

Section 1:

CUBE chip design flow

CUBE chip design flow (English version)

Hiroki Matsutani ∗

October 21st, 2010

Table of contents

1. Chip overview

2. cube core: operation modes

3. cube core: RTL simulation

4. cube core: Synthesis

5. cube core: Post-synthesis simulation

6. cube core: Place and route (layout)

7. cube core: Post-layout simulation

8. cube core: Formal verification

9. cube core: DRC, LVS, ERC, and ANT verifications

10. Dummy inductors: Synthesis, place, and route

11. CUBE TOP: Place and route

12. CUBE TOP: Frame

13. CUBE TOP: DRC, LVS, ERC, and ANT verifications

1 Chip overview

CUBE chip consists of the following four modules (Figure 1).

• cube core: On-chip routers, cores, bus controller, etc

• ptp core0: Inductors for point-to-point downlink communications

• ptp core1: Inductors for point-to-point uplink communications

• sb4 core: Inductors for broadcast bus communications

We used the inductive-coupling transceiver circuits for ptp core0, ptp core1, and sb4 core in a real chip. In this design

flow, however, we use Dummy inductor cores which can be fully synthesized for ease of explanation. Thus, for a real chip

design, we have to replace these Dummy inductor cores with real inductive-coupling transceiver circuits.

Notice that three power lines are required for this chip since ptp cores and sb4 core require VDD, VDDBR, and VDDBC.

For more detail, refer to “Appendix A: CUBE TOP layout flow”.

∗matutani@hal.ipc.i.u-tokyo.ac.jp

1

Figure 1: CUBE chip floorplan.

2 cube core: operation modes

The test module test.v supports the following four operation modes.

Table 1: Test module’s operation modes

==

Mode 0 Point-to-point (Single: packet injections to random destination)

Mode 2 Point-to-point (Burst: packet streams to specified destination)

Mode 1 Shared-bus (Single: packet injections to random destination)

Mode 3 Shared-bus (Burst: packet streams to specified destination)

--

Change $mode value in sim/rom.pl. Then sim/rom.pl generates Event ROM file according to the mode specified. For

more detail, refer to “Section 2: CUBE chip specification”.

3 cube core: RTL simulation

Refer to “Section 2: CUBE chip specification” for more details on the RTL simulation.

cd cube/sim

vi rom.pl (Set $mode to 0)

./rom.pl >! event.hex

make sim

vi rom.pl (Set $mode to 1)

./rom.pl >! event.hex

make sim

vi rom.pl (Set $mode to 2)

./rom.pl >! event.hex

make sim

2

vi rom.pl (Set $mode to 3)

./rom.pl >! event.hex

make sim

You can find “Dump file” statement in the end of test.v. If you comment out this description, a value dump file

test.vcd is generated after the simulation. Open test.vcd with a wave viewer (e.g., Simvision or GTKwave) and check the

waveform.

4 cube core: Synthesis

[Modification for cube/syn/scripts/compile dc.tcl] Set LIB DIR to a directory path of standard cell db

file.

cd cube/syn

make syn

See syn.log for Design Compiler’s log and cube.rep for the synthesis report.

5 cube core: Post-synthesis simulation

[Modification for cube/sim/Makefile] Set LIBV to a directory path of standard cell Verilog model.

cd cube/sim

vi rom.pl (Set $mode to 0)

./rom.pl >! event.hex

make ssim

vi rom.pl (Set $mode to 1)

./rom.pl >! event.hex

make ssim

vi rom.pl (Set $mode to 2)

./rom.pl >! event.hex

make ssim

vi rom.pl (Set $mode to 3)

./rom.pl >! event.hex

make ssim

6 cube core: Place and route (layout)

[Modification for cube/pr/Makefile] For “setup” rule, set a directory path of standard cell Milkyway

library and set file paths of required technology files.

[Modification for cube/pr/scripts/set sz.tcl] Set LIB DIR to a directory path of standard cell db file.

Set IO LIB DIR to a directory path of I/O cell db file. Set DW DIR if needed.

cd cube/pr

make pr

3

“make pr” first generates symbolic links to necessary technology files (see “setup” rule). Then it performs the place

and route of the design using IC Compiler.

