Performance Evaluation of a Parallel /O Mechanism
on a Massively Parallel Processing System JUMP-1

Yasunori Osana, Noriaki Suzuki,
Tomonori Tamura, Hideharu Amano

Department of Computer Science
Keio University

Yokohama, Japan

Abstract

A massively parallel processing system JUMP-
1 has been developed for high performance
computing with an efficient cache coherent dis-
tributed shared memory on a large system with
more than 1000 processors.

Considering a total design policy, a scalable
I/O mechanism is implemented on JUMP-1.
Every cluster board of JUMP-1 has a serial
link called “STAFF-Link” (Serial Transparent
Asynchronous First-in First-out Link). Each
channel of STAFF-Link is connected to an in-
dependent I/O unit, and works in parallel to
obtain the scalable I/O bandwidth. In this pa-
per, performance evaluation results of JUMP-
1 I/O mechanism using real experimental sys-
tems are shown.

Keywords: Massively Parallel Processing, Par-
allel I/O, I/O Network, STAFF-Link, JUMP-1

1 Introduction

A Cache Coherent Non-Uniform Memory Ac-
cess machine (CC-NUMA) is one of hope-
ful candidates for future common high perfor-
mance machines. Presently, commercial CC-
NUMA machines, such as SGI NUMAflex[1],
has been developed and utilized for scien-
tific computations, database and other appli-
cations. Unlike bus-connected multiprocessors,
the system performance can be enhanced scal-

Hironori Nakajo

Department of Computer,

Information and Communication Science

Tokyo University of
Agriculture and Technology

Tokyo, Japan

ably as to the number of processors. Moreover,
parallel programs developed in small multipro-
cessors can be ported with less efforts.
JUMP-1[2] is developed by collaboration of
seven Japanese universities. The goal of the
project is to build a prototype of massively
parallel processing system with cache coherent
DSM. The major aim of this project is to es-
tablish techniques required to build an efficient
DSM on a massively parallel processor. A lot
of novel technologies are innovated in the DSM
management of JUMP-1 for this purpose.

An I/O architecture must be cautiously con-
sidered when we design parallel computers,
since it has become apparent that the I/O per-
formance rather than the CPU’s one often lim-
its total performance of massively parallel com-
puters in a large scale computation.

In the design of JUMP-1 I/O subsystem, we
put emphasis on its scalability, flexibility and
simplicity. Scalability is important in order to
realize massively parallel processing capability.
I/O bandwidth must be enhanced as increasing
number of processors. Flexibility is required to
connect various types of I/O devices to JUMP-
1 or any other general purpose computers. It
is necessary to relax restrictions on the phys-
ical distance that exists between both ends of
the communication line from the distributed
processing elements to the I/O system. Also,
where the system utilizes many I/O devices,
a number of cable connections are necessary.
Simplicity is necessary to design I/O devices

and system software. It is very important to
enable it to design an I/O device and system
software easily.

Therefore, we have configured an I/O sub-
system in which the I/O units are con-
nected to processing elements using a fast link
called STAFF-Link(Serial Transparent Asyn-
chronous First-in First-out Link)[3].

This paper describes the design, implemen-
tation and evaluation of the I/O subsystem of
JUMP-1. In Section 2, the overview of JUMP-
1 is introduced. In Section 3 and Section 4,
the I/O mechanism and I/O software imple-
mentation are described, and its experimental
evaluation is shown in Section 5. Finally we
conclude in Section 6.

2 The Structure of JUMP-1

As shown in Figure 1, JUMP-1 consists of 256
clusters connected each other with an intercon-
nection network called RDT (Recursive Diago-
nal Torus). The RDT[4] includes both torus
and a kind of fat tree structure with recur-
sively overlayed two-dimensional square diag-
onal torus structure. Each cluster provides a
high speed point to point I/O links connected
with I/O units.

