
Relaxed Consistency models

and software distributed memory

Computer Architecture

Textbook pp.79-83

1



Revisit to Readers-Writers Problem

０１

Writer： writes data then sets the synchronization flag

Reader：waits until flag is set

Writer Reader

Write(D，Data)；
Write(X,1)；

D

X

Polling until(X==1)；

Let’s revisit to the readers-writers problem. For sending data from the writer to the reader, I 

said first the writer writes the data, then write 1 to the synchronization variable.

2



Readers-Writers Problem

１

Reader： reads data from D when flag is set, then resets the flag

Writer Reader

０

Writer：waits for the reset of the flag

Ｄ

X

Polling until(X==0)；

Polling until(X==1)；
data＝Read(D)；
Write(X，0)；

The reader reads the synchronization variable, and if it is 1, it reads the data 

from D. It seems to be correct. But is it true?

3



But is it true?

◼ In most machines, the order of read/write

access from/to different address is not

guaranteed.

◼ The order is kept when each processor uses 

the sequential consistency or the total store 

ordering (TSO).

If the order of read/write access from/to different address is guaranteed, it is 

true. But, in most recent machines do not keep it. Exactly speaking if the 

sequential consistency or the total store ordering is guaranteed it the machine, 

it can be done.

Today, I would like to talk about the problem.

4



Coherence vs. Consistency

◼ Coherence and consistency are 

complementary：

◼ Coherence defines the behavior of reads and 

writes to the same memory location, while

◼ Consistency defines the behavior of reads 

and writes with respect to accesses to other 

memory location.

Hennessy & Patterson “Computer Architecture 

the 5th edition” pp.353

The words coherence and consistency are complement. That is coherence 

defines the behavior or reads and writes to the same memory location, while 

consistency is for other memory location. Today, I am going to treat only 

consistency, that is the case of two accesses are done to/from the different 

addresses.

5



Sequential Consistency

Both L1 and L2 are never established.

Reads and writes are instantly reflected to the memory in order.

P1:A=0;

A=1;

L1: if(B==0) …

P2:B=0;

B=1;

L2: if(A==0) …

First of all, let me explain about the sequential consistency. In this diagram, if 

both L1 and L2 are never established, the sequential consistency is guaranteed. 

I means that reads and writes are instantly reflected to the memory in order.

6



Sequential Consistency is not kept 

because of  the delay.

Thus, sequential consistency requires immediate update of

shared memory or acknowledge messages.

P1:A=0;

A=1;

L1: if(B==0) …

P2:B=0;

B=1;

L2: if(A==0) …

If it takes any delay to the memory or any change of the reference order, these 

two sentences can work at the same time. OK. let’s examine the problem for 

the access order in a single processor first.

7



Sequential Consistency

Write(A)

Read（Ｂ）

ＳＹＮＣ

Write(C)

Read(D)

ＳＹＮＣ

Write(E)

Write(F)

In the sequential consistency model, every access must be done in the order 

described in the program.

8



Total Store Ordering

◼ Read requests can be executed before pre-
issued writes to other address in the write 
buffer.

◼ R→R R→W W→W W→R

◼ → shows the order which must be kept.

◼ Used in common processors.

◼ From the era of IBM370

In order to enhance the performance of a single processor, read requests are 

often executed before pre-issued writes to other address in the write buffer. 

Here, this arrow mark shows the order which must be kept. This is used in 

common processors fromt the era of IBM370. 

9



Total Store Ordering

CPU

Cache

Read

Write

Write

Buffer

Read operation

should be done

earlier as possible.

→ For avoiding interlock

by the data dependency

•When the address in the write buffer is the same as the reading address,

the data are directly read out from the write buffer.

In order to avoid the interlock caused by the data dependency, the read 

operation must be done early as possible. So, it can be done before write 

requests in the write buffer. Of course, if the address in the write buffer is the 

same as the reading address, the data are directly read out from the write buffer. 

Note that we are today considering the consistency problem, not the coherent 

problem.

10



Total Store Ordering

Write(A)

Read（Ｂ）

ＳＹＮＣ

Read(C)

Write(D)

ＳＹＮＣ

Write(E)

Write(F)

Order which 

must be kept

The diagram shows the order which must be kept. The order between this write 

and read is not have to be kept in the total store ordering.

11



Partial Store Ordering

◼ The order of multiple writes are not kept.

◼ R→R R→W W→W W→R

◼ Synchronization is required to guarantee the 

finish of writes

◼ Used in SPARC

◼ Sometimes, it is called ‘Processor Ordering’.

