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Abstract

A massively parallel processing system JUMP-
1 has been developed for high performance
computing with an efficient cache coherent dis-
tributed shared memory on a large system with
more than 1000 processors.

Considering a total design policy, a scalable
I/O mechanism is implemented on JUMP-1.
Every cluster board of JUMP-1 has a serial
link called “STAFF-Link” (Serial Transparent
Asynchronous First-in First-out Link). Each
channel of STAFF-Link is connected to an in-
dependent I/O unit, and works in parallel to
obtain the scalable I/O bandwidth. In this pa-
per, performance evaluation results of JUMP-
1 I/O mechanism using real experimental sys-
tems are shown.
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1 Introduction

A Cache Coherent Non-Uniform Memory Ac-
cess machine (CC-NUMA) is one of hope-
ful candidates for future common high perfor-
mance machines. Presently, commercial CC-
NUMA machines, such as SGI NUMAflex[1],
has been developed and utilized for scien-
tific computations, database and other appli-
cations. Unlike bus-connected multiprocessors,
the system performance can be enhanced scal-
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ably as to the number of processors. Moreover,
parallel programs developed in small multipro-
cessors can be ported with less efforts.
JUMP-1[2] is developed by collaboration of
seven Japanese universities. The goal of the
project is to build a prototype of massively
parallel processing system with cache coherent
DSM. The major aim of this project is to es-
tablish techniques required to build an efficient
DSM on a massively parallel processor. A lot
of novel technologies are innovated in the DSM
management of JUMP-1 for this purpose.

An I/O architecture must be cautiously con-
sidered when we design parallel computers,
since it has become apparent that the I/O per-
formance rather than the CPU’s one often lim-
its total performance of massively parallel com-
puters in a large scale computation.

In the design of JUMP-1 I/O subsystem, we
put emphasis on its scalability, flexibility and
simplicity. Scalability is important in order to
realize massively parallel processing capability.
I/O bandwidth must be enhanced as increasing
number of processors. Flexibility is required to
connect various types of I/O devices to JUMP-
1 or any other general purpose computers. It
is necessary to relax restrictions on the phys-
ical distance that exists between both ends of
the communication line from the distributed
processing elements to the I/O system. Also,
where the system utilizes many I/O devices,
a number of cable connections are necessary.
Simplicity is necessary to design I/O devices



and system software. It is very important to
enable it to design an I/O device and system
software easily.

Therefore, we have configured an I/O sub-
system in which the I/O units are con-
nected to processing elements using a fast link
called STAFF-Link(Serial Transparent Asyn-
chronous First-in First-out Link)[3].

This paper describes the design, implemen-
tation and evaluation of the I/O subsystem of
JUMP-1. In Section 2, the overview of JUMP-
1 is introduced. In Section 3 and Section 4,
the I/O mechanism and I/O software imple-
mentation are described, and its experimental
evaluation is shown in Section 5. Finally we
conclude in Section 6.

2 The Structure of JUMP-1

As shown in Figure 1, JUMP-1 consists of 256
clusters connected each other with an intercon-
nection network called RDT (Recursive Diago-
nal Torus). The RDT[4] includes both torus
and a kind of fat tree structure with recur-
sively overlayed two-dimensional square diag-
onal torus structure. Each cluster provides a
high speed point to point I/O links connected
with I/O units.
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Figure 1: The Structure of JUMP-1

Each cluster is a bus-connected multi-
processor, as shown in Figure 2, including
four RISC processors (SuperSPARC+), MBP-
light[5] which is directly connected to a cluster
memory, STAFF-Link, and RDT router chip

for interconnection network[6]. MBP-light, the
heart of JUMP-1 cluster, is the custom de-
signed processor for managements of DSM and

1/0.
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Figure 2: The Structure of JUMP-1 Cluster

Furthermore, packet multicasting and gen-
eration/collection of acknowledge packets are
automatically done by the cooperation of RDT
router chip and MBP-light.

Currently, a prototype with 64 processors
(Figure 3) is available and the performance is
being analyzed in various aspects.

Figure 3: JUMP-1, 64 Processors System



3 1I/0 Mechanism of JUMP-1

3.1 Design Overview

Installing a dedicated high-speed I/O bus in
a particular node and connecting various I/O
equipments with that bus, is a general ap-
proach for super computers such as the CRAY,
and HIPPI[7] is a typical example of that.
However, when a dedicated bus is connected
to massively parallel processing system com-
prised of many element processors and clusters,
it bottlenecks the total I/O performance.

On JUMP-1, every cluster board has a
STAFF-Link module which supports for every
cluster to execute I/O operations simultane-
ously. It’s also expected that total I/O band-
width would be widened as the increasing num-
ber of processors.

We also implement a STAFF-Link interface
on SBus of SUN’s SPARCstation, and cur-
rently some SPARCstation5s are working as
I/O units for JUMP-1. Each SPARCstation5
(SS5) has 4 channels of STAFF-Link and shar-
ing their disks by NFS. By distributing physi-
cal disk access among multiple I/O units with
NFS, I/O scalability is achieved. To evalu-
ate this scalability is the main purpose of this
paper. NFS on Ethernet can be replaced by
a software system using STAFF-Link among
SS5s.