C

./

RDT Network

Figure 1: The Structure of JUMP-1

Each cluster is a bus-connected multi-
processor, as shown in Figure 2, including
four RISC processors (SuperSPARC+), MBP-
light[5] which is directly connected to a cluster
memory, STAFF-Link, and RDT router chip

for interconnection network[6]. MBP-light, the
heart of JUMP-1 cluster, is the custom de-
signed processor for managements of DSM and

1/0.

RISC RISC RISC RISC
Processor Processor Processor Processor

| L2 Cache I | L2 Cache I | L2 Cache I | L2 Cache I

Cluster Bus

STAFF-Link M«—IMBP_H!;M I._.| ﬁle‘::;i;

]

RDT Network

Figure 2: The Structure of JUMP-1 Cluster

Furthermore, packet multicasting and gen-
eration/collection of acknowledge packets are
automatically done by the cooperation of RDT
router chip and MBP-light.

Currently, a prototype with 64 processors
(Figure 3) is available and the performance is
being analyzed in various aspects.

Figure 3: JUMP-1, 64 Processors System

3 1I/0 Mechanism of JUMP-1

3.1 Design Overview

Installing a dedicated high-speed I/O bus in
a particular node and connecting various I/O
equipments with that bus, is a general ap-
proach for super computers such as the CRAY,
and HIPPI[7] is a typical example of that.
However, when a dedicated bus is connected
to massively parallel processing system com-
prised of many element processors and clusters,
it bottlenecks the total I/O performance.

On JUMP-1, every cluster board has a
STAFF-Link module which supports for every
cluster to execute I/O operations simultane-
ously. It’s also expected that total I/O band-
width would be widened as the increasing num-
ber of processors.

We also implement a STAFF-Link interface
on SBus of SUN’s SPARCstation, and cur-
rently some SPARCstation5s are working as
I/O units for JUMP-1. Each SPARCstation5
(SS5) has 4 channels of STAFF-Link and shar-
ing their disks by NFS. By distributing physi-
cal disk access among multiple I/O units with
NFS, I/O scalability is achieved. To evalu-
ate this scalability is the main purpose of this
paper. NFS on Ethernet can be replaced by
a software system using STAFF-Link among
SS5s.

3.2 Structure of STAFF-Link

High-speed signals in cables with many lines
are difficult to be extended along a long dis-
tance because of electric and physical prob-
lems.

Thus, STAFF-Link adopts a high-speed se-
rial link which has FIFO on the both ends.
By using the buffer, STAFF-Link acts as com-
munication hardware that can be accessed like
FIFO memory as shown in Figure 4. Unlike
bit-parallel cables, serial cables can save the
area for the cables themselves and connectors,
and thus, parallel data communication using
multiple links between distant machines can be
achieved.

STAFF-Link as shown in Figure 4 consists
of two STAFF-Link daughter cards (communi-

STAFF-Link Communication Block

Send FIFO I L TAXI Transmnl —
Communication

- Controller - Serial
Receive FIFO TAXI Receive —

Send FIFO Receive FIFO
_—

s

‘ ——+ FFO — I

«— FFO ——

STAFF-Link

Figure 4: The Structure of STAFF-Link

cation blocks), and a cable to connect between
them. A STAFF-Link daughter card has two
sets of FIFO and TAXI. One set is for sending,
while the other is for receiving. TAXI chip con-
verts serial/parallel signals, and controls serial

flow with Xon/Xoff handshake lines.

3.3 STAFF-Link Interface on

JUMP-1

MBP-light manages the DSM of JUMP-1, and
it has a local I/O bus. A STAFF-Link daugh-
ter card is directly connected to a JUMP-
1 cluster board and MBP-light can access
STAFF-Link daughter card via its local I/O

bus.

3.4 STAFF-Link Interface on SS5

For connecting STAFF-Link to SS5, STAFF-
Link motherboard and STAFF-Link SBus card
are implemented. A STAFF-Link mother-
board holds 4 daughter cards. A STAFF-Link
SBus card is inserted into an SBus slot on SS5,
and connected to a motherboard with a cable.