7 cube core: Post-layout simulation

[Modification for cube/sim/scripts/convert sdf.tcl] Set LIB DIR to a directory path of standard cell db

file.

First, the delay information (SDF file) generated by ICC has to be converted to another form which is capable of NC

Verilog simulation, by using Synopsys PrimeTime.

cd cube/sim

make sdf

Perform a post-layout simulation by using the converted delay file (cube pt.sdf).

vi rom.pl (Set $mode to 0)

./rom.pl >! event.hex

make psim

vi rom.pl (Set $mode to 1)

./rom.pl >! event.hex

make psim

vi rom.pl (Set $mode to 2)

./rom.pl >! event.hex

make psim

vi rom.pl (Set $mode to 3)

./rom.pl >! event.hex

make psim

Be careful of size of the value dump file when “Dump file” statement in the end of test.v is enabled. It is quite large.

8 cube core: Formal verification

[Modification for cube/verify/scripts misc/verify fm.tcl: Set LIB DIR to a directory path of standard

cell db file.

Perform the following verification after the place and route of cube core.

cd cube/verify

make verify

Check fm.log. If all items of “Failing (not equivalent)” are zero, the placed and routed netlist is logically correct.

9 cube core: DRC, LVS, ERC, and ANT verifications

[Modification for cube/verify/Makefile] For “setup” rule, set a file path of standard cell gds file and set

file paths of required technology files.

4

[Modification for cube/verify/Makefile] For “cdl” fule, set a file path of standard cell cdl file.

Perform the following verification setup after the place and route of cube core.

cd cube/verify

make setup

make gds

make cdl

make ed

“make setup” generates symbolic links to Fujitsu 65nm verification scripts. The gds file generated by ICC does not

contain the gds image of standard cells. “make gds” embed the gds image of standard cells in the cube core gds to

generate a complete gds that contains everything for the verification. “make cdl” generates SPICE netlist of cube core

for LVS. “make ed” generates pin location file (ED TEXT) of cube core for LVS.

Perform Design rule check (DRC).

./cal_drccs2001

Answer the questions.

./cube_drc_run.csh

Perform Layout versus schematic (LVS) and Electric rule check (ERC).

./cal_lvscs2001

Answer the questions.

./cube_lvs_run.csh

Perform Antenna rule check (ANT).

./cal_antcs2001

Answer the questions.

./cube_ant_run.csh

“make setup” has generated the default answer files (.rsf.setup ant, .rsf.setup lvs, and .rsf.setup drc). For the questions

from the verification scripts, you can just select the default values.

10 Dummy inductors: Synthesis, place, and route

[Modification for ptp/syn/scripts/compile dc.tcl] Set LIB DIR to a directory path of standard cell db

file.

[Modification for ptp/pr/Makefile] For “setup” rule, set a directory path of standard cell Milkyway

library and set file paths of required technology files.

[Modification for ptp/pr/scripts/set sz.tcl] Set LIB DIR to a directory path of standard cell db file. Set

IO LIB DIR to a directory path of I/O cell db file. Set DW DIR if needed.

[Modification for sb4/syn/scripts/compile dc.tcl] Set LIB DIR to a directory path of standard cell db

file.

[Modification for sb4/pr/Makefile] For “setup” rule, set a directory path of standard cell Milkyway

library and set file paths of required technology files.

[Modification for sb4/pr/scripts/set sz.tcl] Set LIB DIR to a directory path of standard cell db file. Set

IO LIB DIR to a directory path of I/O cell db file. Set DW DIR if needed.

Synthesize the ptp core.

5

cd ptp/syn

make syn

Place and route the ptp core.

cd ptp/pr

make pr

Synthesize the sb4 core.

cd sb4/syn

make syn

Place and route the sb4 core.

cd sb4/pr

make pr

11 CUBE TOP: Place and route

[Modification for CUBE TOP/pr/Makefile] For “setup” rule, set a directory path of standard cell

Milkyway library and set file paths of required technology files.

[Modification for CUBE TOP/pr/scripts/set sz.tcl] Set LIB DIR to a directory path of standard cell

db file. Set IO LIB DIR to a directory path of I/O cell db file. Set DW DIR if needed.