3.2 Structure of STAFF-Link

High-speed signals in cables with many lines
are difficult to be extended along a long dis-
tance because of electric and physical prob-
lems.

Thus, STAFF-Link adopts a high-speed se-
rial link which has FIFO on the both ends.
By using the buffer, STAFF-Link acts as com-
munication hardware that can be accessed like
FIFO memory as shown in Figure 4. Unlike
bit-parallel cables, serial cables can save the
area for the cables themselves and connectors,
and thus, parallel data communication using
multiple links between distant machines can be
achieved.

STAFF-Link as shown in Figure 4 consists
of two STAFF-Link daughter cards (communi-
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Figure 4: The Structure of STAFF-Link

cation blocks), and a cable to connect between
them. A STAFF-Link daughter card has two
sets of FIFO and TAXI. One set is for sending,
while the other is for receiving. TAXI chip con-
verts serial/parallel signals, and controls serial

flow with Xon/Xoff handshake lines.

3.3 STAFF-Link Interface on

JUMP-1

MBP-light manages the DSM of JUMP-1, and
it has a local I/O bus. A STAFF-Link daugh-
ter card is directly connected to a JUMP-
1 cluster board and MBP-light can access
STAFF-Link daughter card via its local I/O

bus.

3.4 STAFF-Link Interface on SS5

For connecting STAFF-Link to SS5, STAFF-
Link motherboard and STAFF-Link SBus card
are implemented. A STAFF-Link mother-
board holds 4 daughter cards. A STAFF-Link
SBus card is inserted into an SBus slot on SS5,
and connected to a motherboard with a cable.

Solaris7 is installed on SS5, and a STAFF-
Link control program runs on it. The con-
trol program is always checking FIFO status
of each channel. When an I/O request comes
from a JUMP-1 cluster, SS5 receives it from
STAFF-Link, processes the request, and sends
back the result to the JUMP-1 cluster via
STAFF-Link.
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Figure 5: The Structure of I/O Unit

3.5 1/0 Network

To distribute the load of I/O processing, a net-
work is formed among the I/O units as shown
in Figure 6. They can share their disks or any

other I/O devices through the I/O network[8].

JUMP-1 Clusters
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Figure 6: JUMP-1 and I/O Network

I/O network of JUMP-1 was due to be
constitute from STAFF-Link. And this net-
work itself was already implemented and eval-
uated. However, we need to exchange packets
on STAFF-Links for it, and it is possible by
using a custom board with routing controller.
In this paper, we use Ethernet instead of the
router board because the whole JUMP-1 sys-
tem we evaluated is compact and the band-
width of Ethernet is sufficient for it. Moreover,

we can use NFS on Ethernet easily.

4 Software Implementation

To evaluate the scalability of the I/O subsys-
tem of JUMP-1, we have implemented a file
I/O library. This library consists of following
three parts:

e libjumpl: A library which includes func-
tions to send an I/O request from a
SPARC processor on JUMP-1 to MBP-
light. This library is written in C language
and executes on SPARC processors. Every
application program running on SPARC
processors of JUMP-1 must link this li-
brary.

e INTEGRA: A program for the RISC core of
MBP-light. This program loads an ap-
plication program for SPARC processors
from STAFF-Link or Maintenance Bus In-
terface (MBIF) on the cluster. This pro-
gram also processes requests from SPARC
to I/O and cluster memory processors.
Every functions to manage resources on
JUMP-1 are integrated in this program.

e jumpld (JUMP-1 I/O daemon): A pro-
gram for SS5. This program monitors
STAFF-Link, and processes I/O requests
from JUMP-1.

SPARC processors on JUMP-1, MBP-light
and SS5 communicate each other to execute
I/O operations. An I/O operation is processed
as follows:

1. A SPARC processor writes a command
and data on the memory. This command
and data are going to be stored in the L2
cache shown in Figure 2.

2. The SPARC processor sends a control
packet (Non-cacheable Control Write Re-
quest) to MBP-light via an L2 cache con-
troller.

3. After the MBP-light receives the Non-
cacheable Control Write Request packet,
it sends a Read Request packet to the
L2 cache controller to get the command



and data which have been written by
the SPARC. Then, the MBP-light trans-
fers the command and data to SS5 via

STAFF-Link. MBP-light waits until the
SS5 replies.

4. When the SS5 receives the command and
data from the MBP-light, it executes the
requested I/O process. After finishing the

I/O process, it sends the result to the re-
questing MBP-light via STAFF-Link.

5. The MBP-light sets a flag on cluster mem-
ory, and the I/O requesting SPARC gets
the return value.

5 Performance Evaluation

We have evaluated total I/O bandwidth when
the number of I/O units is changed from 1 to
4.

