Relaxed Consistency models
and software distributed memory

Computer Architecture
Textbook pp.79-83

Revisit to Readers-Writers Problem

Writer D Reader
0 O
Write(D, Data); o Polling until(X==1);
Write(X,1); X

Writer : writes data then sets the synchronization flag

Reader : waits until flag is set

Let’s revisit to the readers-writers problem. For sending data from the writer to the reader, |
said first the writer writes the data, then write 1 to the synchronization variable.

Readers-Writers Problem

Writer Reader

D
O 0 O
Polling until(X==0); /

; OPolling until(X==1)

X data=Read(D);
Write(X, 0);

Reader: reads data from D when flag is set, then resets the flag

Writer : waits for the reset of the flag

The reader reads the synchronization variable, and if it is 1, it reads the data
from D. It seems to be correct. But is it true?

But 1s it true?

In most machines, the order of read/write
access from/to different address is not
guaranteed.

The order is kept when each processor uses
the sequential consistency or the total store
ordering (TSO).

If the order of read/write access from/to different address is guaranteed, it is
true. But, in most recent machines do not keep it. Exactly speaking if the
sequential consistency or the total store ordering is guaranteed it the machine,

it can be done.
Today, | would like to talk about the problem.

Coherence vs. Consistency

Coherence and consistency are
complementary:

Coherence defines the behavior of reads and
writes to the same memory location, while

Consistency defines the behavior of reads
and writes with respect to accesses to other
memory location.

Hennessy & Patterson “Computer Architecture
the 5™ edition” pp.353

The words coherence and consistency are complement. That is coherence
defines the behavior or reads and writes to the same memory location, while
consistency is for other memory location. Today, | am going to treat only
consistency, that is the case of two accesses are done to/from the different
addresses.

Sequential Consistency

P1:A=0; P2:B=0;
A=1 1 .. B=1; 1
- ""
L1:ifB==0y...| > L2:if(A==0) ...

Both L1 and L2 are never established.
Reads and writes are instantly reflected to the memory in order.

First of all, let me explain about the sequential consistency. In this diagram, if
both L1 and L2 are never established, the sequential consistency is guaranteed.
| means that reads and writes are instantly reflected to the memory in order.

Sequential Consistency 1s not kept
because of the delay.

P1:A=0; P2:B=0;
A:]_;.“..W.A.m
1 { 1
L1: if(BZ=0) ... L5 ifA==0) ...

Thus, sequential consistency requires immediate update of
shared memory or acknowledge messages.

If it takes any delay to the memory or any change of the reference order, these
two sentences can work at the same time. OK. let’s examine the problem for
the access order in a single processor first.

Sequential Consistency

Wri'ge(A)
Reajj (B)
SYlilC

Wri%e(C)
Reaél(D)
SY_I;\IC

Wr;te(E)

Write(F)

In the sequential consistency model, every access must be done in the order
described in the program.

Total Store Ordering

Read requests can be executed before pre-
iIssued writes to other address in the write
buffer.

R—-R R->W W-W W=R

— shows the order which must be kept.
Used in common processors.

From the era of IBM370

In order to enhance the performance of a single processor, read requests are
often executed before pre-issued writes to other address in the write buffer.
Here, this arrow mark shows the order which must be kept. This is used in
common processors fromt the era of IBM370.

Total Store Ordering

Read operation
should be done
earlier as possible.

: For avoiding interlock
W g
rite l by the data dependency
Write Read
Buffer
Cache

*When the address in the write buffer is the same as the reading address,
the data are directly read out from the write buffer.

In order to avoid the interlock caused by the data dependency, the read
operation must be done early as possible. So, it can be done before write
requests in the write buffer. Of course, if the address in the write buffer is the

same as the reading address, the data are directly read out from the write buffer.

Note that we are today considering the consistency problem, not the coherent
problem.

10

Total Store Ordering

Write(A)
Read (B)
SY;I.\;C
Rea;i(C)
Writ_;e(D)
SY;\IC

Write(E)

Write(F)

Order which
' must be kept

The diagram shows the order which must be kept. The order between this write

and read is not have to be kept in the total store ordering.

11

Partial Store Ordering

The order of multiple writes are not kept.

R—-R R-—-W \M M

Synchronization is required to guarantee the
finish of writes

Used in SPARC
Sometimes, it is called ‘Processor Ordering’.