For more detail on the layout, refer to CUBE TOP/pr/scripts/CUBE TOP.tcl and “Appendix A: CUBE TOP layout

flow”. This chip uses three power lines: VDD, VDDBC, and VDDBR. Divider I/O cells are inserted to the right

and left of VDDBC and VDDBR pads to separate these power lines. Otherwise, these power lines are connected at

the I/O pads, resulting in short circuits in the power supply. For more detail on the divider cell insertion, refer to

CUBE TOP/pr/scripts/ioplace.tcl.

cd CUBE_TOP/pr

make setup

Unfortunately, a DRC error cannot be removed by the auto place and route by ICC, so I recommend you to execute

each place-and-route command manually rather than “make pr” for CUBE TOP layout. Launch IC Compiler with GUI

mode.

icc_shell -gui

Execute each place-and-route command in CUBE TOP/pr/scripts/CUBE TOP.tcl manually until “STOP HERE.

PLEASE RUN DRC.” line. To do so, copy and paste each command to “icc shell>” of MainWindow and type En-

ter.

After completing all commands before “STOP HERE. PLEASE RUN DRC.” line, execute “Verification 7→ DRC” of

LayoutWindow.

You have to remove only a DRC error of “MaxWidth 1” by hand. For more detail on how to remove it, refer to

“Appendix B: CUBE TOP DRC-free how-to”.

After fixing the “MaxWidth 1” error, try DRC again and check the DRC report to confirm that the error has been

removed. If the error is removed, execute all the remaining commands after “STOP HERE. PLEASE RUN DRC.” line.

6

12 CUBE TOP: Frame

[Modification for CUBE TOP/frame/Makefile] For “setup” rule, set file paths of required technology

files.

[Modification for CUBE TOP/frame/Makefile] For “stdcell” rule, set a file path of standard cell gds file

(cs202sz uc.gds). In the same way, set file paths of cs202 fm.gds, frames.str, MB8AW4203 FRAME.gds,

and cs202 io.gds to the appropriate rules.

The chip frame MB8AWXXXX FRAME.gds will be provided for each chip application from VDEC. Use the appropriate

frame for your tape-out.

Generate symbolic links to gds files of cube core, dummy inductors (ptp and sb4), and CUBE TOP in

CUBE TOP/frame/input/.

cd CUBE_TOP/frame

make setup

Read all gds files including cube core, dummy inductors (ptp and sb4), standard cells, I/O cells, frame, and so on.

make base

Embed all child modules to the frame. For more detail on building the frame, refer to “Appendix C: CUBE chip frame

insertion”.

make CUBE_TOP.addframe

The final gds file that includes everything is saved in CUBE TOP/frame/CUBE TOP.gds.

13 CUBE TOP: DRC, LVS, ERC, and ANT verifications

[Modification for CUBE TOP/verify/Makefile] For “setup” rule, set file paths of required technology

files.

[Modification for CUBE TOP/verify/Makefile] For “CUBE TOP.cdl” fule, set a file path of standard

cell cdl file.

cd CUBE_TOP/verify

make setup

“make setup” generates symbolic links to Fujitsu 65nm verification scripts. It also generates symbolic links to Verilog

models of cube core, dummy inductors (ptp and sb4), and CUBE TOP for LVS in CUBE TOP/frame/input/. To generate

the Verilog model for chip-level LVS by IC Compiler, you need to perform write verilog with -no physical only cells option.

Generate SPICE netlists for LVS from the Verilog models for LVS. Please execute “make CUBE TOP.cdl” in an

environment where ruby command is installed since we use ruby for the text processing.

make cube.cdl

make sb4.cdl

make ptp.cdl

make CUBE_TOP.cdl

SPICE netlists for LVS are saved in CUBE TOP/frame/cdl.

At first, we declared VDD and VSS as global in the SPICE netlists. However, since the LVS tool mixed up VDD and

VDDBC/VDDBR and reported LVS errors, we are not using any global declarations. That is, we have to specify VDD,

VSS, (VDE, VDDBC, VDDBR) ports for each module in the SPICE netlists. Also, we have to remove “VNW=VNW”

and “VPW=VPW” from I/O and corner cells.

