
NUMA machines and
directory cache mechanisms

AMANO,Hideharu

Textbook pp.７０～７９

1

NUMA(Non-Uniform Memory
Access model）

•Providing shared memory whose access latency
and bandwidth are different by the address.

•Usually, its own memory module is easy to be
accessed, but ones with other PUs are not.

•All shared memory modules are mapped into a
unique logical address space, thus the program
for UMA machines works without modification.

•Also called a machine with Distributed Shared
Memory

⇔ A machine with Centralized Shared
memory (UMA).

NUMA or non-uniform memory access model has shared memory but their

access latency and bandwidth are different by the address. Usually, its own

memory module is easy to be accessed but ones with others PUs are not. All

shared memory modules are mapped into a unique logical address space, thus

the program for UMA machines works without modification. They are called

with distributed shared memory. It is an opposite concept of a machine with

centralized shared memory or UMA.

2

The model of NUMA

Node １

Node 2

Node ３

Node ０

０

１

２

３

Ｉｎｔｅｒｃｏｎｎｅｃｔiｏｎ
Ｎｅｔｗｏｒｋ

Unique address space

This diagram shows the model of NUMA. Each memory module is assigned

into the unique address space. If the node 0 accesses the address area 0, it

accesses its own memory module. But, if it wants to access the other address,

the request must be transferred through the interconnection network. Thus, the

latency is stretched, and the bandwidth is limited.

3

4

The University of Adelaide, School of

Computer Science

令和2年5月10日

Chapter 2 — Instructions: Language of the

Computer 4

Copyright © 2012, Elsevier Inc. All rights reserved.

NUMA with Multicore processors
In

tro
d
u
c
tio

n

In the recent servers, each node is a multicore, and its architecture is UMA

which is introduced in the previous lesson.

Variation of NUMA

• Simple NUMA： cache coherence is not kept by the
hardware（CM*,Cenju，T3D，RWC-1, Earth simulator）

• CC (Cache Coherent)-NUMA： providing coherent cache.
（DASH，Alewife, Origin, SynfinityNUMA, NUMA-Q, Recent
servers）

• COMA (Cache Only Memory Architecture) : No home
memory（DDM,KSR-1)

NUMAs are classified into three categories. One is a simple NUMA. It can

cache the memory attached to the other PUs, but the coherence is not kept. On

the contrary, Cache Coherent NUMA provides the coherent cache. It must

provide the hardware mechanism to keep the coherence, so it tends to be

complicated. The last style is COMA. But the machines in this class is not

used recently.

5

Glossary 1

•NUMA（Non-Uniform Memory Access model):

メモリへのアクセスが均一ではないモデル（アーキテ
クチャ）、今回のメインテーマで別名Distributed
Shared Memory machine：分散共有メモリマシンとも
呼ばれる。この言葉の逆の意味はCentralized Memory:
集中共有メモリということになりUMAである

• Cache-Coherent NUMA:キャッシュの一貫性がハード
ウェアで保証されているNUMA 後で説明するように
プロトコルが面倒

• COMA(Cache Only Memory Architecture):キャッシュ
だけのメモリアーキテクチャという意味だがもちろん
キャッシュだけで構成されているわけではなく、ホー
ムメモリを決めないものをこのように呼ぶ

6

Simple NUMA

•A PU can access memory with other PUs/Clusters,
but the cache coherence is not kept.

•Simple hardware

•Software cache support functions are sometimes
provided.

•Suitable for connecting a lot of PUs:
Supercomputers : Cenju, T3D, Earth simulator, IBM
BlueGene, Roadrunner, K, Fugaku

•Why some supercomputers take the simple NUMA
structure?
• Easy programming for wide variety of applications
→Powerful interconnection network

First of all, the simple NUMA is introduced. Some supercomputers use this

style. It has some benefits. I will introduce some of them.

