
Synchronization with shared

memory

AMANO, Hideharu

Textbook pp.60-68

We have learned the structure of shared memory. Now, let’s see the
synchronization methods using the shared memory.

1

Fork-join: Starting and finishing parallel

processes
fork Usually, these processes (threads)

can share variables

fork

join

join

• Fork/Join is a way of

synchronization

• However, frequent fork/joins

degrade performance
•Operating Systems manage them

These processes communicate with

each other

Synchronization is required !

First of all, let’s check how we start the parallel processing with the shared
memory. Usually, a single process starts, and when it executes fork
operation to generate multiple processes. Some child-process can execute
fork again. After executing in parallel, all processes execute join operation.
At that time, processes except for only a process which executes the fork
operation are terminated. When all processes are terminated with the join
operation, the total program is finished. This join operation is a kind of
synchronization. For example, OpenMP which I will explain in the later
class uses this method. That is, parallel programming can be done only
with fork-join mechanism. But, since they need heavy overhead, we need
other method for synchronization.

2

Synchronization

◼ An independent process runs on each PU

(Processing Unit) in a multiprocessor.

❑ When is the data updated?

◼ Data sending/receiving (readers-writers problems)

❑ A PU must be selected from multiple PUs.

◼ Mutual exclusion

❑ All PUs wait for each other

◼ Barrier synchronization

Synchronization

In MIMD processors, an independent process runs on each processing unit.
In this case, a processing unit cannot recognize when the data are written
into the shared memory from other processing units. Without the
synchronization method, data sending/receiving cannot be done. This is
called the readers-writers problem. In some cases, a processing unit must
be selected from multiple Processing Units. This is called the mutual
exclusion. In other cases, all PUs must wait for others. This type of
synchronization is called a barrier synchronization.

3

Readers-Writers Problem

０１

Writer： writes data then sets the synchronization flag

Reader：waits until flag is set

Writer Reader

Write(D，Data)；
Write(X,1)；

D

X

Polling until(X==1)；

Let me explain the readers-writers problem, first. Assume that a writer
wants to send a data block to a reader. In such a case, a writer writes a
data into a region in the shared memory. After that it changes the
synchronization variable or synchronization flag X into 1. Note that this
variable must be initialized to 0.

4

Readers-Writers Problem

１

Reader： reads data from D when flag is set, then resets the flag

Writer Reader

０

Writer：waits for the reset of the flag

Ｄ

X

Polling until(X==0)；

Polling until(X==1)；
data＝Read(D)；
Write(X，0)；

The reader reads X and if it is 0, it must check again. This operation is
called poling or busy waiting. When the reader gets 1, it recognizes the
sender has written the data. It reads the data block, then it resets the X
into 0.

5

Readers-Writers Problem

0

Reader： reads data from D when flag is set, then resets the flag

Writer Reader

Writer：waits for reset of the flag

Ｄ

X

Polling until(X==0)；
Then write other data

The writer checks X and if X is 0, it can write the next data if needed.

6

But is it true?

◼ In most machines, the order of read/write

access from/to different address is not

guaranteed.

◼ The order is kept when each processor uses

the sequential consistency or the total store

ordering (TSO).

→ This will be treated later.

This scenario is true if the order of read/write access from/to different
address is guaranteed. Unfortunately, it is not guaranteed in some
machines. I will introduce this subject in the next class, but when a
processor uses the sequential consistency or the total store ordering (TSO),
the scenario is established.

7

Multiple Readers

０３

Writer： writes data into D, then writes 3 into c.

Reader： Polling until(c!=0)

(Each reader reads data once.)

Writer ReaderD

c

Write(D，Data)；
Write(c，3)；

Then, what happens when multiple readers want to receive the data. The
simple idea is replacing the synchronization flag X into a counter. When
there are three readers, after the write writes the data, it writes a number
of readers, three this case, into the counter c.

8

Multiple Readers

Iterative execution

３

Reader: decrements cWriter：waits until c==0

Writer

Reader

３－１

２
２－１

１

There is a problem!!