7

CUBE TOP.cdl includes child cdl files, such as cube.cdl, sb4.cdl, ptp.cdl, cs202sz uc.cdl, and cs202 io.cdl. It is OK for

the LVS at local machines. For the final LVS at VDEC web site, on the other hand, the cdl file must be self-contained (i.e.,

all the cdl files should be a single file). For more detail on the cdl file preparation, refer to CUBE TOP/verify/Makefile.

Perform Design rule check (DRC).

./cal_drccs2001

Answer the questions.

./CUBE_TOP_drc_run.csh

Perform Layout versus schematic (LVS) and Electric rule check (ERC).

./cal_lvscs2001

Answer the questions.

./CUBE_TOP_lvs_run.csh

Perform Antenna rule check (ANT).

./cal_antcs2001

Answer the questions.

./CUBE_TOP_ant_run.csh

“make setup” has generated the default answer files (.rsf.setup ant, .rsf.setup lvs, and .rsf.setup drc). For the questions

from the verification scripts, you can just select the default values.

8

Section 2:

CUBE chip specification

CUBE chip specification (English version)

Hiroki Matsutani ∗

October 20th, 2010

Table of contents

1. Chip I/O and control registers

2. Architecture, topology, and routing

3. Packet format and flit format

4. Event ROM format

5. Probe signals

1 Chip I/O and control registers

There are only 12 pins available for data I/O, clk, and rst . These pins are used as follows. The reset signal is active-low.

IN Clock (clk), 1-bit

IN Rest (rst_), 1-bit, active-low

IN Input data (idata), 4-bit

OUT Output data (odata), 3-bit

IN Register bank select (sel), 2-bit

IN Register write enable (wr), 1-bit

For the control register write, first select the register bank by sel signal, then assert the write enable (wr) so that the

input data (idata) are saved to the specified register bank.

For the control register read, the value of the register bank specified by sel signal appears at odata.

Table 1: Control register format. X indicates the bit may be deletable.

==

Control register 0 (sel == 0):

idata[0] Core select (core 0 or core 1)

idata[1] Packet injection to pre-specified dest using vch

idata[2] Dummy mode (Do not set 1)

X idata[3] Clear the packet counter of selected core

odata[0] Packet-injection ready status for VC0 of selected core

odata[1] Packet-injection ready status for VC1 of selected core

X odata[2] Selected core (core 0 or core 1)

--

Control register 1 (sel == 1):

idata[3:0] Destination (dest) address of packets (4-bit)

∗matutani@hal.ipc.i.u-tokyo.ac.jp

1

X odata[2:0] Packet counter value (0-3 bit)

--

Control register 2 (sel == 2):

idata[0] Virtual channel (vch) ID of packets (1-bit)

idata[1] Burst mode enable

idata[2] NoC mode (0: Point-to-point, 1: Shared bus)

idata[3] Start reading the packet counter of selected core (cread)

odata[2:0] Packet counter value (45-bit, 3-bit for each cycle)

--

Control register 3 (sel == 3):

idata[2:0] Chip ID (0-7)

idata[3] Am I the top chip?

X odata[2:0] Packet counter value (4-7 bit)

--

When cread signal is asserted, the packet counter value of selected core is read from odata of register 2. That is, 3-bit

value of the counter is read sequentially using 15 cycles in total.

When inject signal is asserted with the burst mode ON, packets to dest using vch are continuously injected until the

burst mode is disabled.

Refer to sim/test.v for examples of the chip initialization (e.g., Chip ID and mode), the packet injection procedure,

and the packet counter read procedure.

2 Architecture, topology, and routing

Each chip has two cores. Each core has a router.

Up to eight chips (16 cores) can be stacked in a package, although we just stack only four chips (8 cores) in the simulator

(see sim/test.v) for ease of understanding.

Chip-3 is the top chip and Chip-0 is the bottom chip. In each chip, left core (router) has an even ID while the right

core (router) has an odd ID.

