
VivadoHLS design

Kazusa Musha

2019.3.18

1

How to create a new project (1)

2

Create New
Project

How to create a new project (2)

3

Project name and directory
are specified. Here, ”test” is

used.

Top function name.
Here, test is used.

Test bench file is specified.
It can be added later, so here,

it is empty.

How to create a new project (3)

4

Click here

FPGA chip identifier. Here, xcku115-flvb2104-2-e is
specified.

How to create a new project (4)

5

VivadoHLS starts

How to create a new project (5)

6

Click Source with the right
bottun, add the source

C/C++ files from
NewFile…Here, ”test.c” is

added. Also, the test
bench ”tb.c” is added.

How to create a new project (6)

7

Ready to synthesis

How to use GUI

8

<<Synthesis>>
Basic tab for high

level synthesis

<<Analysis>>
Analysis of the

synthesized results

<<Directive>>
Insertion

Simulation with the
test bench

Synthesis the source
and check results

IP is generated from
the synthesized

result.

VivadoHLS design flow

9

N×M Product-sum operation

• NxM product-sum operation

(N=12, M=12)

Similar to computation in
LeNet, the contest this year.

10

#define N 12
#define M 12

void test(
float input[M],
float output[N],
float weight[N][M]

){
int n, m;

for(n = 0; n < N; n++)
for(m = 0; m < M; m++)

output[n] += input[m]
* weight[n][m];

}

C-level simulation(1/2)

• Simulation must be done
before synthesis
• “Run C Simulation”

• Call “test.c” from the test
bench “tb.c” like the
normal C design.

• When ap_cint.h header
（free- size integer) is
used, simulation will
cause errors.

11

Run C Simulation

C-level simulation(2/2)

12

#include<stdio.h>

#define N 12
#define M 12

void test(
float input[M],
float output[N],
float weight[N][M]

);

int main(){
float idata[M];
float wdata[N][M];
float odata[N];
int i, j, n, m;
for (i = 0; i < M; i++) idata[i] = 1.0;
for (j = 0; j < N; j++) odata[i] = 0.0;

for (n = 0; n < N; n++)
for (m = 0; m < M; m++)

wdata[n][m] = 1.0*n;

test(idata, odata, wdata);

for (j = 0; j < N; j++)
printf("%f¥n", odata[j]);

return 0;
}

tb.c
#define N 12
#define M 12

void test(
float input[M],
float output[N],
float weight[N][M]

){
int n, m;

for(n = 0; n < N; n++)
for(m = 0; m < M; m++)

output[n] += input[m]
* weight[n][m];

}

test.c test_csim.log

If the results are
correct, go to synthesis.

Try Synthesis

13

Click here

The results are
generated for a while.

Check the synthesis results(1/2)

• Performance
• Timing

• Unit is “ns”. If it is less than
10ns=100MHz, it’s OK.

• Latency
• Response time from data

input to data output.

• Interval
• Interval of data inputs. The

time from a data-set input to
the next data-set input.

• Utilization Estimates
• FPGA Resource utilization

• BRAM,DSP,FF, and LUT must
be in 100%.

• Interface
• Inputs/Outputs of the module

14

Check the synthesis results(2/2)
• Timing is satisfied. No problem.

• Latency is 1177cycles, and Interval is
1178 cycles. The smaller the better.

• Utilization is almost 0.

• Interface:

ap** are for control. Address and data are
provided for input,output, and weight.

• The memory is outside the module, and the
data are fetched in advance.

15

Check the results（Analysis）

• Analysis tab is
used to analyze the
module in detail.
• The timing of data

load is shown. It is
useful for
debugging.

• Latency or interval
of each module(for
loop or function) is
checked.

• Useful for
optimization
shown later.

16

Analysisタブ

Generating IP（Export RTL）

• “Export RTL”
generates IP
useful by the IP-
catalog in Vivado.

• This step is done
after debugging.

17

Export RTL

Wait for “Finished” .

Directives

18

What are directives？(Pragma)

• Commands for optimization of the HLS description
• UNROLL, PIPELINE, DATAFLOW, etc…

• Various types solutions can be implemented.
• tips: multiple solutions can be generated.