When there are multiple memory modules which have different access time, it 

is difficult to keep the order of multiple writes. So, the partial store ordering 

relaxes the order between two write requests. In this model, finish of writes 

must be guaranteed with the synchronization operations. This ordering model 

was used for SPARC microprocessors, and sometimes called the processor 

ordering.

12



Partial Store Ordering

Write(A)

Read（Ｂ）

ＳＹＮＣ

Read(C)

Write(D)

ＳＹＮＣ

Write(E)

Write(F)

13



Partial Store Ordering

CPU

Cache

Read

Write

Write

Buffer

CPU

Cache

Read

Write

Write

Buffer

Network

Partial Store Ordering is a natural model for distributed memory

systems

As this diagram shows, two write operations are issued to the different 

memory modules. That is, it is natural for distributed memory systems.

14



Quiz

◼ Which order should be kept in the following 

access sequence when TSO and PSO are 

applied respectively.

Write A

Read B

Write C

Write D

Read E

Write F

OK. then here is a quiz. 

15



Weak Ordering

◼ All orders of memory accesses are not 

guaranteed.

◼ R→R R→W W→W W→R

◼ All memory accesses are finished before a 

synchronization.

◼ The next accesses are not started before the 

end of synchronization.

◼ Used in PowerPC

If there are several different memory modules, even for a single processor, it is 

difficult to keep the order of memory request. So, it is natural to relax all 

orders of memory accesses. We only need to keep the order between 

synchronization operation. That is, all memory accesses are finished before a 

synchronization operation, and the next access must not be started before the 

end of synchronization. This ordering model was adopted in IBM PowerPC.

16



Weak Ordering
Write(A)

Read（Ｂ）

ＳＹＮＣ

Read(C)

Write(D)

ＳＹＮＣ

Write(E)

Write(F)

This is the diagram of the weak ordering.

17



Memory Consistency maintenance on 

CC-NUMA
◼ Consistency between different home memory 

must be relaxed.

❑ The data and related synchronization variables 

must be allocated on the same home memory.

◼ Let’s focus on a single home memory:

❑ For the synchronization operation, sequential 

consistency must be kept.

❑ For other operation, the acknowledge messages 

can be omitted.

For keeping the memory consistency for CC-NUMA, first of all, consistency 

between different home memory must be relaxed. The data and related 

synchronization variables must be allocated on the same home memory.

18



Required Acknowledge messages

Node １
Node 2

Node ３
Node ０

Ｓ

Ｓ

Write request

Invalidation

Ａｃｋ

D

Ｓ
Ｗｒｉｔｅ

D

Ack

→ I

１１0

Acknowledge messages

are needed to keep the order

of data update.

They are needed for synchronization

As I introduced in the previous lesson, a lot of acknowledge messages are 

needed for invalidation, but since the writing data uses a relaxed consistency 

model, they are not needed. The home can reply just after sending invalidation 

messages.

19



Implementation of  Weak

Consistency
◼ Write requests are not needed to wait for 

acknowledge packets.

◼ Reads can override packets in Write buffer.

◼ The order of Writes are not needed to be kept.

◼ The order of Reads are not needed to be kept.

◼ Before synchronization, Memory fence
operation is issued, and waits for finish of all 
accesses.

We need to provide the memory fence operation for implementing the 

synchronization. Once this operation is issued, no access for the memory is 

accepted. They must wait for the finish of the synchronization operation.

20



For further performance improvement

◼ Synchronization operation is divided into 

Acquire and Release.

◼ The restriction is further relaxed by division of 

synchronization operation.

◼ Release Consistency

For further performance improvement, the Stanford university proposed a 

further relaxed model for CC-NUMA machine. In this model, a 

synchronization operation is divided into Acquire and Release. Considering 

two types of synchronization operations, the restriction is further relaxed. This 

model is called a release consistency.

21



Release Consistency

・Synchronization operation is divided into acquire(read) 

and release(write)

・All memory accesses following acquire（SA) are not executed

until SA is finished. 

・All memory accesses must be executed before release（SR)

is finished.

・Synchronization operations must satisfy

sequential consistency (RCsc) 

・Used in a lot of CC-NUMA machines （DASH,ORIGIN）

In this model, all memory accesses following acquire are not executed until 

the acquire is finished, and all memory accesses must be executed before 

release is finished. This is why it is called the release consistency model.

22



Release Consistency

◼ SA→W SA→R W→SA R→SA

SR→W SR→R W→SR R→SR

◼ The order of SA and SR must be kept.

This is the relationship between acquire, release and other accesses. Of course, 

the order between SA and SR must be kept.