Polling until(c==0)；

Polling until(c!=0)

data = Read(D);

counter = Read(c)；
Write(c，counter-1)；
Polling until(c==0);

１－１

０

The reader can recognize that the written data are available. So, after
reading the data, it decrements the counter. When all readers finish to
read, the counter becomes zero. The writer waits for the counter being
zero, and then it writes the next data if needed. This operation seems to
work well. But, there is a problem, since it introduces the mutual exclusion
problem.

9

The case of No Problem

３

３

３－１＝２

２

２

２

２－１＝１

counter=Read(c)；
Write(c，counter-1)；

counter=Read(c)；
Write(c，counter-1)；

１

１

Shared data

PU

An example of

correct operation

１－１＝０

１ ０

This slide shows the case without any problem. If the Processing Unit
accesses the counter in order, it does not cause any problem.

10

The Problematic Case

３

３

３－１＝２

２

３－１＝２

３

２

Multiple PUs may get the same number (2)

The value never changes to 0

An example of incorrect

operation

However, what happens when multiple PUs tries to access the counter
almost at the same time. When this PU gets three, during it decrements
the value, the next PU can read data. It means that two PUs can get the
same value 3. In this case, they both write two in the counter, and it never
becomes to zero.

11

Indivisible (atomic) operation

◼ The counter is a competitive variable for
multiple PUs

◼ A write/read to/from such a competitive
variable must be protected inside the critical
section.

❑ A section which is executed by only one process.

◼ For protection, an indivisible operation which
executes continuous read/write operations is
required.

The counter in this example, is called a competitive variable. To such a
competitive variable, accesses must be done in the critical section. It
means a section which is executed by only a process. This problem can be
solved by introducing atomic or indivisible operation.

12

An example of an atomic operation

（Test and Set）

０

０

１

ｔ=Test&Set(X)

１

１

１

Reads x and if 0 then writes 1 indivisibly.

Polling until

(Test & Set(X)==0)；

ｃｒｉｔｉｃａｌ ｓｅｃｔｉｏｎ

Write（X，0）；

Let me explain the concept of an atomic operation with a simple example
Test and Set. This operation reads a variable and writes 1 indivisibly if it is
0. The important point is that reading the data and writing 1 are executed
with an action, that is, without interfering by other processors or processes.
If multiple processors execute Test and Set to a variable, only one can get
0. It can execute the critical section. After doing it, it must release the
critical section by writing 0. Then another processor can get 0 and enter
the critical section.

13

Various atomic operations

•Swap(x,y): exchanges shared variable x with local variable y

•Compare & Swap (x,b.y): compares shared variable x and

constant b, and exchanges according to the result.

•And-write/Or-write: reads bit-map on the shared memory and

writes with bit operation.

•Fetch & *(x,y): general indivisible operation

•Fetch & Dec(x): reads x and decrements (if x is 0 do

nothing).

•Fetch&Add(x): reads x and adds y

•Fetch&Write1: Test & set

•Fetch&And/Or: And-write/Or-write

•Most of them are used in RISC-V/A as atomic

memory operations

Various atomic operations have been used, and most of them are used in
RISC-V as atomic memory operations.

14

An example using Fetch&Dec

３

Writer

Reader

３－１

２
２－１

１

Polling until(c==0)；

ｄａｔａ = Ｒｅａｄ（Ｄ）；
Ｆｅｔｃｈ＆Ｄｅｃ(c)；
Polling until(c==0)；

１－１

０

The convenient operation is Fetch&Dec. It reads the data and decrement it
indivisibly. The counter can be directly the target of this operation. So,
multiple readers problem can be easily solved without using the critical
section. The fetch and decrement has two implementations, one is
saturated and the other is non-saturated. In the case of saturated, it the
reading value is zero, it is not decremented anymore.

15

Load Reserved（Locked)/Store Conditional

◼ Using a pair of instructions to make an atomic action.

◼ lr （Load Reserved): Load Instruction with Lock.

◼ sc (Store Conditional): If the contents of the memory
location specified by the load reserved are changed
before sc to the same address (or context switching
occurs), it fails and returns 0. Otherwise, returns 1.