Chip-3 [Router_6] <--> [Router_7]

V A

Chip-2 [Router_4] <--> [Router_5]

V A

Chip-1 [Router_2] <--> [Router_3]

V A

Chip-0 [Router_0] <--> [Router_1]

Two cores on the same chip are connected via a bi-directional horizontal link. Even routers have a downstream link

while odd routers have a upstream link.

Packets using virtual channel 0 cannot use any horizontal links, except routers located in the top or bottom chips. For

example, a packet from router 1 to router 2 goes through router 1, router 3, router 5, router 7, router 6, router 4, and

router 2.

Packets using virtual channel 1 can use the horizontal links only when the destination is located in the same chip.

Otherwise, they also follow the same rule of virtual channel 0. That is, a packet from router 1 to router 2 goes through

router 1, router 3, and router 2.

3 Packet format and flit format

Each packet consists of a head flit, three data flits, and a tail flit.

2

Destination address is stored in the head flit. Payload data are stored in the data and tail flits. Crossbar switch

allocation is released when the tail flit goes through the crossbar.

Table 2: Flit format. X indicates the field may be deletable.

==

Head flit:

flit[33:32] Flit type (2’b01 indicates a head flit)

flit[31:8] Random value generated by m-sequence

X flit[7:4] Flit ID in a packet (0 for head flit)

flit[3:0] Destination core address

--

Data flit:

flit[33:32] Flit type (2’b10 indicates a data flit)

flit[31:8] Random value generated by m-sequence

X flit[7:4] Flit ID in a packet (1-3 for body flits)

X flit[3:0] Destination core address

--

Tail flit:

flit[33:32] Flit type (2’b11 indicates a tail flit)

flit[31:8] Random value generated by m-sequence

X flit[7:4] Flit ID in a packet (4 for tail flit)

X flit[3:0] Destination core address

--

Perform the RTL simulation of sim/test.v. Then you can see that packets are transferred in the ring network.

4 Event ROM format

In sim/test.v, packets are injected to the network according to the Event ROM (sim/event.hex).

Table 3: Event ROM format. The values are in hexadecimal.

==

event[43:12] Clock that indicates when the packet is injected

event[11:8] Virtual channel used (VC0 or VC1)

event[7:4] Source core (0-7)

event[3:0] Destination core (0-7)

--

At the packet injection clock, the source core starts the packet injection procedure that configures necessary control

registers of the core. It takes several cycles for the procedure before the packet is actually sent.

Below is an example of Event ROM file. The first line specifies the NoC mode and the second line specifies the number

of events in the ROM.

0 // NoC mode 0-3 (See Table 1 of Section 1)

3 // Number of events is 3

00000010_0_3_2 // At 16th clock, core 3 sends to core 2 using VC0

00000020_1_7_6 // At 32nd clock, core 7 sends to core 6 using VC1

00000030_1_2_3 // At 48th clock, core 2 sends to core 3 using VC1

3

5 Probe signals

In addition to the 12 I/O pins, only the top chip provides additional 9 probe pins for measuring its internal states.

Table 4: Probe signals (9 pins)

==

probe[1:0] Chip ID of core 0 (id_0[2:1])

probe[2] Timeslot signal of core 0 (ts_control)

--

probe[4:3] Flit type of a link from core 0 to router 0

probe[6:5] Flit type of a link from router 0 to router 1

probe[8:7] Flit type of a link from router 1 to core 1

--

The following measurements are possible.

• Write a control register. Then read probe[1:0] to check the register has a correct value.

• Read probe[2] to check the shared bus controller gives a time-slot for each plane correctly.

• Send a packet from core 0 to core 1. Then read probe[8:3] to check the packet is transferred on the link correctly.

4

Appendix A:

CUBE_TOP layout flow

CU
BE

_T
O
P
la
yo
ut
 fl
ow

1/
8

Sp
ec
ify

 th
e
ch
ip
 a
re
a
(1
32

0u
m
 x
 1
32

0u
m
) b

y
in
iti
al
iz
e_
flo

or
pl
an

co
m
m
an
d.

CU
BE

_T
O
P
la
yo
ut
 fl
ow

2/
8

Pl
ac
e
m
ac
ro
s
(c
ub

e,
 p
tp
0,
 p
tp
1,
 a
nd

 s
b)
 o
n
th
e
ch
ip
 u
si
ng

 io
ge
n.
tc
l a
nd

 io
pl
ac
e.
tc
l.