23



Release Consistency

Write(A)

Read（Ｂ）

ＳＹＮＣA

Write(C)

Read(D)

ＳＹＮＣR

Write(E)

Write(F)

This shows the order which must be kept between multiple accesses.

24



25

Overlap of  critical section with Release 

Consistency

acquire

release

Load/Store

Load/Store

Load/Store

Load/Store

acquire

release

Load/Store

Load/Store

acquire

release

Load/Store

Load/Store acquire

release

Load/Store

Load/StoreLoad/Store

Load/Store

・The overlapped execution

of  critical sections is allowed.

This diagram shows the benefit of the release consistency. Two critical 

sections can be executed in the overlapped manner.



Weak/Release consistency model

vs. PSO/TSO + extension of  speculative execution

◼ Speculative execution

❑ The execution is cancelled when branch mis-
prediction occurs or exceptions are requested.

❑ Most of recent high-end processor with dynamic 
scheduling provides the mechanism.

◼ If there are unsynchronized accesses that 
actually cause a race, it is triggered.

◼ The performance of PSO/TSO with 
speculative execution is comparable to that 
with weak/release consistency model.

Recently, most of high performance processors provide the speculative 

execution. This mechanism can be used instead of the release consistency 

model. That is, if there are unsynchronized that actually causes a race, the roll 

back is trigered. However, the detection is difficult and the rollback has a large 

overhead, so it is difficult to say which approach is better.

26



Glossary 1

◼ Consistency Model: Consistencyは一貫性のことで、Snoop Cache
の所で出てきたが、異なったアドレスに対して考える場合に使う言葉。
一方、Coherenceは同じアドレスに対して考える場合に用いる。

◼ Sequential Consistency model: 最も厳しいモデル、全アクセスの順
序が保証される

◼ Relaxed Consistency model:Sequential Consistecy modelが厳し
いすぎるので、これを緩めたモデル

◼ TSO(Total Store Ordering):書き込みの全順序を保証するモデル
◼ PSO(Partial Store Ordering):書き込みの順序を同期、読み出しが出
てくる場合のみ保証するモデル

◼ Weak Consistency 弱い一貫性、同期のときのみ一貫性が保証さ
れる

◼ Release Consistency 同期のリリース時にのみ一般性が保証され
る。Acquire（獲得）がロック、Release（解放）がアンロック

◼ Synchronization, Critical Section：同期、際どい領域

27



Software distributed shared memory

(Virtual shared memory)

◼ The virtual memory management mechanism 
is used for shared memory management

❑ IVY (U.of Irvine), TreadMark(Wisconsin U.)

◼ The unit of management is a page (i.e. 4KB 
for example)

◼ Single Writer Protocol vs. Multiple-Writer 
Protocol

◼ Widely used in Simple NUMAs, NORAs or 
PC-clusters without hardware shared 
memory

In the next segment, I am going to talk about the software distributed shared 

memory. This mechanism is introduced for the machine without the cache 

coherent mechanism. The ideal is to use the virtual memory management 

mechanism for keeping the shared memory. So, the unit of management is a 

page, not a cache block.

28



A simple example of  software shared 

memory

Data Read

PC A PC B

Shared 

Page Page

Fault!

Home PC

Interrupt！

Let me explain a simple example of software shared memory. Assume three 

processors share software shared memory. When a PC A requests to read a 

shared page which is allocated on this home PC, it causes the page fault. 

Instead of getting the page from the disk, it sends the request to the home PC. 

When the request message is received, the home PC is interrupted and the 

software manager is invoked. It returned the requested page to the PC A.

29



Representative Software DSMs

Name University SW/MW Consistency model

IVY Univ.Irvine SW Sequential

CVS Univ. of Maryland SW Lazy release

TreadMarks Washington Univ. MW Lazy release

Munin Rice Univ. MW Eager release

Midway CMU MW Entry 

JIAJIA Chinese Academy of 

Science

MW Scope

Whether the copies 

are allowed for 

multiple writers
The timing to send 

the messages

This table shows the representative software distributed memory systems. It is 

classified into single writer and multiple writers. And the timing to send the 

messages.

30



Extended relaxed consistency model

◼ In CC-NUMA machines, further performance 

improvement is difficult by extended relaxed 

model.

◼ Extended models are required for Software 

distributed memory.

❑ Eager Release Consistency

❑ Lazy Release Consistency

❑ Entry Release Consistency

In CC-NUMA machines, further performance improvement is difficult by

extending the release consistency. However, for Software distributed memory, 

extended models are required. Thus, various types of extended consistency 

model has been proposed.