◼ Atomic Exchange using lr/sc (x4<-> Memory indicated
by x1)

try: mov x3,x4

lr x2,0(x1)

sc x3,0(x1)

beqz x3,try

mov x4,x2

◼ RISC-V/A mainly uses them for synchronization.

16

The benefit of lr/sc

◼ Locking bus system is not needed.

◼ Easy for implementation

❑ lr: saves the memory address in the link

register

❑ sc: checks it before storing the data

❑ Invalidated with writing the data in the

same address like the snoop cache.

This pair style of synchronization operations load reserved / store
conditional has the following benefits.

17

Implementing lr and sc

1000

lr x2,0(x1)
R1=0x1000

Link register 1000

lr x2,0(x1)R1=0x1000

Memory

Data in 1000

is read out.

Cache is omitted in this diagram

PE1 PE2

When lr is executed, the address is set in the link register attached to each
processing element.

18

Implementing lr and sc

-

R1=0x1000

Link register 1000

sc x3,0(x1)x1=0x1000

Memory

PE

Snoop and Invalidate

R3

PE1 PE2

PE2 executes sc first

‘1’ is returned to x3

When a PE executes store conditional, the link register is cleared if the
address matches. If the link register is alive, it can get 1.

19

Implementing lr and sc

-

R1=0x1000

Link register -

sc x3,0(x1)

Memory

PE

Snoop and Invalidate

x3

PE1 PE2

Then, PE1 executes sc

‘0’ is returned to x3

X
The data is not written

When the other PE executes store conditional operation, it gets 0 since the
link register is cleared.

20

Quiz

◼ Implement Fetch and Decrement by using lr

and sc.

An atomic memory operations can be implanted with a combination of lr
and sc.

21

Answer

try: lr x2,0(x1)

addi x3,x2,#-1

sc x3,0(x1)

beqz x3,try

◼ If sc is successful, the memory was

decremented without interference.

This is an answer, if sc is successful, it means that the memory was
decremented without interference.

22

Multi-Writers/Readers Problem

Writer

Reader
２

１

Selects a writer from

multiple writers

ｄａｔａ = Ｒｅａｄ（Ｄ）；
Ｆｅｔｃｈ＆Ｄｅｃ(c)；
Polling until(c==0)；

1 Writer-Multi Readers

Mutual exclusion

3

0

Once the critical section can be used, multi-writers problem can be easily
solved. First, a writer is selected with a mutual exclusion operation by
using Test and Set for example. Then, the writer executes the single-writer
multiple readers problem.

23

Glossary 1

◼ Synchronization: 同期、今回のメインテーマ

◼ Mutual exclusion: 排他制御、一つのプロセッサ(プロセス）のみを選
び、他を排除する操作

◼ Indivisible(atomic) operation: 不可分命令、命令実行中、他のプロ
セッサ(プロセス）が操作対象の変数にアクセスすることができない

◼ Critical Section: 排他制御により一つのプロセッサ(プロセス）のみ
実行することを保証する領域、土居先生はこれを「際どい領域」と訳し
たが、あまり一般的になってない

◼ Fork/Join:フォーク／ジョイン

◼ Barrier Synchronization: バリア同期

◼ Readers-writers problem：そのまま呼ばれる。Producer-Consumer
Problem（生産者、消費者問題）と類似しているがちょっと違う。

24

Implementation of a synchronization

operation

PU PU

Snoop

Cache

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

1 (DE)

Test

&

Set

Read

0

Modify

Write

1

Bus mastership is locked

between Read/Write operation

0

Next, let me explain how the synchronization operations are implemented
on the system with private or snoop cache. For example, when Test and
Set is implemented on a multi-core system with snoop cache that I
explained in the previous class, it will read the main memory and write it
locking the bus. Apparently, the value becomes DE since this operation
accompanies the write operation.

25

Snoop Cache and Synchronization

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

1 (DE)
Test

&

Set

Test

&

Set
1(CS)

Even for the line with CS,

Test & Set requires

Bus transaction

0

→CS

If multiple PUs try busy waiting, bus will be congested because multiple
PUs try to access the bus for the Test & Set operations.