• Key factors to optimize HLS.

19

High speed implementation using
directives

• The target source code is
optimized.

• The I/O
bandwidth(input,weight, and
output) is assumed up to
128bit/cycle

20

#define N 12
#define M 12

void test(
float input[M],
float output[N],
float weight[N][M]

){
int n, m;

for(n = 0; n < N; n++)
for(m = 0; m < M; m++)

output[n] += input[m]
* weight[n][m];

}

test

The target image

• Comparing the current design and the target image.

21

input weight

output

PE(MultAdd)

Parallelize &
Pipelining

Double
buffer with

banking

test

Mult
Add

input weight output

output

Data is accessed
by its address

Data are allocated
outside the module

Only a module worksNo input/output
buffer

Stream
processing

Optimized
I/O

Dataflow
processing

#pragma HLS UNROLL (1/3)

• HLS UNROLL unrolls the loop
statically.
• Without unrolling, only a

statement is executed in a loop.
• Moreover, branch processing

takes another cycle in each loop.

• factor controls the degree of
unrolling
• ４ means four loops executed in

parallel.
• Undividable factor causes an

error
• If factor is not specified, the loop

is completely unrolled.
• Note that too many unrolling may

cause an memory error.

22

void test(
float input[M],
float output[N],
float weight[N][M]

){
int n, m;

for(n = 0; n < N; n++)
for(m = 0; m < M; m++)

#pragma HLS UNROLL factor=4
output[n] += input[m]

* weight[n][m];
}

#pragma HLS UNROLL (2/3)

• Let’s synthesize and compare

23

void test(
float input[M],
float output[N],
float weight[N][M]

){
int n, m;

for(n = 0; n < N; n++)
for(m = 0; m < M; m++)

output[n] += input[m]
* weight[n][m];

}

void test(
float input[M],
float output[N],
float weight[N][M]

){
int n, m;

for(n = 0; n < N; n++)
for(m = 0; m < M; m++)

#pragma HLS UNROLL factor=4
output[n] += input[m]

* weight[n][m];
}

←Interval is reduced
from １３２２ cycles to
７８２cycles

←Instead, the resource
is increased.

Performance
improvement has
been achieved.

#pragma HLS UNROLL (3/3)

• Comparison of the structures
• The parallel processing with 4 Mult-Add increases the performance.

24

test

Mult
Add

input weight

output

output

test

Mult
Add

input weight

output

output

Mult
Add

Mult
Add

Mult
Add

Without
directives

With directives

#pragma HLS PIPELINE (1/2)

• HLS PIPELINE increases the
throughput by pipelining.
• Frequently used like as well as

UNROLL.
• Simple performance improvement

is obtained.

• It is efficient when used at the
upper hierarchy of UNROLL-ed
loop.

• Note that the UNROLL inside
the PIPELINE-ed loop executes
the complete unrolling.
• factor is ignored.

25

void test(
float input[M],
float output[N],
float weight[N][M]

){
int n, m;

for(n = 0; n < N; n++)
#pragma HLS PIPELINE

for(m = 0; m < M; m++)
#pragma HLS UNROLL

output[n] += input[m]
* weight[n][m];

}

Complete
Unroll

#pragma HLS PIPELINE (2/2)

• HLS PIPELINE can be applied
to the function as well as loops.
• All UNROLL in the function

becomes the complete unrolling.

26

void test(
float input[M],
float output[N],
float weight[N][M]

){
#pragma HLS PIPELINE

int n, m;

for(n = 0; n < N; n++)
#pragma HLS UNROLL

for(m = 0; m < M; m++)
#pragma HLS UNROLL

output[n] += input[m]
* weight[n][m];

}

test

input weight

output

output

*pipelined

M
u

lt
A

d
d

M
u

lt
A

d
d

M
u

lt
A

d
d

M
u

lt
A

d
d

・
・
・

The current image

Exercise

• Optimize the example design ‘test’ by using directives shown
here.

• Try to evaluate the clock cycles after the synthesis.

27

28

Small module based design
• The functional module

is changed into the
form of “pe” here.