CU
BE

_T
O
P
la
yo
ut
 fl
ow

3/
8

Fi
ll
up

 u
nu

se
d
I/
O
 a
re
a
w
ith

 fi
lle
r
ce
lls
 b
y
in
se
rt
_p

ad
_f
ill
er

co
m
m
an
d.

CU
BE

_T
O
P
la
yo
ut
 fl
ow

4/
8

C
t

/
d

i
b

t
t

l
i

d
Cr
ea
te
 p
ow

er
/g
ro
un

d
ri
ng
s
by
 c
re
at
e_
re
ct
an
gu
la
r_
ri
ng
s
co
m
m
an
d.

W
e
ne

ed
 fo

ur
 r
in
gs
 in
cl
ud

in
g
VD

D
, V

D
D
BC

, V
D
D
BR

, a
nd

 V
SS
.

CU
BE

_T
O
P
la
yo
ut
 fl
ow

5/
8

C
t

ti
l

t
b

t
t

d
Cr
ea
te
 v
er
tic
al
 p
ow

er
 s
tr
ap
s
by
 c
re
at
e_
po

w
er
_s
tr
ap
s
co
m
m
an
d.

CU
BE

_T
O
P
la
yo
ut
 fl
ow

6/
8

C
t

h
i

t
l

t
b

th
i
d

t
(
t
0

t
1

d
b)

i
Cr
ea
te
 h
or
iz
on

ta
l p
ow

er
 s
tr
ap
s,
 b
ec
au
se
 th

e
in
du

ct
or
s
(p
tp
0,
 p
tp
1,
 a
nd

 s
b)
 re

qu
ire

th
e
ho

ri
zo
nt
al
 p
ow

er
 s
tr
ap
s
in
 a
dd

iti
on

 to
 v
er
tic
al
 o
ne

s.

CU
BE

_T
O
P
la
yo
ut
 fl
ow

7/
8

C
t

t
b

t
VD

D
BR

/V
D
D
BC

i
d
VD

D
BR

/V
D
D
BC

t
ft
h

Cr
ea
te
 s
tr
ap
s
be

tw
ee
n
VD

D
BR

/V
D
D
BC

 ri
ng
s
an
d
VD

D
BR

/V
D
D
BC

 p
or
ts
 o
f t
he

in
du

ct
or
s
(p
tp
0,
 p
tp
1,
 a
nd

 s
b)
.

St
ra
p
(V
D
D
BR

)

St
ra
p
(V
D
D
BC

)
St
ra
p

St
ra
p

St
ra
p
(V
D
D
BC

)
St
ra
p

(V
D
D
BC

)
St
ra
p

(V
D
D
BR

)

CU
BE

_T
O
P
la
yo
ut
 fl
ow

8/
8

C
t

/
d

d
(V
D
D

VD
D
BR

VD
D
BC

d
VS

S)
d

di
Co

nn
ec
t p

ow
er
/g
ro
un

d
pa
ds
 (V

D
D
, V

D
D
BR

, V
D
D
BC

, a
nd

 V
SS
) a

nd
 c
or
re
sp
on

di
ng

po

w
er
/g
ro
un

d
ri
ng
s
by
 p
re
ro
ut
e_
in
st
an
ce
s
co
m
m
an
d.

V
SS

V
D
D
BR

V
D
D
BC

V
D
D

Appendix B:

CUBE_TOP DRC-free how-to

CU
BE

_T
O
P
D
RC

‐f
re
e
ho

w
‐t
o
1/
4

V
D
D

Th
e
w
id
th

of
ar
ea

su
rr
ou

nd
ed

by
w
hi
te

lin
e
sh
ou

ld
be

re
du

ce
d

V
D
D

Th
e
w
id
th
 o
f

ar
ea

 s
ur
ro
un

de
d
by
 w
hi
te
 li
ne

 s
ho

ul
d
be

 re
du

ce
d.