26

Test，Test＆Set

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

Test&Set Test

Test does not require bus,

except the first trial
DE does not require bus

transaction

Test&Set（c） if c == 0

0 1
Test

Polling

for CS

line

1

Just by reading the synchronization variable before executing the atomic
operation, we can avoid this bus congestion. It is called test test & set.
When reading data from the main memory is 1, it is hopeless to try the test
and set. In this case, try just reading again.

27

Test，Test＆Set

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

Cache line is invalidatedRelease critical section

by writing 0

Test&Set（c） if c == 0

1 1

0

0 -

Invalidation

signal

After executing the critical section, a PU writes 0 to release the critical
section. At that time, the invalidation signal is transferred on the bus, and
other copies are invalidated.

28

Test，Test＆Set

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

Release critical section

by writing 0

Test&Set（c） if c == 0

0 0-

Write back

Test

When other PUs reads the synchronization variable. Since it was
invalidated, it causes cache-miss, and the value 0 is transferred from the
cache which released the critical section. Since the requesting PU gets 0,
it executes Test&Set operation. Of course, there may be multiple PUs
which get the value 0, but they can be resolved by executing Test&Set.

29

Test，Test＆Set

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

Test & Set is really executed

Test&Set（c） if c == 0

0

Test & Set

If other PU issues the request, only a PU is selected.

0
-

As a result, only a PU can be selected.

30

Lock with lr/sc

lockit: lr x2,0(x1) ; load reserved

bnez x2,lockit ; not-available spin

addi x2,x0,#1 ; locked value

sc x2,0(x1) ; store

beqz x2,lockit ; branch if store fails

Since the bus traffic is not caused by lr instruction, the

same effect as test-test-and set can be achieved.

This code is a lock operation by using lr and sc. Since the bus traffic is not
caused by lr instruction, the same effect as test-test-and-set can be
achieved.

31

Semaphore

◼ High level synchronization mechanism in the
operating system

◼ A sender (or active process) executes V(s)
(signal), while a receiver (or passive process)
executes P(s) (wait).

◼ P(s) waits for s = 1 and s ← 0 indivisibly.

◼ V(s) waits for s = 0 and s ←1 indivisibly.

◼ Busy waiting or blocking

◼ Binary semaphore or counting semaphore

I have introduced basic synchronization mechanisms for multi-cores, but
the synchronization operation is needed for operating system which
handles concurrent processing of multiple processes. That is, concurrent
processes must be treated as the same way of multiprocessors. However,
since synchronization operations are implemented mainly with software,
sophisticated mechanisms are used. Semaphore is famous synchronization
mechanism.

32

Monitor

◼ High level synchronization mechanism used

in operating systems.

◼ A set of shared variables and operations to

handle them.

◼ Only a process can execute the operation to

handle shared variables.

◼ Synchronization is done by the Signal/Wait.

Monitor is also famous example of synchronization. For the safe operation,
a set of shared variables and operations to handle them are defined.

33

Synchronization memory

◼ Memory provides tag or some

synchronization mechanism

❑ Full/Empty ｂｉｔ

❑ Memory with Counters

❑ Ｉ-Ｓｔｒｕｃｔｕｒｅ

❑ Ｌｏｃｋ/Ｕｎｌｏｃｋ

Next, let me explain the synchronization memory. Instead of providing
atomic operation, the synchronization mechanism can be provided on the
memory.

34

Ｆｕｌｌ／Ｅｍｐｔｙ Ｂｉｔ

０
Ｗｒｉｔｅ

→１

A data cannot read from 0

A data can write into 1

Suitable for 1-to-1

communication
１

Ｗｒｉｔｅ
Ｘ

１
Ｒｅａｄ

→０

０
Ｒｅａｄ

Ｘ

Full/Empty bit is the simplest one. There is a flag for each word of the
memory.