Solaris7 is installed on SS5, and a STAFF-
Link control program runs on it. The con-
trol program is always checking FIFO status
of each channel. When an I/O request comes
from a JUMP-1 cluster, SS5 receives it from
STAFF-Link, processes the request, and sends
back the result to the JUMP-1 cluster via
STAFF-Link.

J

scsl Disk Devices
Shard /0 Controller
Buffer

STAFF-Link

DMA TAXI
Comtratr]'/_ —
(microSPARC Il) w STAFF-Link % >

-Linl
SBus Card 1o JUMP-1
sBus Clusters
1/0 Network] Taxl
Router

=]

SPARCstation5

] X
L STAFF-Link
* Daughter Board
STAFF-Link Mother Board
J

STAFF-Link \\>—
/o] NetworkE: connecting Other Units

Figure 5: The Structure of I/O Unit

3.5 1/0 Network

To distribute the load of I/O processing, a net-
work is formed among the I/O units as shown
in Figure 6. They can share their disks or any

other I/O devices through the I/O network[8].

JUMP-1 Clusters

<= |/O Unit

STAFF-Links

Figure 6: JUMP-1 and I/O Network

I/O network of JUMP-1 was due to be
constitute from STAFF-Link. And this net-
work itself was already implemented and eval-
uated. However, we need to exchange packets
on STAFF-Links for it, and it is possible by
using a custom board with routing controller.
In this paper, we use Ethernet instead of the
router board because the whole JUMP-1 sys-
tem we evaluated is compact and the band-
width of Ethernet is sufficient for it. Moreover,

we can use NFS on Ethernet easily.

4 Software Implementation

To evaluate the scalability of the I/O subsys-
tem of JUMP-1, we have implemented a file
I/O library. This library consists of following
three parts:

e libjumpl: A library which includes func-
tions to send an I/O request from a
SPARC processor on JUMP-1 to MBP-
light. This library is written in C language
and executes on SPARC processors. Every
application program running on SPARC
processors of JUMP-1 must link this li-
brary.

e INTEGRA: A program for the RISC core of
MBP-light. This program loads an ap-
plication program for SPARC processors
from STAFF-Link or Maintenance Bus In-
terface (MBIF) on the cluster. This pro-
gram also processes requests from SPARC
to I/O and cluster memory processors.
Every functions to manage resources on
JUMP-1 are integrated in this program.

e jumpld (JUMP-1 I/O daemon): A pro-
gram for SS5. This program monitors
STAFF-Link, and processes I/O requests
from JUMP-1.

SPARC processors on JUMP-1, MBP-light
and SS5 communicate each other to execute
I/O operations. An I/O operation is processed
as follows:

1. A SPARC processor writes a command
and data on the memory. This command
and data are going to be stored in the L2
cache shown in Figure 2.

2. The SPARC processor sends a control
packet (Non-cacheable Control Write Re-
quest) to MBP-light via an L2 cache con-
troller.

3. After the MBP-light receives the Non-
cacheable Control Write Request packet,
it sends a Read Request packet to the
L2 cache controller to get the command

and data which have been written by
the SPARC. Then, the MBP-light trans-
fers the command and data to SS5 via

STAFF-Link. MBP-light waits until the
SS5 replies.

4. When the SS5 receives the command and
data from the MBP-light, it executes the
requested I/O process. After finishing the

I/O process, it sends the result to the re-
questing MBP-light via STAFF-Link.

5. The MBP-light sets a flag on cluster mem-
ory, and the I/O requesting SPARC gets
the return value.

5 Performance Evaluation

We have evaluated total I/O bandwidth when
the number of I/O units is changed from 1 to
4.