When there are multiple memory modules which have different access time, it
is difficult to keep the order of multiple writes. So, the partial store ordering
relaxes the order between two write requests. In this model, finish of writes
must be guaranteed with the synchronization operations. This ordering model
was used for SPARC microprocessors, and sometimes called the processor
ordering.

12

Partial Store Ordering

Write(A)
Féiead (B)
éY;NC

Rea_;d(C)
Wriée(D)
SY;\IC

V@rit;e(E)

Write(F)

13

Partial Store Ordering

Write l Write l

Write Read
Buffer

Write
Buffer

Network

Cache Cache

Partial Store Ordering is a natural model for distributed memory
systems

As this diagram shows, two write operations are issued to the different
memory modules. That is, it is natural for distributed memory systems.

Quiz

Which order should be kept in the following
access sequence when TSO and PSO are
applied respectively.

Write A
Read B
Write C
Write D
Read E
Write F

OK. then here is a quiz.

15

Weak Ordering

All orders of memory accesses are not
guaranteed.

ROR R WXy W>R

All memory accesses are finished before a
synchronization.

The next accesses are not started before the
end of synchronization.

Used in PowerPC

If there are several different memory modules, even for a single processor, it is
difficult to keep the order of memory request. So, it is natural to relax all
orders of memory accesses. We only need to keep the order between
synchronization operation. That is, all memory accesses are finished before a
synchronization operation, and the next access must not be started before the
end of synchronization. This ordering model was adopted in IBM PowerPC.

16

Weak Ordering

Write(A)
Réead (B)
S;Y;NC

R_eaélf(C)

Wite(D)

M

SYNC

Write(E)

Write(F)

This is the diagram of the weak ordering.

17

Memory Consistency maintenance on

CC-NUMA

Consistency between different home memory

must be relaxed.

o The data and related synchronization variables
must be allocated on the same home memory.

Let’s focus on a single home memory:

o For the synchronization operation, sequential
consistency must be kept.

o For other operation, the acknowledge messages
can be omitted.

For keeping the memory consistency for CC-NUMA, first of all, consistency
between different home memory must be relaxed. The data and related
synchronization variables must be allocated on the same home memory.

18

| Required Acknowledge messages

Node O Write request Node 3
ERINE

Acknowledge messages

Invalldatlon are needed to keep the order
a of data update.
Node 2
Node 1 .

They are needed for synchronization

As | introduced in the previous lesson, a lot of acknowledge messages are
needed for invalidation, but since the writing data uses a relaxed consistency
model, they are not needed. The home can reply just after sending invalidation
messages.

19

Implementation of Weak

Consistency

Write requests are not needed to wait for
acknowledge packets.

Reads can override packets in Write buffer.
The order of Writes are not needed to be kept.
The order of Reads are not needed to be kept.

Before synchronization, Memory fence
operation is issued, and waits for finish of all
accesses.

We need to provide the memory fence operation for implementing the
synchronization. Once this operation is issued, no access for the memory is
accepted. They must wait for the finish of the synchronization operation.

20

For turther performance improvement

Synchronization operation is divided into
Acquire and Release.

The restriction is further relaxed by division of
synchronization operation.

Release Consistency

For further performance improvement, the Stanford university proposed a
further relaxed model for CC-NUMA machine. In this model, a
synchronization operation is divided into Acquire and Release. Considering
two types of synchronization operations, the restriction is further relaxed. This
model is called a release consistency.

21

Release Consistency

- Synchronization operation is divided into acquire(read)
and release(write)

- All memory accesses following acquire (SA) are not executed
until SAis finished.

- All memory accesses must be executed before release (SR)
is finished.

» Synchronization operations must satisfy
sequential consistency (RCsc)

*Used in a lot of CC-NUMA machines (DASH,ORIGIN)

In this model, all memory accesses following acquire are not executed until
the acquire is finished, and all memory accesses must be executed before
release is finished. This is why it is called the release consistency model.

22

Release Consistency

SA-W SA-RW<SA R==SA
SB=W SR=R W—-SR R—SR

The order of SA and SR must be kept.

This is the relationship between acquire, release and other accesses. Of course,
the order between SA and SR must be kept.

23

Release Consistency

Write(A)
Read (B)
SYNCA

Write(C

Read|(D)

v

SYNCR

v

Write(E)

Write(F)

This shows the order which must be kept between multiple accesses.