35

Memory with counters

０
Ｗｒｉｔｅ

→５

A data cannot read from 0

A data cannot write except 0

Suitable for 1-to-many

communication
５

Ｗｒｉｔｅ
Ｘ

５
Ｒｅａｄ

→４

０
Ｒｅａｄ

Ｘ

A large memory is

required for tag

Instead of providing the flag, we can provide the counter.

36

Ｉ－Ｓｔｒｕｃｔｕｒｅ

PU

Snoop

Cache

PU

Snoop

Cache

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

Full/Empty with informing mechanism to the

receiving PU

An example using

Write-update

Snoop cache

Interrupt

I-structure is a mechanism with informing system with the synchronization
memory. This slide shows an example of implementing write-update style
snoop cache. This idea was proposed for data flow machines.

37

Ｌｏｃｋ/Ｕｎｌｏｃｋ

Ｐｒｏｃｅｓｓ Ｌｏｃｋ

Ｐｒｏｃｅｓｓ Ｌｏｃｋ

Ｐｒｏｃｅｓｓ Ｌｏｃｋ

Ｐｒｏｃｅｓｓ Ｌｏｃｋ

Ｐｒｏｃｅｓｓ Ｌｏｃｋ

Ｐａｇｅ／block

Only registered

processes can be

written into the

locked page.

Lock/unlock register can be provided for a certain block of the memory, for
example, a page or block of the cache. When a process can write the page
when lock bit is not set. At the first write, the lock bit is set and the
process number is registered. Only the process whose id matches the
register can write the block.

38

Barrier Synchronization

Barrier；

Barrier；

Barrier； Established

All processors

(processes) must wait for

the barrier establishment.

Wait for other processes

Barrier Operation： Indivisible operations like Fetch&Dec

Dedicated hardware

Barrier synchronization is a simple and easy to use. When a processor
executes a barrier operation, it must wait other processors execute the
barrier operation. When all processors execute the barrier operation, they
can go forward. When multiple processors compute different part of a
matrix with iteration, after writing results, they execute the barrier
operation. When the barrier is established, all results are available, so they
can go to the next iteration. Barrier operation can be implemented with
atomic instructions, but since it is so popularly used, the special hardware
is sometimes provided.

39

Dedicated hardware

Open collecter

or

Open Drain

１

０

１

Reaches to the barrier

Not yet

Reaches to the barrier

If there is 0,

the entire

line

becomes 0

This is an example of the simplest barrier implementation. Only a wire for
the open drain output is enough. It is also useful for the debugging.

40

Extended barrier synchronizations

◼ Group barrier：A certain number of PUs form

a group for a barrier synchronization.

◼ Fuzzy barrier：Barrier is established not at a

line, but a zone.

❑ Line barrier vs. Area barrier

Extended barrier synchronizations have been proposed.

41

Fuzzy barrier

PREP；

PREP；

Establish

X

X

X

PREP;

Prepare (PREP) or Synchronize

(X), then barrier is established.

This diagram explains the fuzzy barrier.

42

Fuzzy barrier

(An example)

Z[i]= s; PREP；

Z[j]=p; PREP；

Establish
Read Z

Read Z

Read Z

Z[k]=q; PREP;

Write the array Z → PREP

Read from Z → Synchronize (X)

PU0 PU1 PU2 PU3

43

Summary

◼ Synchronization is required not only for bus

connected multiprocessor but for all MIMD

parallel machines.

◼ Consistency is only kept with synchronization

→Consistency Model

◼ Synchronization with message passing →

Message passing model

44

Glossary 2

◼ Semaphore: セマフォ、腕木式信号機からでている。二
進セマフォ（Binary Semaphore）とカウンティングセマ
フォ（Counting Semaphore)がある

◼ Monitor: モニタ、この言葉にはいろいろな意味がある
が、ここでは同期操作と変数を一体化して管理する手法、
オブジェクト指向の元祖のひとつ

◼ Lock/Unlock: ロック／アンロック、この辺の用語は、ほ
ぼそのまま呼ばれる。

◼ Fuzzy Barrier： ファジーバリア、バリアの成立時期に
幅がある。

45

Exercise

◼ Write a program for sending a data from PU

A to PU B,C,D only using Test & Set

operations.

46