5.1 Experimental Environment

The experimental system as shown in Figure 7
is configured with the following conditions for
evaluation.

e STAFF-Link
Each link is connected with a category 5
twisted pair cable.

e JUMP-1 Clusters
4 clusters are used for the evaluation.
They are working at 16MHz.

e SPARCstation5 (SS5)
Currently 5 SS5s are utilized for evalua-
tions. One is NF'S server, other 4 are NF'S
clients each has STAFF-Link connecting
to a JUMP-1 cluster. They’re also con-
nected to the LAN with 10Base-T Ether-

net.
— NFS Server
MicroSPARC II-85MHz, 160MB
RAM
— I/O Units (4 units)
MicroSPARC 1II-110MHz, 96MB
RAM

NFS Server

Ethernet

EEEE E
N AN
L
/)
ﬁrm

SO
T

JUMP-1 Clusters

1/0 Units STAFF-Link

Figure 7: Experimental Environment

5.2 Performance Measurements

We measured bulk transfer rate and file trans-
fer rate. Bulk transfer rate is the maximum
transfer rate between STAFF-Link daughter
card and SS5 or MBP-light.

For evaluating file transfer rate, we used
the following measures: “Actual” and “Total”.
“Actual” transfer rate, shown in Table 2 is a
real rate of STAFF-Link. It is smaller than
bulk transfer rate, because of the latency for
read /write operations on cluster memory on
JUMP-1 cluster and memory on SS5. The
other is “Total”transfer rate in Table 3. This
is the sum of effective I/O bandwidth on each
cluster which contains the latency of disk op-
erations in SS5. Both of them are measured
by using local disks and shared disks to clarify
the effect of using multiple I/O units.

e Bulk Transfer Rate

— From SS5 to JUMP-1
— From JUMP-1 to SS5

e File Transfer Rate

— With local disk

* 1 Cluster, 1 I/O Unit
% 2 Clusters, 1 I/O Unit

— With NFS shared disk
* 1 Cluster, 1 I/O Unit
% 2 Clusters, 2 I/O Units
% 3 Clusters, 3 I/O Units
% 4 Clusters, 4 I/O Units

5.3 Results

Bulk transfer rate is shown in Table 1. Table 3
shows average transfer rate from JUMP-1 to
SS5s. Table 2 shows actual transfer rate on
STAFF-Link.

These three sets of data are measured on the
same conditions.

Table 1: Bulk Transfer Rate

SS5—JUMP-1 | SS5—SendFIFO 25.24

RecvFIFO—JUMP-1 | 15.32

JUMP-1—-SS5 | JUMP-1—8SendFIFO | 45.17

RecvFIFO—SS5 25.24

(Mbps)

Table 2: Actual Transfer Rate on STAFF-Link
Disk Cluster—SS5 | read | write

Local 1-1 3.86 | 12.29

2-1 2.50 | 12.29

Shared 1-1 3.86 | 12.29

2-2 3.86 | 12.29

3-3 3.86 | 12.29

4-4 3.86 | 12.29
(Mbps/cluster)

Table 3: Total Transfer Rate on File I/O

| Disk | Cluster—SS5 | read | write |

Local 1-1 2.10 | 3.50
2-1 1.64 | 0.64
Shared 1-1 2.10 | 3.51
2-2 122 [7.02
3-3 6.41 | 10.93
i1 8.49 | 14.50

(Mbps)

Although the maximum transfer rate of
STAFF-Link is 140Mbps, the results show that
only 15-45Mbps transfer rate is available (Ta-
ble 1). It is supposed that there exists bottle-
necks in the both ends of STAFF-Link. More-
over, it would suffer from overhead concerned
with accessing cluster memory from MBP-light
when executing I/O operations. Since over-
head comes from read and write cluster mem-

ory, actual transfer rate becomes slower as
shown in Table 2.

16 write ---x---

14

12
10

Total Transfer Rate (Mbps)

1 2 3 4
Number of 1/0 Units

Figure 8: Total Transfer Rate on File I/O

In cases with a single SS5, the I/O band-
width falls down seriously when two clusters
access simultaneously. Table 2 shows that the
transfer rate of STAFF-Link itself is degrad-
ing by simultaneous accesses from two clusters.
This performance degradation is caused by un-
balanced transfer rate between MBP-light and
SS5 when FIFOs are not full.