Fi
rs
t,
 t
he

 h
ei
gh
t o

f
ar
ea

 is
 s
ho

rt
en

ed
 (
Re

si
ze
 it
 a
s
th
e
ye
llo
w
 a
rr
ow

 s
ho

w
s)
.

V
D
D

CU
BE

_T
O
P
D
RC

‐f
re
e
ho

w
‐t
o
2/
4

V
D
D

Th
e
ri
gh
te

dg
e
of

ar
ea

su
rr
ou

nd
ed

by
w
hi
te

lin
e
sh
ou

ld
be

m
ov
ed

to
le
ft

V
D
D

Th
e
ri
gh
t e

dg
e
of

ar
ea

 s
ur
ro
un

de
d
by
 w
hi
te
 li
ne

sh
ou

ld
 b
e
m
ov
ed

 to
 le
ft
.

(K
ee
p
in
 m

in
d
th
e
lo
ca
tio

n
of
 y
el
lo
w
 a
rr
ow

)

CU
BE

_T
O
P
D
RC

‐f
re
e
ho

w
‐t
o
3/
4

V
D
D

Th
e
ri
gh
te

dg
e
of

th
e

ar
ea

ha
s
be

en
sl
ig
ht
ly
m
ov
ed

to
le
ft
!

V
D
D

Th
e
ri
gh
t e

dg
e
of
 t
he

ar
ea

 h
as
 b
ee
n
sl
ig
ht
ly
 m

ov
ed

 to
 le
ft
!

(C
om

pa
re
 th

e
lo
ca
tio

ns
 o
f n

ew
 a
nd

 o
ld
 y
el
lo
w
 a
rr
ow

s)

CU
BE

_T
O
P
D
RC

‐f
re
e
ho

w
‐t
o
4/
4

V
D
D

Be
ca
us
e
th
e
w
id
th

of
th
e

ar
ea

is
w
ith

in
an

ac
ce
pt
ab
le
ra
ng
e
th
e
ne
xt

V
D
D

Be
ca
us
e
th
e
w
id
th
 o
f t
he

 a
re
a
is
 w
ith

in
 a
n
ac
ce
pt
ab
le
 ra

ng
e,
 th

e
ne
xt

D
RC

 d
oe

sn
’t
 re

po
rt
 th

e
“M

ax
W
id
th

x1
”
er
ro
r.
Ig
no

re
 th

e
ot
he

r
er
ro
rs
 h
er
e.

Appendix C:

CUBE chip frame insertion

CU
BE

ch
ip
 fr
am

e
in
se
rt
io
n
1/
2

D
um

m
y
in
du

ct
or
s
(p
tp
0
pt
p1

an
d
sb
)
cu
be

co
re

an
d
CU

BE
TO

P
ar
e
em

be
dd

ed
D
um

m
y
in
du

ct
or
s
(p
tp
0,
 p
tp
1,
 a
nd

 s
b)
, c
ub

e
co
re
, a
nd

 C
U
BE

_T
O
P
ar
e
em

be
dd

ed

in
 th

e
ch
ip
 fr
am

e
(E
5F
RA

M
).
N
ot
e
w
e
us
e
re
al
 in
du

ct
or
s
fo
r t
he

 re
al
 ta

pe
‐o
ut
.

CU
BE

ch
ip
 fr
am

e
in
se
rt
io
n
2/
2

D
um

m
y
in
du

ct
or
s
(p
tp
0
pt
p1

an
d
sb
)
cu
be

co
re

an
d
CU

BE
TO

P
ar
e
em

be
dd

ed
D
um

m
y
in
du

ct
or
s
(p
tp
0,
 p
tp
1,
 a
nd

 s
b)
, c
ub

e
co
re
, a
nd

 C
U
BE

_T
O
P
ar
e
em

be
dd

ed

in
 th

e
ch
ip
 fr
am

e
(E
5F
RA

M
).
N
ot
e
w
e
us
e
re
al
 in
du

ct
or
s
fo
r t
he

 re
al
 ta

pe
‐o
ut
.

	01_cover-e
	01_flow-e
	02_cover-e
	02_design-e
	03_cover-e
	03_layout-e
	04_cover-e
	04_drc_free-e
	05_cover-e
	05_frame-e