7

CM* （CMU：the late 1970’s）
One of roots of multiprocessors

．．．

CM00 CM09

ｋｍａｐ

Slocal

Slocal is an address transform mechanism.

Kmap is a kind of switch.

PDP11 compatible

processors

CM*, developed by CMU in the late 1970’s, is a root of multiprocessors. They

used PDP11 as a cluster, and provided an address transform mechanism called

Slocal. The link from Slocal is connected with Kmap, a kind of switch. The

memory in the other cluster can be accessed through the Kmap and Slocal.

8

Cray’s T3D: A simple NUMA supercomputer
(1993)

◼ Using

Alpha 21064

Supercomputers have used this style. Cray’s Tera three D was a simple NUMA

supercomputer.

9

The Earth simulator
(2002)

The Earth Simulator got the top 1 in the world 2002. A lot of cabinets are

placed on the big building like a gym. The deep blue ones are for

computational nodes and light blue ones are for interconnection networks.

10

Earth Simulator (2002,NEC)

V
e

c
to

r
P

r
o

c
e

s
s
o

r

V
e

c
to

r
P

r
o

c
e

s
s
o

r

…

V
e

c
to

r
P

r
o

c
e

s
s
o

r

0 1 7

Shared Memory

16GB

V
e

c
to

r
P

r
o

c
e

s
s
o

r

V
e

c
to

r
P

r
o

c
e

s
s
o

r

…

V
e

c
to

r
P

r
o

c
e

s
s
o

r
0 1 7

Shared Memory

16GB

V
e

c
to

r
P

r
o

c
e

s
s
o

r

V
e

c
to

r
P

r
o

c
e

s
s
o

r

…

V
e

c
to

r
P

r
o

c
e

s
s
o

r

0 1 7

Shared Memory

16GB

….

Interconnection Network (16GB/s x 2)

Node 0 Node 1 Node 639

Peak performance

40TFLOPS

It forms a node with 8 vector processors, and connects 639 nodes with a large

crossbar switch. Since the performance of the interconnection network was

huge, it achieved an efficient performance close to the peak performance.

11

From IBM web site

IBM blue gene series

Also simple NUMA

IBM blue gene series BlueGene/L, P and Q also used simple NUMA structure.

They are connected with 3-D torus network instead of the crossbar of the earth

simulator.

12

Supercompuer K

Core

Core

Core

Core

Core

Core

Core

Core

L2 C

Inter

Connect

Controller

Tofu Interconnect

6-D Torus/Mesh

SPARC64 VIIIfx Chip

4 nodes/board

24boards/Lack

96nodes/Lack

RDMA mechanism

NUMA or UMA+NORMA

Japanese super computer K uses a simple NUMA structure. It provides Remote

DMA mechanism to send the data from other nodes.

13

Cell（IBM/SONY/Toshiba）

SXU

LS

DMA

PXU

L1 C

L2 C

MIC

BIC

External

DRAM

Flex I/O

EIB: 2+2 Ring Bus

CPU Core IBM Power

2-way superscalar, 2-thread

SPE:

Synergistic Processing

Element

(SIMD core)

128bit(32bit X 4)

2 way superscalar

32KB+32KB

512KB

PPE

512KB Local Store

SXU

LS

DMA

SXU

LS

DMA

SXU

LS

DMA

SXU

LS

DMA

SXU

LS

DMA

SXU

LS

DMA

SXU

LS

DMA

The LS of SPEs

are mapped on

the same address

space of the PPE

The IBM/SONY/Toshiba developed cell broadband engine for their game

machine play station 3. It was also used as several supercomputers. In this

architecture, all local memory modules attached to eight SPEs are mapped into

the same address space of the host processor address space.