24

Overlap of critical section with Release

Consistency

{ "oad/Store -The_o_verlappe_:d ex_ecutlon

: : of critical sections is allowed.
1 | Load/Store acquie

I}\ _-release

0 RN Load/Store T

| Load:/Store } p | Load/Store oac/>tore

i | Load/Store| ! ' Load/Store

X ; N release

N

’

o [release <

This diagram shows the benefit of the release consistency. Two critical
sections can be executed in the overlapped manner.

25

Weak/Release consistency model
vs. PSO/TSO + extension of speculative execution

Speculative execution

o The execution is cancelled when branch mis-
prediction occurs or exceptions are requested.

o Most of recent high-end processor with dynamic
scheduling provides the mechanism.

If there are unsynchronized accesses that

actually cause a race, it is triggered.

The performance of PSO/TSO with

speculative execution is comparable to that

with weak/release consistency model.

Recently, most of high performance processors provide the speculative
execution. This mechanism can be used instead of the release consistency
model. That is, if there are unsynchronized that actually causes a race, the roll
back is trigered. However, the detection is difficult and the rollback has a large
overhead, so it is difficult to say which approach is better.

26

Glossary 1

Consistency Model: Consistencyl&—& 140 Z& T, Snoop Cache
D THTE A, B> 7RLRIC *]‘L,’C%z_éiﬁﬁ“kﬁ')n%o
—75. CoherencelRL7RL RIZHLTEZSHEICHINS

Sequential ConS|stency model: &bHELWLVETIL. @7’7‘!27\0)]!@
FHRIESN

Relaxed ConS|stency model:Sequential Consistecy modelA% &L

WIEDLDT. CNFTRHT=ETIL
TSO(Total Store Ordering): £2XAA DL IEFFRIATHETIL

PSO(Partial Store Ordering): E& A4 DIEFZRIH . Hidr HLHNH
KOG EDHRIAET HETIL

V*\{e%;ak Consistency BL\—EM%. B LEDH—EMMNRILS

Release Consistency RIHADY—REFICDH—ARIEMNREES T
%, Acquire (¥&18) h"\Ov% . Release (f81) A7 0wy

Synchronization, Critical Section: BE#f. & L iR

27

Software distributed shared memory
(Virtual shared memory)

The virtual memory management mechanism
Is used for shared memory management

o IVY (U.of Irvine), TreadMark(Wisconsin U.)

The unit of management is a page (i.e. 4KB
for example)

Single Writer Protocol vs. Multiple-Writer
Protocol

Widely used in Simple NUMAs, NORAs or
PC-clusters without hardware shared
memory

In the next segment, | am going to talk about the software distributed shared
memory. This mechanism is introduced for the machine without the cache
coherent mechanism. The ideal is to use the virtual memory management
mechanism for keeping the shared memory. So, the unit of management is a
page, not a cache block.

28

A simple example of software shared

memory
: Interrupt !
Home PC
Shared
Page Page
Fault!
PC A PC B

Data Read

Let me explain a simple example of software shared memory. Assume three
processors share software shared memory. When a PC A requests to read a
shared page which is allocated on this home PC, it causes the page fault.

Instead of getting the page from the disk, it sends the request to the home PC.

When the request message is received, the home PC is interrupted and the
software manager is invoked. It returned the requested page to the PC A.

29

Whether the copies W
: are allowed for
Representative Software =
The timing to send
the messages
Name University SW/MW ConsistLKcy model
\A4 Univ.Irvine SW Sequential
CVs Univ. of Maryland SW Lazy release
TreadMarks | Washington Univ. MW Lazy release
Munin Rice Univ. MW Eager release
Midway CMuU MW Entry
JIAJIA Chinese Academy of MW Scope
Science

This table shows the representative software distributed memory systems. It is
classified into single writer and multiple writers. And the timing to send the
messages.

30

Extended relaxed consistency model

In CC-NUMA machines, further performance
improvement is difficult by extended relaxed
model.

Extended models are required for Software
distributed memory.

o Eager Release Consistency

o Lazy Release Consistency

o Entry Release Consistency

In CC-NUMA machines, further performance improvement is difficult by
extending the release consistency. However, for Software distributed memory;,
extended models are required. Thus, various types of extended consistency
model has been proposed.

31

FEager Release Consistency (1)

w(x) w(y) w(2) rel
\

pl | \ | |

X Yy z

p2

- In release consistency, write messages are sent immediately.

Eager Release Consistency is used in Munin. It reduces the number of message
transfers. In release consistency, write messages are sent immediately.