Total bandwidth of each cluster in Table 3 is
slower than actual transfer rate. This is caused
by the latency of SS5 program.

From Figure 8, we can recognize clearly that
the system has scalability on I/O bandwidth.
When a SS5 with a NFS server is connected to
a JUMP-1 cluster, its transfer rate is the same
that of a SS5 with local disk connected to a
JUMP-1 cluster. This result shows there is no
performance degradation by sharing disks, and
I/O bandwidth can extend almost linearly by
the increasing number of I/O units.

The bandwidth of NFS on Ethernet is
10Mbps at the best condition, but total I/O
bandwidth in this experiment is 14.5Mbps. In
the case of 4 sets of cluster and I/O unit, I/O
scalability is increased linearly as well as the
case of less than 3 sets of cluster and I/O unit.
However, Table 4 and Figure 9 show that the
time to complete open/close operation of a
file increasing intensively. This means that the
cache mechanism on I/O units is working ef-

Table 4: Time for open/close Operations

Cluster read write
-SS5 open | close | open | close
1-1 3.91 1.47 | 28.73 42.20
2-2 4.37 1.34 28.48 94.50
3-3 3.06 1.22 | 23.66 42.29
44 3.78 1.26 | 947.28 | 2269.52
(msec.)

FIQead—Open L
Read-Close ---x<---
2500 Write-Open ---*--- |
Write-Close - |i. -
2000
o
Q
[%2]
E 1500
(]
£ /
£ ;
1000 ¥
500
S S S s
1 2 3 4

Number of I/O Units

Figure 9: Time for open/close Operations

fectively, and it enables I/O units to delay ac-
cesses to NF'S server.

This shows that cache operation in I/O unit
is important, and works effectively. However,
it is a result with only four clusters and I1/O
units. Improved cache method and sophisti-
cated migration of files to specific I/O units
will be required to realize I/O scalability for
massively parallel processing.

6 Conclusion

In this paper, the I/O subsystem for JUMP-1 is
implemented and evaluated. From experiment
results, we have confirmed that bundles of se-
rial links are effective for an I/O subsystem of
massively parallel computers. We also recog-
nized that the cache mechanism is effective for
scalability of total I/O performance.

We are now going to evaluate this I/O sys-
tem with some I/O intensive applications like

ray tracing. Software implementation to access
devices other than a disk from JUMP-1 is also
considered.

References

[1] John R. Mashey. NUMAflex Modular De-
sign Approach. News, 2000.

[2] Hidehiko Tanaka et al., editors. The Mas-
swely Parallel Processing System JUMP-1.
Ohmsha, 1996. ISBN4-274-90083-5.

[3] Hironori Nakajo et al. High speed serial
communication in a future parallel com-
puter architecture. In Proceedings of Inno-
vative Architecture for Future Generation
High-Performance Processors and Systems,
pages 125-132, 1997 , 1998.

[4] Yule L. Yang et al. Recursive Diago-
nal Torus: An interconnection network for
massively parallel computers. In Proceed-
ings of the 5th IEEE Symposium on Paral-
lel and Daistributed P rocessing, pages 591—
594, December 1993.

[5] Inoue Hiroaki et al. MBP-light: A Proces-
sor for Management of Distributed Shared
Memory. In Proceedings of the 8rd Interna-
tional Conference on ASIC, pages 199-202,
October 1998.

[6] Hiroaki Nishi et al. The RDT Router Chip:
A Versatile Router for Supporting a Dis-
tributed Shared Memory. IEICE transac-
tion on Information and Systems, pages
854-862, 197.

[7] ANSI document: High Performance Paral-
lel Interface, document #X3T9.3, 1987.

[8] Hironori Nakajo et al. An I/O Net-
work Architecture of the Distributed
Shared-MemoryMassively Parallel Com-
puter JUMP-1. In Procedings of 11th In-
ternational Conference On Supercomputing
(ICS97), pages 253-260, 1997.