• Small module based
design is suitable for
providing buffer and
dataflow design.

29

void test(
float input[M],
float output[N],
float weight[N][M]

){
pe(input, output, weight);

}

void pe(float input[M], float output[N], float
weight[N][M]){
#pragma HLS PIPELINE

int n, m;
for(n = 0; n < N; n++)

#pragma HLS UNROLL
for(m = 0; m < M; m++)

#pragma HLS UNROLL
output[n] += input[m] * weight[n][m];

}

#pragma HLS ARRAY_PARTITION
(1/2)

• HLS ARRAY_PARTITION divides the array (input,output,etc.) for
increasing the parallelism.
• Usually, array division is automatically done by HLS.

• Here, it is used to divide the input/output completely.

• dim specifies the dimension which the partition is applied. 0 means all
dimension.

30

void pe(float input[M], float output[N], float weight[N][M]){
#pragma HLS ARRAY_PARTITION variable=input complete dim=0
#pragma HLS ARRAY_PARTITION variable=output complete dim=0
#pragma HLS ARRAY_PARTITION variable=weight complete dim=0
#pragma HLS PIPELINE

int n, m;
for(n = 0; n < N; n++)

#pragma HLS UNROLL
for(m = 0; m < M; m++)

#pragma HLS UNROLL
output[n] += input[m] * weight[n][m];

}

#pragma HLS ARRAY_PARTITION
(2/2)

• There are three ways of ARRAY_PARTITION
• Please refer Xilinx’s document UG1270

31

Vivado HLS 最適化手法ガイド UG1270 (v2017.4) ６７ページよ
り引用
https://www.xilinx.com/support/documentation/sw_manuals_j/
xilinx2017_4/ug1270-vivado-hls-opt-methodology-guide.pdf

Trial and error on PE design (1/2)

• For high performance computation, the way of computation
itself is changed.

• The current problem: the array “output” has both
input/output -> Too much amount of communication.
• Initialize “output” in the module（”read” out the output can be

eliminated.）

• Registers are provided inside the PE to store the data to store the
data temporally.

32

Trial and error on PE design (2/2)

33

void pe(float input[M], float output[N], float weight[N][M]){
#pragma HLS ARRAY_PARTITION variable=input complete dim=0
#pragma HLS ARRAY_PARTITION variable=output complete dim=0
#pragma HLS ARRAY_PARTITION variable=weight complete dim=0
#pragma HLS PIPELINE

int n, m, o, i;
float output_reg[N];

for (i = 0; i < N; i++)
#pragma HLS UNROLL

output_reg[i] = 0.0;

for(n = 0; n < N; n++)
#pragma HLS UNROLL

for(m = 0; m < M; m++)
#pragma HLS UNROLL

output_reg[n] += input[m] * weight[n][m];

for(o = 0; o < N; o++)
output[o] = output_reg[o];

}

Now, PE is
OK.

Optimization of data transfer

• The performance of PE has been enhanced. But the total
effect is not so much.

• This is because the I/O bandwidth and internal
communication bandwidth are not enough

• Let’s enhance them.

34

AXI Stream

• AXI is a standard interface for Xilinx’s FPGA
• Master-Slave

• AXI Stream is a stream style interface included in the AXI

35

Sender Receiver

DATA

VARID（1bit）

Refer the manual for detail

READ（1bit）

#pragma HLS INTERFACE (1/2)

• HLS INTERFACE specifies the interface explicitly.
• Without it, address-data interface is automatically assigned.

• The following description causes an error

36

void test(
float input[M],
float output[N],
float weight[N][M]

){
#pragma HLS INTERFACE axis port=input
#pragma HLS INTERFACE axis port=output
#pragma HLS INTERFACE axis port=weight

pe(input, output, weight);
}

 AXI Stream only
accepts
input/output
along with the
order of array
index.

They cause an error

#pragma HLS INTERFACE (2/2)

• tmp buffer is introduced for
streaming access.

