CRESTコンピューティング基盤領域

試作チップ(TEG1)のデモンストレーション 熊本大学 飯田グループ

1

TEG1 FPGA-IPアーキテクチャ

- 1種類のタイルをアレイ状に配置
- 周囲のタイルに入出力のためのIOBを配置

評価ボード

設計方針:評価チップの制御信号およびFPGAの入出力を柔軟に制御可能に

- PYNQ-Z2ボード(Xilinx Zynq XC7Z020)のドータボードとして設計
- PYNQからPythonより制御
- FPGA-IP制御信号11本,入出力48本の計59本をPL部に接続(I/0電圧3.3Vを採用)

1. 32ビットバイナリカウンタ

- 基本動作の確認
- ■動作周波数,資源使用率,消費電力

2. ベクトル乗算

- 16ビットデータ内にパックされた2つの8ビット符号なし数値を乗 算し、16ビット符号なし数値を得る
- 3. 移動平均
 - 連続する8個の8ビット符号なしデータに対し単純移動平均を 求める

1. バイナリカウンタ

■ 24ビットカウンタの場合

■ コンフィギュレーション後、問題なく動作していることを確認

資源利用量: FF:24/1024(3%), BLE:38/1024(4%)

STA解析結果: FF-to-FF 5.658ns (176.7MHz)

動作周波数:(実測)

内部:約117MHz(FF-to-FF: 8.5ns), 外部:約 83MHz(CLK→IO: 12.03ns)

外部:約 83MHz (CLK→10: 12.03n 10バッファのディレイ大

6

消費電力:コア(0.9V):162mW@117MHz

3. 移動平均の計算

- 連続する8個の8ビット符号なしデータに対し単純移動平均を求める
- DMAによるバルク転送、ストリーミング処理
- セミシストリックアレイによる実装

デモンストレーション 手順

32ビットバイナリカウンタの場合

9

9

セットアップ

1. PYNQ-Z2に以下を接続

- 電源レギュレータ(12V2A):
 - USB供給では容量不足で動作が不安定になることがある
- イーサネット(UTP)
 - ホストPCからネットワーク経由でJupyter notebookを使うため
- USBケーブル
 - ホストPCからTeratermなどでシリアル接続する
 - DHCPで割り当てられたIPアドレスを知る際に必要

セットアップ

2. セットアップ手順

- 1. PYNQ-Z2の電源を入れてPYNQを動作させる
- Teratermを使ってホストPCからシリアルでログインする ID:xilinx, PW:xilinx 起動時は自動でログインするはずZ
- 3. ip a コマンドでIPアドレスを調べる

3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast sta link/ether 00:05:6b:01:c1:06 brd ff:ff:ff:ff:ff:ff inet 172.28.140.62/24 brd 172.28.140.255 scope global dynamic eth0 valid_lft 3553sec preferred_lft 3553sec inet 192.168.2.99/24 brd 192.168.2.255 scope global eth0:1 valid_lft forever preferred_lft forever

初期設定である 192.168.2.99 またはdhcpで割り当てられたIPアドレスを使う (この例では, 172.28.140.62)

ホストPCのWebブラウザからPYNQ-Z2のJupyter notebookへ接続する http://調べたIPアドレス:9090/ このときのPWも上記と同じ

▲ 保護されていない通信 http://172.28.	言 http:// 172.28.140.62 :9090/login?next=%2Ftree%3F				
💭 Jupyter					
Password:	•••••	Log in			

4. ページ内のpythonプログラムを上から順に実行する							
この際,「PYNQ-Z2上XC7Z020のPL部コンフィギュレーション」を実行し,							
PYNQ-Z2上のZyngのPL部をオーバーレイした後に,							
評価ボードの電源スイッチ	をON(上側)に	こする.					
(PYNQ-Z2の各IOには保護	獲抵抗が入って	こいるの	つで壊れはしないが,				
安全のためにはこの手順	「が良い)		r counter32 Last Charlemaint 11分前 (uncound changes)				
評価ボード	評価ボード	File Edit	View Insert Cell Kernel Widgets Help				
電源スイッチ(上ON)	電源LED						
	Sime in						
			32ビットカウンタの動作確認(counter32)				
			Scriptは上から順に実行する				
			PYNQ-Z2上XC7Z020のPL部コンフィギュレーション				
		In [198]:					
			# FYNU-22 FLの構成 from pyng import Overlay				

5.「TEG1のコンフィギュレーション」でFPGA-IP(TEG1)のコンフィギュレーション を行う、プログラムでTCKを制御している関係から構成には約1分かかる. 構成が進んでいるかどうかは、評価ボード左上の緑LED(CONF_MODE)が 点滅することで確認できる.

なお、CRCエラーが出た際は、評価ボード左上の赤LED(ERRL)が消灯する.

In [4]:	
	TEG1_config('counter32.bitstream.frame')
	Bitstream file readingDone. Start TEG1 configuration (about 1min.) End TEG1 configuration 40.13 s Pass: conf_mode inactive. Enter normal mode.
Out[4]:	0 ← "0"で正常終了

※電源を入れて最初の実行では、"Bitstream file reading"のメッセージが出るまで少し時間がかかります。 ※初回はコンフィギュレーションに失敗することがあります。その際は次ページの手順で再実行します。

コンフィギュレーション時のトラブルへの対処

 6. "Bitstraem file reading"のメッセージが出た後で、CONF_MODEのLEDが点滅していないときは、プロトコルエラーが発生している.この場合、プログラムが終了しないまた、ERRLのLEDが消灯したときはCRCエラーが発生している. プログラムが終了していないとき([*]の表示)の時は、Web画面上部の
 ●を押して終了させる. その後、プログラムの先頭から再実行する. (ボードの電源スイッチはONにしたままでよい)

7. コンフィギュレーション後は, 直ちにカウンタが動作する. LEDで確認できる.