31



Eager Release Consistency（１）

p1

p2

w(x) w(y) w(z) rel

・In release consistency,  write messages are sent immediately.

x y z

Eager Release Consistency is used in Munin. It reduces the number of message 

transfers. In release consistency, write messages are sent immediately.

32



p1

p2

w(x) w(y) w(z) rel

x,y,z

・In eager release consistency, a merged message is

sent when the lock is released.

Eager Release Consistency（１）

However, in eager release consistency, a merged message is sent when the lock 

is released.

33



Single Writer Protocol

Data Write
PC A PC B

Shared 

Page

Data Read

Request

Write back

request

Write back

Host PC

Only one writer is allowed

W

PC A W

PC A,B

This diagram shows the situation, in this case, only one writer is allowed.

34



Eager Release Consistency（２）

・In Multiple-Writer Protocol, only difference is sent 

when released.

p1

p2

w(x)

w(y)

acq

acq

rel

rel

Page

updated y

updated x

updated x

diff

Eager release consistency can be extended to multiple write protocol. In this 

case, only difference is sent when released.

35



Multiple Writers protocol

Write data

PC A PC B

Twin

Shared 

Page

Twin memory is allocated when

target page is fetched.

Host PC

This diagram shows how the multiple writers protocol works. In this case, a 

twin memory is allocated when the target page is fetched.

36



Multiple Writers protocol

PC A PC B

Twin

Shared 

Page

Host PC

Multiple writers protocol allows for multiple PUs to write the same page at the 

same time.

37



Multiple writers protocol

PC A PC B

Twin

Shared page

Only difference

with twin is written 

back → Eager 

Release Consistency

Sync.

Write back

request

HOST PC

When write back is needed, the only difference with twin is written back.

38



p1

p2

p3

p4
acq r(x)

w(x) rel

acq w(x) rel

acq w(x) rel

・eager release consistency updates all copy pages.

Lazy Release Consistency

The eager release consistency updates all copies pages when they are released.

39



p1

p2

p3

p4

w(x) rel

w(x) rel

w(x) rel

r(x)

・eager release consistency updates all copies.

・lazy release consistency only updates the page which

acquires the page.

Lazy Release Consistency

acq

acq

acq

In order to reduce the number of messages, lazy release consistency only 

updates page which 

40



Entry Release Consistency（１）

Shared data and synchronization objects are associated

・It executes acquire or release on a synchronization object

→Only guarantees consistency of the target shared data

・By caching synchronization object, the speed of entering

a critical section is enhanced (Only for the same processor)

・Cache miss (Page fault) will be reduced by associating

synchronization object and corresponding shared data.

Entry release consistency fixes the combination of a shared data and associated  

synchronization object. The operation for keeping consistency is done only for 

the target data.

41



Entry Release Consistency（２）

p1

p2

w(x)acq S rel S

・synchronization object S⇔ shared data x,y

acq S w(x) r(y) rel S

S, x,y

p3

・synchronization object R⇔ shared data z

w(z)acq R rel R w(z)acq R rel R

Assume that the synchronization object S is associated into the shared data x,y

and synchronization object R is associated to the shared data z. The illustrated 

data exchange is only required.

42



Summary

・Researches on  relaxed consistency models are almost closing: 

•Further relax is difficult.

•The impact on the performance becomes small.

•Speculative execution with PSO/TSO might be a better solution.

• Software DSM approach is practical.

Let me explain today’s lesson.

43



Glossary 2

◼ Virtual Shared Memory: 仮想共有メモリ、仮想記憶機構を利用して
ページ単位でソフトウェアを用いて共有メモリを実現する方法。Single 
Writer Protocolは、従来のメモリの一貫性を取る方法と同じものを用
いるが、Multiple Writers ProtocolはTwin(双子のコピー）を用いて
Difference(差分）のみを送ることで効率化を図る。
IVY,TreadMark,JiaJiaなどはこの分散共有メモリのシステム名である。

◼ Eager Release consistency: Eagerは熱心な、積極的なという意味
で、更新を一度に行うことから（だと思う）

◼ Lazy Release consistency: Lazyはだらけた、という意味で、必要な
ところだけ更新を行うことから出ているが、Eagerに合わせたネーミン
グだと思う。

◼ Entry Release consistency: Entry単位でconsistencyを維持するこ
とから出たネーミングだと思う。

44



Exercise 

◼ Which order should be kept in the following access 
sequence when TSO,PSO and WO are applied 
respectively.

SYNC

Write

Write

Read

Read

SYNC

Read

Write

Write

SYNC

45