37

void test(
float input[M],
float output[N],
float weight[N][M]

){
#pragma HLS INTERFACE axis port=input
#pragma HLS INTERFACE axis port=output
#pragma HLS INTERFACE axis port=weight

float input_tmp[M], output_tmp[N], weight_tmp[N][M];

load_weight(weight, weight_tmp);
load_input(input, input_tmp);

pe(input_tmp, output_tmp, weight_tmp);

store_output(output_tmp, output);
}

void load_input(float input[M], float input_tmp[M]){
#pragma HLS PIPELINE

int m;
for(m = 0; m < M; m++)

#pragma HLS UNROLL
input_tmp[m] = input[m];

}

void store_output(float output_tmp[N], float
output[N]){
#pragma HLS PIPELINE

int n;
for(n = 0; n < N; n++)

#pragma HLS UNROLL
output[n] = output_tmp[n];

}

void load_weight(float weight[N][M], float
weight_tmp[N][M]){
#pragma HLS PIPELINE

int n, m;
for(n = 0; n < N; n++)

#pragma HLS UNROLL
for(m = 0; m < M; m++)

#pragma HLS UNROLL
weight_tmp[n][m] = weight[n][m];

}

The bandwidth extension

• For extending the bandwidth, HLS ARRAY_PARTITION cyclic is
convenient.
• factor is set to be four in order to extend the bandwidth 128bits.

38

void test(float input[M], float output[N], float weight[N][M]){
#pragma HLS INTERFACE axis port=input
#pragma HLS INTERFACE axis port=output
#pragma HLS INTERFACE axis port=weight
#pragma HLS ARRAY_PARTITION variable=input cyclic
factor=4 dim=1
#pragma HLS ARRAY_PARTITION variable=output cyclic
factor=4 dim=1
#pragma HLS ARRAY_PARTITION variable=weight cyclic
factor=4 dim=2

float input_tmp[M], output_tmp[N], weight_tmp[N][M];

load_weight(weight, weight_tmp);
load_input(input, input_tmp);
pe(input_tmp, output_tmp, weight_tmp);
store_output(output_tmp, output);

}

test

input weight

output

PE(MultAdd)

load_input load_weight

store_output

The current image

#pragma HLS DATAFLOW (1/2)

• HLS DATAFLOW is a
directive to generate
dataflow with loops and
functions.
• Each loop and function is

independent module and
data are transferred
between them.

• Each function is connected
with FIFO or PIPO（double
buffer）.

• Only a function can
read/write from/to an
argument（*_tmp, here）
• It is quite natural considering

the hardware structure.

39

void test(float input[M], float output[N], float
weight[N][M]){
#pragma HLS INTERFACE axis port=input
#pragma HLS INTERFACE axis port=output
#pragma HLS INTERFACE axis port=weight
#pragma HLS ARRAY_PARTITION variable=input cyclic
factor=4 dim=1
#pragma HLS ARRAY_PARTITION variable=output cyclic
factor=4 dim=1
#pragma HLS ARRAY_PARTITION variable=weight cyclic
factor=4 dim=2

#pragma HLS DATAFLOW

float input_tmp[M], output_tmp[N], weight_tmp[N][M];

load_weight(weight, weight_tmp);
load_input(input, input_tmp);
pe(input_tmp, output_tmp, weight_tmp);
store_output(output_tmp, output);

}

test

#pragma HLS DATAFLOW (2/2)

• The generated image

40

input weight

output

PE(MultAdd)

load_input load_weight

store_output

Array data
between
functions

are
transferred
through the

PIPO.

Now branch
or reverse

flow.
DATAFLOW
is suitable

for the
streaming

application.

Analysis can
visualize the

dataflow
structure.

Analyzing the performance

• Interval is only ３６cycles.
• 37x performance compared to

the original version.

41

 FPGA resource
 DSP is almost sold out.

Review

• HLS UNROLL
• Loop unrolling

• HLS PIPELINE
• Pipelining

• HLS ARRAY_PARTITION
• Array partition explicitly for interleaving and banking.

• HLS INTERFACE
• Select the interface of a function(AXI Stream, AXI4 Lite, etc…)

• HLS DATAFLOW
• Data flow implementation of for loops and functions.

42

