related to the area of PE. Fig.8 shows the
total cell area of 4 × 4 PE array for each G and Funit. Like
the case of a single PE, increasing G and Fsw enlarges the
area of PE array.

5. REAL CHIP EXAMPLE: MUCCRA-1

As an example of DRPAs, we developed a prototype chip
with a tool for application and evaluated its performance.
The following parameters are selected for the prototype chip
MuCCRA-1: G = 24, Funit = 4, Fpi = 4, Fsw = 2 and
C = 64. The difference between MuCCRA-1 and DRPA ar-
chitectures examined in this paper is as follows: (1) Since
the 90-nm CMOS technology used in this work was not



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

4 5 6 7 8

To
ta

l C
el

l A
re

a 
of

 P
E

 [u
m

2 ]

PE Unit Flexibility (Funit)

G=32
G=24
G=16
G=8

Fig. 6. PE Unit Flexibility vs. Total PE Area

 0

 5000

 10000

 15000

 20000

 25000

 30000

4 5 6 7 8

C
on

te
xt

 M
em

or
y 

A
re

a 
of

 P
E

 [u
m

2 ]

PE Unit Flexibility (Funit)

G=32
G=24
G=16
G=8

Fig. 7. PE Unit Flexibility vs. PE Context Memory Area

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

2 3 4 5 6

To
ta

l C
el

l A
re

a 
of

 A
rr

ay
 [u

m
2 ]

SE Flexibility (Fsw)

G=32
G=24
G=16
G=8

Fig. 8. SE Flexibility vs. Total Area of PE Array

available when MuCCRA-1 designed, the Rohm’s 180-nm
CMOS technology was used instead. It was implemented
on 5.18mm x 5.18mm square die with 185 I/O pads. (2) The
multipliers are separated from PEs and placed outside the
PE array because of the chip limitation. In addition, in order
to run large applications, virtual hardware mechanism and
double buffering I/O are provided.

The MuCCRA-1 was taped out on the last November.
Table 1 shows the execution time of designed applications.
It works from 20MHz to 40MHz clock speed depending
on the application design, and the execution speed is about
twice of that of the Texas Instrument’s digital signal proces-
sor (TMS320C6713) which works at 225MHz clock. This
design experience demonstrates that DRPA architectures ex-
amined in this paper are practical for embedded systems.

Table 1. Execution Time for 4 Applications on MuCCRA-1
BlockSize ExecClocks Delay ExecTime

[bit] [ns] [µs]
DCT 1024 195 40 7.8

α-Blender 8192 644 24 15.5
SHA-1 512 418 50 20.9
Viterbi 8 600 42 25.2

6. CONCLUSION

In this paper, we proposed a parameterized DRPA generator.
By specifying architectural parameters such as PE granular-
ity and several connection flexibilities, the generator can au-
tomatically generate a synthesizable Verilog-HDL descrip-
tion and verification environment.

We have generated various types of DRPAs and evalu-
ated hardware area and speed by using the ASPLA/STARC
90-nm CMOS technology. From evaluation results, it ap-
pears that when the PE granularity changes from 8bit to
32bit, the area is doubled, and the delay time is increased
about 6 nsec.

As the future work, we would like to establish the auto-
matic design framework of application-customized DRPAs
on the basis of this result. For this purpose, a re-targetable
DRPA compiler is now under construction and we’ll analyze
architectural trade-offs based on real applications.

Acknowledgment This work is supported in part by Japan
Science and Technology Agency(JST) and Japan Society for
the Promotion of Science(JSPS). The authors thank to VLSI
Design and Education Centor (VDEC), and Prof. Kobayashi
and his colleagues in Kyoto University for their design flow
of ASPLA/STARC 90-nm CMOS process.

7. REFERENCES

[1] M. Motomura, “A Dynamically Reconfigurable Processor Ar-
chitecture,” Microprocessor Forum, Oct. 2002.

[2] M. Petrov, et al., “The XPP Architecture and Its Co-simulation
within the Simulink Environment,” in Proc. of Int’l Conf. on
Field Programmable Logic and Application (FPL), Aug. 2004,
pp. 761–770.

[3] Rapport, Inc., http://www.rapportincorporated.com/.

[4] T. Stansfield, “Using Multiplexers for Control and Data in D-
Fabrix,” in Proc. of Int’l Conf. on Field Programmable Logic
and Application (FPL), Sept. 2003, pp. 416–425.

[5] Y. Kurose, et al., “A 90nm Embedded DRAM Single Chip LSI
with a 3D Graphics, H.264 Codec Engine, and a Reconfig-
urable Processor,” in Hot Chips 16, Sept. 2004.

[6] Y. Hasegawa, et al., “Performance and Power Analysis of
Time-multiplexed Execution on Dynamically Reconfigurable
Processor,” in Proc. of IEEE Int’l Parallel and Distributed Pro-
cessing Symposium (IPDPS), Apr. 2006.