14

H
o

st
 I

/F
 &

In
te

r
P

ro
ce

ss
o

r
I/

F

ARM

x2

Prefecture

L3 cache 2MB

4x4 City

DDR4

DDR4

Prefecture

L3 cache 2MB

4x4 City

DDR4

DDR4

Prefecture

L3 cache 2MB

4x4 City

DDR4

DDR4

Prefecture

L3 cache 2MB

4x4 City

DDR4

DDR4

PEZY-SC –1/2 [Torii2015]

2015/12/26 15

City

SFU

2x2 Village

L2 D cache 64KB

Village

PE

PE

L1 D

cache

2KB

PE

PE

L1 D

cache

2KB

3 hirarchical MIMD manycore:

4PE x 4(Village) x 16(City) x 4(Prefecture) = 1,024PE

Pezy SC 1 and 2 adopted a hierarchical structure. 4x4 cities which share the L3

cache form a prefecture. A city consists of 2x2 villages which share L2 cache,

and a village is built by 4 PEs. 2PEs share the L1 cache. It can cache the main

memory but coherence is only kept in each hierarchy. Although it has an

interesting memory architecture, the company head was arrested for the illegal

acquition of national research fund and the project was terminated.

15

CC-NUMA
•Directory management mechanism is required for
coherent cache.

•Early CC-NUMAs use hierarchical buses.

•Complicated hardwired logic
• Stanford DASH、MIT Alewife、Origin、Sinfinity

NUMA

•Dedicated management processor
• Stanford FLASH（MAGIC)、NUMA-Q(SCLIC)、JUMP-

1(MBP-light)

Unlike simple NUMAs, CC-NUMAs provide a directory management

mechanism for keeping the coherent cache. Early CC-NUMAs were an

extension of the snoop cache and had hierarchical buses. But, later it was

replaced to the directory management system with a point-to-point network.

Some used complicated hardware logic, others used dedicated management

processors.

16

Ultramax (Sequent Co.）
An early CC-NUMA

．．．

．．．

Shared memory
Hierarchical bus

Cache

Hierarchical extension of bus connected multiprocessors

Hierarchical bus bottlenecks the system.

An early CC-NUMA used an extension of the snoop cache by introducing a

hierarchical bus. Each cluster was a snoop cache connected multiprocessor,

and the accesses for the other cluster uses hierarchical bus. With the similar

protocol of the snoop cache also on the hierarchical bus, the cache coherence

was kept. Apparently, this approach causes the traffic congestion of the

hierarchical bus.

17

Stanford DASH
A root of recent CC-NUMAs

．．．

ＰＵ00 ＰＵ０３

Directory

Main Memory

Directory Coherent control、Point-to-Point connection

Release Consistency

SGI Power Challenge

router 2-D mesh with Caltech router

Stanford DASH introduced the directory coherent control mechanism, point-

to-point interconnection and release consistency model which are used in the

current servers. The cluster was SGI’s Power Challenge workstation and they

attached the directory mechanism and the router. The router was developed in

the Caltech university, and a simple 2-dimensional mesh network was used.

18

SGI Origin

Hub

Chip

Main Memory

Ｎｅｔｗｏｒｋ

Bristled Hypercube

Main Memory is connected with Hub Chip directly.

1 Cluster consists of 2 PEs.

SGI Origin is a commercial version of the DASH. The number of Processors

in a cluster was reduced because of the rapid performance improvement of a

processor. Hub chip which manages the directory were used, and they formed

a bristled hypercube.

19

SGI’s CC-NUMA Origin3000(2000)

◼ Using

R12000

This machine was working in the ITC of this campus. We developed parallel

programs on this machine.

20

Stanford FLASH

MAGIC

Main Memory

Ｎｅｔｗｏｒｋ

2D Mesh

R1000

MAGIC is a dedicated processor for protocol control.

2nd Level

Cache

Since the hardware which controls the coherence became so complicated, the

Stanford university developed a dedicated chip which controls the cache

coherence with its software.

