四則演算

• Verilogでは四則演算(+,-,*,/)は普通に書けば、加算、減算、乗算、除算を実行します。しかしソフトウェアと違って、加算器、減算器、乗算器、除算器を生成することに注意してください。除算器などは非常に大量のハードウェアを必要とします。乗算器、除算器はどのような論理合成系でハードウェアを生成するかを良く考える必要があります。

```
assign x = a+b;
assign y=a*b;
```

論理演算(ANDとOR)

- 論理積(AND) Verilog演算子 &
 - 0&0=0, 1&0=0, 0&1=0, 1&1=1
 - 多桁の場合、対応するビット間の演算となる
 - 例)1011 & 1101 = 1001
 - 1を検出するマスク操作に良く用いる
- 論理和(OR) Verilog演算子
 - 0|0=0, 1|0=1, 0|1=1, 1|1=1
 - 多桁の場合、対応するビット間の演算となる
 - 例)1001 | 1101 = 1101

論理演算(NOTとEX-OR)

- 反転(NOT) Verilog演算子 ~
 - ~0=1, ~1=0
 - 多桁の場合、各ビットを反転する
 - 例)~1011 = 0100
 - 1項演算子
- 排他的論理和(EX-OR) Verilog演算子 ^
 - 0^0=0, 1^0=1, 0^1=1, 1^1=0
 - 多桁の場合、対応するビット間の演算となる
 - 例)1001 ^1101 = 0100
 - 一致、反一致の判定に使う

シフト(論理シフト)

- 左シフト(Shift Left Logical) Verilog演算子 <<
 - ・ 指定ビット数分左にずらす 2倍、4倍、8倍、、、
 - ずれた分、右(LSB:Least Significant Bit)には0を詰める 11101010<<1 = 11010100 11101010<<5 = 01000000
- 右シフト(Shift Right Logical) Verilog演算子 >>
 - 指定ビット数分右にずらす ½、¼、1/8、、、、
 - ずれた分、左(MSB:Most Significant Bit)には0を詰める 11101010>>1 = 01110101 11101010>>5 = 00000111
- ・コンピュータの演算には他にも算術シフト、ローテーションなどありますが、 Verilogの演算子としては定義されていないです。

比較演算子

- •成立すれば1、そうでなければ0を返す
- •大小比較:<<=>>=
- 等号: == != ===!==
 - ==!=は、x(不定)、z(ハイインピーダンス)が入力にあれば結果はxやzになる
 - ===!==は、x、zを含めて比較する
 - ・この授業で==!=のみを利用する

リダクション演算

- 論理演算子をバスの前に書くとリダクション演算子となる
- ・全ビットを演算し、結果は1か0の1ビットの値になる

A=4'b1001ならば

AND & A=0

OR | A=1

NAND ~&A=1

NOR ~ | A=0

演算子の優先順位

論理否定	!(条件に対する否定)~
乗除算	* / %
加減算	+ -
シフト演算	<< >>
比較演算	<><=>=
等号	== != === !==
論理積	&
排他的論理和	^
論理和	
論理積(条件)	&&
論理和(条件)	
条件	? :