- カウンタのリセット(負論理)はDIPスイッチの第0ビット.
 スイッチを下にするとカウンタが0になり停止.
 スイッチを上にするとカウントアップを開始.
- 9. 「GPIO経由でcounter[23:0]を読み表示する」を実行すると カウンタのcounter[23:0]をGPIOを介して読み出し表示する.

		Edi
	GPIO経由でcounter[23:0]を読み表示する. counter[31	:24]はボード上のLEDで確認できる
In [14]:		Edi
	<pre>for i in range(100):</pre>	
	9f ed 44 159 237 68 10480964 a1 86 51 161 134 81 10585681	Counter[23:0]の値
	a2 05 ab 162 101 171 10642859 a3 45 83 163 69 131 10700163 a4 3b be 164 59 190 10763198 a5 18 20 165 24 32 10819616	

10.カウンタのリセット(負論理)はDIPスイッチの第0ビット. スイッチを下にするとカウンタが0になり停止. スイッチを上にするとカウントアップを開始.

11.「GPIO経由でcounter[23:0]を読み表示する」を実行すると カウンタのcounter[23:0]をGPIOを介して読み出し表示する.

12. 再構成する際は最初から実行する

デモンストレーション 手順

ベクトル乗算の場合

基本的な操作は、32ビットバイナリカウンタと同様

- 1. Jupyter notebookのFilesタブで "demo" ディレクトリに入る
- 2. 実行するデモ "vec8" のディレクトリに入る
- 3. "vec8.ipynb" をクリックしオープンする

File Edit	View Ins	ert Cell	Kernel	Widgets	Help	Trusted	Python 3
₽ + ≫	4 ▲	♦ NRun	C	Markdown	~ <u>III</u>		
	ベクトノ	レ乗算回]路の	デモ			
	16bitデータ内	こパックされた	た2つの8b	it符号なし数	値を乗算し16bit	符号なし数値として得る	5
L							
	PYNQ-Z2	-XC7Z020	のPL部	コンフィキ	ギュレーショ:	ン	
In [9]:	# import lib	rary					
	import matple import numpy	otlib.pyplot as np	as plt				
	from pynq im from pynq im	o <mark>ort</mark> allocate o <mark>ort</mark> Overlay	9				
	from pynq.lik	o import A xi(Lib dma	GPIO				
	import time	THE UNIT					
	base = Overla	ay("./vec8_te	g1_10MHz.	bit")	1 /// //	1 + 18+ 11++	
	#base = Over	lay(./vec8_1	cegi_50MH	Z.DIT)# 🚮	「昇結朱が化ける	とさかめります	

- ページ内のpythonプログラムを上から順に実行する 入力データ
 - 16ビットの上位バイトと下位バイトに、2つの8ビット符号なし数値をパ ッキング
 - 上位バイトと下位バイトを乗算後,乗算結果の16ビット符号なし数値を リターンする

入:	Ъ	期	待値	計算結	果	
(0*255)	=	0	0		
(1*254)	=	254	254		
(2*253)	=	506	506		
(3*252)	=	756	756		
(4*251)	=	1004	1004		
(5*250)	=	1250	1250		
(6*249)	=	1494	1494		
(7*248)	=	1736	1736		
(8*247)	=	1976	1976		
(9*246)	=	2214	2214		

- 4. 「出力データの確認」の実行により、入力データと期待値、およ び実行結果を表示
- 5. 期待値と結果が一致していれば, 最後に「乗算結果はすべて 一致しています」と表示

	(250*5) = 1250 1250
入力 期待値 計算結果	(251* 4) = 1004 1004
(0*255) = 0 0	(252*3) = 756756
(1*254) = 254 254	(253* 2) = 506 506
(2*253) = 506 506	(254* 1) = 254 254
(3*252) = 756 756	(255* 0) = 0 0
(4*251) = 1004 1004	乗算結果はすべて一致しています
(5*250) = 1250 1250	
(6*249) = 1494 1494	
(7*248) = 1736 1736	
(8*247) = 1976 1976	
(9*246) = 2214 2214	

デモンストレーション 手順

ベクトル乗算の場合

基本的な操作は、32ビットバイナリカウンタと同様

- 1. Jupyter notebookのFilesタブで "demo" ディレクトリに入る
- 2. 実行するデモ "sma8" のディレクトリに入る
- 3. "sma8.ipynb" をクリックしオープンする

File Edit	View Insert	Cell Kernel	Widgets	Help	Not Trusted	Python 3
₽ + %	△ ▲	🕅 Run 🔳 C	Markdown	✓		
	移動平均の	のデモ				
	8個の連続する8bi	tの符号なし数値の	平均値を得る			
	PYNQ-Z2上X	C7Z020のPL部	『コンフィキ	ドュレーション		
In [24]	# import library import matplotl import numpy as from pynq import from pynq import from pynq.lib im import pynq.lib. import time	/ np t allocate t Overlay nport AxiGPIO dma				
	base = Overlay("	./Idp_teg1_10MHz	.bit")			
	print(base)					

- ページ内のpythonプログラムを上から順に 実行する
- 入力データは以下の2種類を準備
 - 次第に大きくなる鋸波
 - (i % 16) + (i // 16) * 8
 - sin波に乗った鋸波
 - $(i \% 16) + 32 * \sin(2*\pi*i/N) + 128$