21

JUMP-1: massively parallel machine CC-
NUMA

256 Clusters （16 in a real machine）

RDT Network

C
lu

s
te

r
 0

C
lu

s
te

r
 1

C
lu

s
te

r
 2

C
lu

s
te

r
 3

C
lu

s
te

r
 2

5
5

FB0 FB1 FB2

HDTV

controller

Pixel

Bus

CRT

I/O

Box 0

I/O

Box 1

I/O

Box 15

SCSI SCSI SCSI

LAN
I/O BOX:SPARCstation5

Jump-1, a CC-NUMA was developed by the Japanese national project by

cooperation of seven Japanese Universities.

22

A cluster of JUMP-1

RDT Network

RISC

Processor

L1 Cache

L2 Cache

RISC

Processor

L1 Cache

L2 Cache

RISC

Processor

L1 Cache

L2 Cache

RISC

Processor

L1 Cache

L2 Cache

Cluster Bus

MBP-light
Cluster

Memory
TAXI

I/O Network

STAFF-Link

RDT Router

Like a Stanford project, it sed a dedicated processor called MBP light for the

cache coherent control. 4 SPARC processors are used to develop a cluster, and

a special interconnection network called RDT or recursive diagonal torus was

used as an interconnection network.

23

JUMP-1 was developed with 7
universities

A system with 16 clusters

(Kyoto Univ.)

A system with 4 clusters

(Keio Univ.)

They are outlook of Jump-1. A first prototype with 4cluster and 16 processors

were developed in Keio University. Later 16 clusters with 64 processors

worked in Kyoto University.

24

Xeon Phi Microarchitecture

Core

L2
Cache

Core

L2
Cache

Core

L2
Cache

Core

L2
Cache

Core

L2
Cache

Core

L2
Cache

Core

L2
Cache

Core

L2
Cache

TD TD TD TD

TDTDTDTD

GDDR MC

GDDR MC
GDDR MC

GDDR MC

All cores are connected through the ring
interconnect.
All L2 caches are coherent with directory
based management.

So, Xeon Phi is classified into
CC (Cache Coherent) NUMA.

Of course, all cores are multithreaded, and provide 512 SIMD
instructions.

Chinese Supercomputer Tianhe-2 used it for its accelerator
but changed to domestic one later.

Xeon Phi microarchitecture is a CC-NUMA with directory control mechanism.

It provides 8 cores each of which provide directory. L2 cache is kept coherent

with this mechanism.

25

26

The University of Adelaide, School of

Computer Science

令和2年5月10日

Chapter 2 — Instructions: Language of the

Computer 26

Copyright © 2012, Elsevier Inc. All rights reserved.

Multicore Based systems

• Implementing in shared L3 cache
• Keep bit vector of size = # cores for each block in L3

• Not scalable beyond shared L3

D
is

trib
u

te
d

 S
h

a
re

d
 M

e
m

o
ry a

n
d

 D
ire

c
to

ry-B
a
s
e
d
 C

o
h
e
re

n
c
e

IBM Power 7

AMD Opteron 8430

Some recent server used directory controlled CC-NUMA structure. Here

directory is attached to each memory system.

Distributed cache management of
CC-NUMA

• Cache directory is provided for the cache block of the home
memory.

• The cache coherence is kept by messages between nodes.

• Invalidation type protocols are commonly used.

• The protocol itself is similar to those used in snoop cache,
but everything must be managed with message transfers.

The directly is provided for each cache block of the home memory, and the

cache coherence is kept by messages between nodes.

27

Cache coherent control（Node 3
reads）

Node １
Node 2

Node ３Node ０

U

ｒｅｑ

Ｕ：Ｕｎｃａｃｈｅｄ
Ｓ：Ｓｈａｒｅｄ
Ｄ：Ｄｉｒｔｙ

Ｉ：Ｉｎｖａｌｉｄａｔｅｄ
Ｓ：Ｓｈａｒｅｄ
Ｄ：Ｄｉｒｔｙ

Let me explain the cache coherent control using the directory. Each directory

entry for the home memory has the state of the block and the bit map which

shows who has the copy of the block. There are three states: U, S and D. At

first, the state is U. Each cache directory has also its state. We assume three

states: I, S, and D.