FEager Release Consistency (1)

w(x) w(y) w(2) rel
\

pl | \ | |

X,\¥,Z

p2

-In eager release consistency, a merged message is
sent when the lock is released.

However, in eager release consistency, a merged message is sent when the lock

is released.

33

Single Writer Protocol

PCAB
PCA W
Write back
request
% Host PC
Write back
Shared
Page

PC A
Data Write

Only one writer is allowed

ﬁ est

l PC B
Data Read

This diagram shows the situation, in this case, only one writer is allowed.

34

Eager Release Consistency (2)

*In Multiple-Writer Protocol, only difference is sent
when released.

acqg W) rel updated x
pl
diff
updated X
acq w(y) rel
p2 updated y
Page

Eager release consistency can be extended to multiple write protocol. In this
case, only difference is sent when released.

35

Multiple Writers protocol

Twin memory is allocated when
target page is fetched.
Host PC

Twin

Shared
Page

A

It PC A PC B
Write data

This diagram shows how the multiple writers protocol works. In this case, a

twin memory is allocated when the target page is fetched.

36

Multiple Writers protocol

Host

[

Twin

Shared
Page

o)
o
>

4
*‘PCB

Multiple writers protocol allows for multiple PUs to write the same page at the

same time.

37

Multiple writers protocol

Only difference

Sync. with twin is written
Write ba back — Eager
reaue Release Consistency
HOST PC
;\\
Shared page E \:
PC A PC B

When write back is needed, the only difference with twin is written back.

38

Lazy Release Consistency

w(x) rel

pl

S WA
-

p3 \
04 acq r(x)

-eager release consistency updates all copy pages.

The eager release consistency updates all copies pages when they are released.

39

Lazy Release Consistency

w(x) rel

pl

acq w(x) rel

p2

acqg w(x) rel

p3

acq r(x)

p4

-eager release consistency updates all copies.

-lazy release consistency only updates the page which
acquires the page.

In order to reduce the number of messages, lazy release consistency only
updates page which

40

Entry Release Consistency (1)

Shared data and synchronization objects are associated

- It executes acquire or release on a synchronization object
—Only guarantees consistency of the target shared data

* By caching synchronization object, the speed of entering
a critical section is enhanced (Only for the same processor)

* Cache miss (Page fault) will be reduced by associating
synchronization object and corresponding shared data.

Entry release consistency fixes the combination of a shared data and associated
synchronization object. The operation for keeping consistency is done only for
the target data.

41

Entry Release Consistency (2)

»synchronization object S < shared data X,y
*synchronization object R < shared data z

S, X,y
acqS w(x) r(y) relS

acqR w(z) relR acqR w(z) relR

1 acqgS w(x) relS

p2

p3

Assume that the synchronization object S is associated into the shared data x,y
and synchronization object R is associated to the shared data z. The illustrated
data exchange is only required.

42

Summary

-Researches on relaxed consistency models are almost closing:
Further relax is difficult.
*The impact on the performance becomes small.
*Speculative execution with PSO/TSO might be a better solution.

« Software DSM approach is practical.

Let me explain today’s lesson.

43

Glossary 2

Virtual Shared Memory: {RIEEHBF AT RIEFEIEHIBEEZFIALT
R—UHBFHTYINIZ7ERANTEEAT)EER T 5H%, Single
Writer Protocoll&. RDAE)D—EMREWMDHELRILLDZER
LB A, Multiple Writers ProtocollETwin(RFMDaE—)# AL\ T
Difference(Z%") DA EFEAHZETUMHRILETRS,

IVY, TreadMark,JiadiaZd E [Z DR EB AT DR T LB THS,

Eager Release consistency: Eager(Zulyi, BT ELNSERR
T.BHE—EITTOITEND(1ZERSD)

Lazy Release consistency: Lazyldf=5(F7f=, EWLVSEKR T, HER
&?Eéf:“ﬁ'%%ﬁ’é?:ﬁ:&b\%.‘:I:‘.’Cb\ébﬂ EagerlZ&hHhE-r—3>
7“ : IL|\50

Entry Release con5|stency Entry B i Tconsistencyz#iF 9452
&75\'0 II:HT’*_\/O T_ ll_.\jo

44

Exercise

Which order should be kept in the following access
sequence when TSO,PSO and WO are applied
respectively.

SYNC

Write

Write

Read

Read

SYNC

Read

Write

Write

SYNC

45

