
Parallel Programming for

shared memory machine

AMANO, Hideharu

Textbook pp.１４０－１４７

1

Parallel programming for various

architectures
◼ UMA or NUMA with relatively small number of

nodes

❑ OpenMP → Today

◼ Cluster computer without shared memory

❑ MPI → Maybe Later

◼ GPU

❑ Cuda or OpenCL → Contest

In this class, we are going to have three types parallel programming. The first

is OpenMP which is used for UMA or NUMA with relatively small number of

nodes.

2

Fork-join: Starting and finishing parallel

processes
fork Usually, these processes (threads)

can share variables

fork

join

join

• Fork/Join is a way of

synchronization

• OpenMP uses this concept

Let me review the fork-join parallel programming paradime. Usually, a single

process starts, and when it executes fork operation to generate multiple

processes. Some child-process can execute fork again. After executing in

parallel, all processes execute join operation. At that time, processes except for

only a process which executes the fork operation are terminated. When all

processes are terminated with the join operation, the total program is finished.

This join operation is a kind of synchronization. For example, OpenMP which

I will explain here uses this method.

3

OpenMP

◼ Standard directives, library and

environmental variables for parallelize a

program.

◼ Shared memory is assumed, thus no data

distribution is needed. ↔ MPI

◼ Suitable for multi-core systems within eight

threads.

◼ For a large scale system, advanced

optimization of a program is needed (by Prof.

Katagiri)

OpenMP is not a language, but standard directives, library and environmental

variables for parallelize a program. Shared memory is assumed and it is

suitable for small systems.

4

The execution model of OpenMP

Block A

#pragma omp parallel

{

Block B

｝

Block C

Block A

Block B Block B Block B…

Block C

Thread fork

Thread join

Master Thread

Environmental variable: OMP_NUM_THREADS represents the number of

threads

Parallel Region

This is the execution mode of OpenMP, when the directive omp parallel is

used, the block B in the program structure is forked and the threads are

executed in parallel. After finished all threads, the join operation is executed.

5

Work sharing structure

◼ Describe the parallel execution in the parallel

region. (Used in the parallel structure)

❑ for (do)

❑ sections

❑ single (master)

◼ Generate and execute

❑ parallel for

❑ parallel section

In OpenMP, the programmer must describe the structure which is executed in

parallel. They are specified with for, sections and single. The generation and

execution can be specified in one pragma. parallel for and parallel sections are

examples.

6

for structure
pragma omp parallel

{

#pragma omp for

for(i=0; i<1000; i++) {

c[i]=a[i]+b[i];

}

}

pragma omp parallel for

for(i=0; i<1000; i++) {

c[i]=a[i]+b[i];

}

The iteration is divided

evenly to each thread.

This example shows for structure. The upper shows the standard format, while

the lower uses combined format omp parallel for. First, the array elements are

distributed into threads, and add operation is executed in parallel. The number

of array elements executed in a thread is automatically fixed according to the

number of thread which is specified by the environmental variable.

7

sections structure

#pragma omp parallel sections

{

#pragma omp section

sub1();

#pragma omp section

sub2();

#pragma omp section

sub3();

}

sub1 sub2 sub3

Thread join

Forked threads can execute completely different program block. In this

example, three subroutines are executed in parallel.

8

private sub-directive

c=….;

pragma omp parallel for firstprivate(c)

for(i=0; i<1000; i++) {

d[i]=a[i]+c*b[i];

}

c is copied to each thread → Performance is improved.

shared: default, shared by all threads

private: variables are provided by each thread without initializing

firstprivate: private with initializing.

The directive sometimes accompanies the sub-directive. This example shows a

private sub-directive called firstprivate. It copies the value in the variable, in

this case ‘c’, and copied it to all threads. So, performance will be improved.

9

How to use private

pragma omp parallel for private(ｊ)

for(i=0; i<100; i++) {

for(j=0; j<100; j++)

a[i]=a[i]+amat[i][j]*b[j];

}

Without private, j is updated by multiple threads→ Error!

private sub-directive is sometimes mandatory. In this case, if j is shared, it is

updated by multiple threads and will cause the error. By coping the variable to

each thread, this situation can be avoided.

10

reduction sub-directive

pragma omp parallel for reduction(+:ddot)

for(i=0; i<100; i++) {

ddot+= a[i]*b[i];

}

Without reduction directive, the result is not consistent.

reduction calculation is sometimes used in numerical computing. It applies an

operation to all elements of an array so that the size of the array is reduced.

This operation can be executed in parallel, but describing it is somehow

bothering. This sub-directive solves it.

11

Functions

◼ omp_get_num_threads();

❑ Getting the total number of threads.

◼ omp_get_thread_num();

❑ Getting my thread number.

◼ omp_get_max_threads();

❑ Getting the maximum number of threads.

◼ Usage:

#include <omp.h>

int nth, myid;

nth = omp_get_num_threads();

myid = omp_get_thread_num();

They are functions used for checking the number of threads or getting

identifier of the thread. The thread identifier is sometimes used when it works

different tasks depending the thread identifier.

12

Getting time: omp_get_wtime();

#include <omp.h>

double ts, te;

ts = omp_get_wtime();

Processing

te = omp_get_wtime();

printf(“time[sec]:%lf¥n”,te-ts);

In order to evaluate the execution time, they are used.

13

Other directives

◼ single:

#pragma omp single

{ blocks..... }

Assign blocks into a single thread

◼ master:

#pragma omp master

{ blocks..... }

Assign blocks into the master thread

There are other directives, but I have no experience to use them.

14

Using OpenMP

◼ login to the ITC Linux machine

❑ If you use windows 10, open command prompt

ssh login_name@XXXX.educ.cc.keio.ac.jp

◼ Get the compressed file:

❑ wget http://www.am.ics.keio.ac.jp/arc/open20.tar

❑ tar xvf open20.tar

❑ cd open

Then, let’s use OpenMP. First, you should login ITC Linux machines and get

the tar file.

15

Compile and Execution

% gcc –fopenmp hello.c –o hello

%./hello

Hello OpenMP world from 1 of 4

….

Here, the number of the thread number is set to be 4.

You can change it by setting OMP_NUM_THREADS from

the command line.

Example:

$export OMP_NUM_THREADS=2

./hello

OK. So, lets, compile and try to execute the OpenMP. First, we will execute

the simplest example HelloWorld. gcc can be used to compile it. The number

of the maximum threads is controlled by the environmental variable

OMP_NUM_THREADS. You can specify more number than physically

existing cores, but of course, the performance is never improved.

16

reduct4k.c

An example of reduction calculation.

Compile and try to execute by changing the

number of threads.

You can see the execution time is slightly

changed in each execution.

→ Don’t care about it too much.

The second example is reduct4k.c, a relatively practical one.

17

Exercise fft.c
◼ Fast Fourier Transform is a famous

program for signal processing.

◼ fft.c is a sample program.

◼ If it works well, it shows the execution time,

otherwise it fails.

◼ Write the openMP pragma to improve the

performance.

Today’s exercise is fft.c.

18

Report

◼ Submit the followings:

❑ OpenMP C source code

❑ The execution results: find the number of threads

which minimizes the execution time.

❑ Report the number of thread and execution time.

◼ Submit to Keio.jp, not to

hunga4125@gmail.com.

Please hand-off your report to keio.jp. Thank you.

19