Here, let’s assume Node 3 sends the request to the Node 0 home memory.

28

Cache coherent control（Node 3
reads）

Node １
Node 2

Node ３Node ０

Ｓ １

Ｓ
Cache block

Node 0 replies it and sends the cache block to the requesting node 3. It also

changes its state into S, and set 1 at the corresponding bit map. The state of the

cache of the requesting node 3 turns its state into S.

29

Cache coherent control（Node 1
reads）

Node １
Node 2

Node ３
Node ０

Ｓ １

Ｓ

req

Cache block

１

Ｓ

The similar thing happens when node 1 issues the request. The cache block is

sent back from the node 0, and the corresponding bit is set.

30

Cache coherent control（Node 3 writes）

Node １
Node 2

Node ３
Node ０

Ｓ

Ｓ

Write request

Invalidation

Ａｃｋ

D

Ｓ
Ｗｒｉｔｅ

D

Ack

→ I

１１

0

When node 3 wants to write the data into the cache block, it sends the write

request message to the home node 0. It checks the directory and knows that

node 1 has the same block. So, node 0 sends the invalidation message to node

1. Node 1 invalids its cache block and sends back the acknowledge signal to

node 0. Node 0 changes home memory state to D, and reset the bit

corresponding to node 1. Then it sends the acknowledge message to node 3.

After receiving it, node 3 changes its cache state into D. After that node 3 can

read and write the block without sending any messages.

31

Cache coherent control
（Node 2 reads）

Node １
Node 2

Node ３
Node ０

D
Ｄ

ｒｅｑ

Write Back Req

Cache block

Write Back

→ S

Reads

１
１

S

S

What happens when node 2 wants to the same memory address. It sends the

home memory and the home node knows that it has been updated by the node

3 by checking the directory. So, node 0 sends the write back request message

to node 3. Node 3 replies to send the updated cache block and changes its state

to S. After writing back the data, node 0, the home node changes its sate into S

and set the bit corresponding to Node 2. Then node 0 send the cache block to

node 2. The cache state of node 2 becomes S.

32

Cache coherent control
（Node 2 writes）

Node １
Node 2

Node ３
Node ０

D
Ｄ

ｒｅｑ

Write Back Req

Cache block

Write Back

→ I

Writes

１

１

D

0

What happens node 2 sends the write request instead of the read request.

Similar to the case of read request, node 3 writes back the cache block to the

node 0 home memory. But the cache state becomes I. Node 0 changes its state

into D and set the bit 2 instead of bit 3. After getting the cache block, node 2

changes its state into D.

33

Quiz

• Show the states of cache connected to each node and directory
of home memory in CC-NUMA.

• The node memory in node 0 is accessed:
• Node 1 reads

• Node 2 reads

• Node 1 writes

• Node 2 writes

Here is a quiz.

34

Triangle data transfer

Node １
Node 2

Node ３
Node ０

D
Ｄ

ｒｅｑ

Write Back Req to

Node2

Write Back

→ I

Writes

１ １

D

MESI, MOSI like protocols can be implemented,

but the performance is not so improved.

0

In order to improve the performance, node 3 sends the cache block directly to

the requesting node 2 instead of the home node 0. The node 2 writes the data

directly and changes state into D. It is somehow similar to that of the

ownership of the snoop protocol. Techniques proposed for the snoop cache can

be used, but the performance improvement is not so large.

35

Synchronization in CC-NUMA

• Simple atomic operations (eg. Test&set) increase
traffic too much.

• Test and Test&set is effective, but not sufficient.
• After sending an invalidation message, traffic is
concentrated around the host node.

•Queue-based lock:
• linked list for lock is formed using directory for
cache management.
•Only the node which can get a lock is informed.

Simple atomic operations increase traffic too much. Test and Test&Set is

effective, but not enough. So, Queue-based lock is proposed.

36

Traffic congestion caused by Test and Test&Set(x)
(Node 3 executes the critical section)

Node １

Node 2

Node ３
Node ０

S

x=0→１:Ｓ
１

x=1:Ｓ

１１１

x=1:Ｓ x=1:Ｓ

Critical section

Busy waitingBusy waiting

Busy

waiting

Assume that node 3 executes the critical section, and other nodes are waiting

for the releasing the synchronization variable x. Thanks to test and test&Set,

each node executes busy waiting without sending messages.

37

Traffic congestion caused by Test and Test&Set(x)
(Node 3 finishes the critical section)

Node １

Node 2

Node ３
Node ０

S

x=0:D
１

x=1:Ｓ

１１１

x=1:Ｓ x=1:Ｓ

release xWrite req

x=0→１:Ｓ
I

I I

Invalidation

D

However, when the node 3 releases the critical section by writing x, it sends

the write request to the home node. and the node 0 sends invalidation

messages to all other nodes.

38

Traffic congestion caused by Test and
Test&Set(x) (Waiting nodes issue the request)

Node １

Node 2

Node ３
Node ０

D

x=0:D
１

x=1:Ｓ

x=1:Ｓ x=1:Ｓ
Busy waitingBusy waiting

Busy waiting

Reqests

After that, all nodes must reply the acknowledge messages, and requests again

to get the synchronization variable x. All these operations require a lot of

messages and causes the congestion around the home node.

39

Queue-based lock :
Requesting a lock

Directory

Lock pointer

node0

node1 node2

node3

req

req

lock

Queue-based lock provides the pointer to each node. When synchronization

request is issued from node3, a link to get the lock is made, and the pointer is

stored. When other nodes make a request, they are linked to the list in order.

40

Queue-based lock:
Releasing the lock

Directory

Lock pointer

node0

node1 node2

node3

release

lock

When node3 releases the synchronization variable, it changes the pointer so

that it indicates the next node. So, lock, the right to access the critical section

will move around the linked list.

41

Directory structure

• Directory Methods
• Full Map directory

• Limited Pointer

• Chained Directory

• Hierarchical bit-map

• Recent CC-NUMAs with multicore nodes is small scale, and
the simple full map directory is preferred.
• The number of cores in a node is increasing rather than the number

of nodes.

Directory at the home memory tends become large, because the total size of

the memory is much larger than cache.

In order to reduce the memory requirement, various methods have been

proposed.

42

Full map directory

Node １
Node 2

Node ３
Node ０

S １ １
Bit = Nodes

If the size is large, a

large memory is

required.

Used in Stanford

DASH

The basic method which I introduced is called the full map directly. In this

method, the number of bits are the same ss the number of nodes.

43

Limited Pointer

Node １
Node 2

Node

３

Node ０

S

Using pointers

Instead of the bit-map, how about providing pointers. In this example, two

pointers to provide to store the node number.

44

Limited Pointer

• Limited number of pointers are used.
• A number of nodes which share the data is not so
large (From profiling of parallel programs)

• If the number of nodes exceeds the pointers,
• Invalidate （eviction）
•Broadcast messages
•Call the management software (LimitLess)

• Used in MIT Alewife

The apparent problem is that the number of nodes which share the data is

limited. But how can we do when the number of nodes exceeds the pointers.

Some methods have been proposed. One is called eviction. It invalidates one

of pointer. But it of course may cause the performance degradation when the

evicted node sends the request again. Another method is to give up keeping the

shared nodes. That is, invalidation messages are broadcasted to all nodes. This

invalidation messages are just discarded if the node is not related, but it may

cause the traffic congestion. The third method is to invoke the management

software. It was used in MIT Alewife.

45

Linked List

Node １
Node 2

Node ３
Node ０

S

Note that the pointer is

provided in cache

An alternative method is to make a linked list between nodes who want to

share the block like the queue based lock.

46

Linked List

• Pointers are provided in each cache.

• Small memory requirement

• The latency for pointer chain often becomes large.

• Improved method: tree structure

• SCI(Scalable Coherent Interface)

It requires relatively long time to manage and to trace the pointer chain. The

improvement method to make the tree link structure was proposed. However,

the benefit of method is small resource requirement. So, it is adopted in the

standard protocol called SCI.

47

Hierarchical bitmap

１０１ ０００ ００１ ００１ ０００ ０００

１１

１０１ １００

S S S S

If the network has hierarchical structure, the directory can be held at the

branch of the hierarchy. It was adopted in COMA machine explained later. The

problem is that it requires more amount of memory than the simple bit-map

method.

48

RHBD(Reduced Hierarchical Bitmap
Directory)
→ A Course grain method

X

１０１
１０１ １０１ １０１ １０１ １０１

１１

１０１
１０１

S S S SX X X

In order to reduce the required amount, a course grain method can be used. For

example, we can use the same bitmap at the all branch of the same hierarchy.

49

Pruning Cache

X X

１０１
１０１ １０１

101 １０１
101

１１

１０１

S S S SX X

101 →100

→000→001

→ 001

The problem is the method is increasing unnecessary invalidation message, to

cope with the problem, we can introduce a kind of cache mechanism to the

directory itself. This idea to introduce the cache can be used for the basic bit-

map.

50

COMA(Cache Only Memory Machine)

• No home memory and every memory behaves like cache
(Not actual cache)

• Cache block gathers to required clusters. Optimal data
allocation can be done dynamically without special care.

• When miss-hit, the target block must be searched.

• DDM、KSR-1

OK. The last type of the NUMA is COMA. Of course it takes a large cost if

there is only cache memory. It means that there is no home memory and every

memory behaves like cache. The cache block gathers to required clusters. That

is an optimal data allocation can be done automatically. But, when miss-hit

happens, the target block must be searched.

51

DDM(Data Diffusion Machine）

．．． ．．． ．．． ．．．

Ｄ
First, check its

own cluster

If not

existing,

go

upward

×

The data diffusion machine uses hierarchical bitmap structure to manage the

COMA system. If the block cannot be found to a hierarchy, the upper

hierarchy is searched. It requires rather complicated handling if conflicts

happen in the upper hierarchy.

52

Glossary 2

• Directly based cache protocol:ディレクトリを用いたキャッシュプロ
トコル、スヌープキャッシュではなく、ホームメモリ上のテーブル
（ディレクトリ）を用いてキャッシュの一貫性を管理する方法

• Full map directory:ディレクトリ管理法の一つ。PEに対応するビット
マップをもつ

• Limited Pointer:ディレクトリ管理法の一つ。限定された数のポイン
タを用いる。evictionは不足した場合、強制的に無効化する方法

• Linked-list:リンクドリスト、ポインタの連鎖構造による管理法、
SCI(Scalable Coherent Interface)はこれを用いたディレクトリ管理
の標準規格

• Queue-based lock:リンクドリストでロックの順番を管理する方法。
NUMAの同期手法として一般的に用いられる。

• Hierarchical:階層的、今回はバス構造、ディレクトリ構造のところで
出てくる。

53

Summary

• Simple NUMA is used for large scale supercomputers

• Recent servers use CC-NUMA structure in which each node
is a multicore SMP.
• Directory based cache coherence protocols are used between L3

caches.

• This style has been a main stream of large scale servers.

Now, let’s make a summary of today’s lesson.

54

Exercise

• Show the states of cache connected to each node and directory
of home memory in CC-NUMA.

• The node memory in node 0 is accessed:
• Node 1 reads

• Node 3 reads

• Node 1 writes

• Node 2 writes

• Node 3 reads

• Node 3 writes

This is today’s exercise.

55