5.1 Experimental Environment

The experimental system as shown in Figure 7
is configured with the following conditions for
evaluation.

e STAFF-Link
Each link is connected with a category 5
twisted pair cable.

e JUMP-1 Clusters
4 clusters are used for the evaluation.
They are working at 16MHz.

e SPARCstation5 (SS5)
Currently 5 SS5s are utilized for evalua-
tions. One is NF'S server, other 4 are NF'S
clients each has STAFF-Link connecting
to a JUMP-1 cluster. They’re also con-
nected to the LAN with 10Base-T Ether-

net.
— NFS Server
MicroSPARC II-85MHz, 160MB
RAM
— I/O Units (4 units)
MicroSPARC 1II-110MHz, 96MB
RAM
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Figure 7: Experimental Environment

5.2 Performance Measurements

We measured bulk transfer rate and file trans-
fer rate. Bulk transfer rate is the maximum
transfer rate between STAFF-Link daughter
card and SS5 or MBP-light.

For evaluating file transfer rate, we used
the following measures: “Actual” and “Total”.
“Actual” transfer rate, shown in Table 2 is a
real rate of STAFF-Link. It is smaller than
bulk transfer rate, because of the latency for
read /write operations on cluster memory on
JUMP-1 cluster and memory on SS5. The
other is “Total”transfer rate in Table 3. This
is the sum of effective I/O bandwidth on each
cluster which contains the latency of disk op-
erations in SS5. Both of them are measured
by using local disks and shared disks to clarify
the effect of using multiple I/O units.

e Bulk Transfer Rate

— From SS5 to JUMP-1
— From JUMP-1 to SS5

e File Transfer Rate

— With local disk

* 1 Cluster, 1 I/O Unit
% 2 Clusters, 1 I/O Unit

— With NFS shared disk
* 1 Cluster, 1 I/O Unit
% 2 Clusters, 2 I/O Units
% 3 Clusters, 3 I/O Units
% 4 Clusters, 4 I/O Units



5.3 Results

Bulk transfer rate is shown in Table 1. Table 3
shows average transfer rate from JUMP-1 to
SS5s. Table 2 shows actual transfer rate on
STAFF-Link.

These three sets of data are measured on the
same conditions.

Table 1: Bulk Transfer Rate

SS5—JUMP-1 | SS5—SendFIFO 25.24

RecvFIFO—JUMP-1 | 15.32

JUMP-1—-SS5 | JUMP-1—8SendFIFO | 45.17

RecvFIFO—SS5 25.24

(Mbps)

Table 2: Actual Transfer Rate on STAFF-Link
Disk Cluster—SS5 | read | write

Local 1-1 3.86 | 12.29

2-1 2.50 | 12.29

Shared 1-1 3.86 | 12.29

2-2 3.86 | 12.29

3-3 3.86 | 12.29

4-4 3.86 | 12.29
(Mbps/cluster)

Table 3: Total Transfer Rate on File I/O

| Disk | Cluster—SS5 | read | write |

Local 1-1 2.10 | 3.50
2-1 1.64 | 0.64
Shared 1-1 2.10 | 3.51
2-2 122 [ 7.02
3-3 6.41 | 10.93
i1 8.49 | 14.50

(Mbps)

Although the maximum transfer rate of
STAFF-Link is 140Mbps, the results show that
only 15-45Mbps transfer rate is available (Ta-
ble 1). It is supposed that there exists bottle-
necks in the both ends of STAFF-Link. More-
over, it would suffer from overhead concerned
with accessing cluster memory from MBP-light
when executing I/O operations. Since over-
head comes from read and write cluster mem-

ory, actual transfer rate becomes slower as
shown in Table 2.

16 write ---x---
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10

Total Transfer Rate (Mbps)

1 2 3 4
Number of 1/0 Units

Figure 8: Total Transfer Rate on File I/O

In cases with a single SS5, the I/O band-
width falls down seriously when two clusters
access simultaneously. Table 2 shows that the
transfer rate of STAFF-Link itself is degrad-
ing by simultaneous accesses from two clusters.
This performance degradation is caused by un-
balanced transfer rate between MBP-light and
SS5 when FIFOs are not full.

Total bandwidth of each cluster in Table 3 is
slower than actual transfer rate. This is caused
by the latency of SS5 program.

From Figure 8, we can recognize clearly that
the system has scalability on I/O bandwidth.
When a SS5 with a NFS server is connected to
a JUMP-1 cluster, its transfer rate is the same
that of a SS5 with local disk connected to a
JUMP-1 cluster. This result shows there is no
performance degradation by sharing disks, and
I/O bandwidth can extend almost linearly by
the increasing number of I/O units.

The bandwidth of NFS on Ethernet is
10Mbps at the best condition, but total I/O
bandwidth in this experiment is 14.5Mbps. In
the case of 4 sets of cluster and I/O unit, I/O
scalability is increased linearly as well as the
case of less than 3 sets of cluster and I/O unit.
However, Table 4 and Figure 9 show that the
time to complete open/close operation of a
file increasing intensively. This means that the
cache mechanism on I/O units is working ef-



Table 4: Time for open/close Operations

Cluster read write
-SS5 open | close | open | close
1-1 3.91 1.47 | 28.73 42.20
2-2 4.37 1.34 28.48 94.50
3-3 3.06 1.22 | 23.66 42.29
44 3.78 1.26 | 947.28 | 2269.52
(msec.)
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Figure 9: Time for open/close Operations

fectively, and it enables I/O units to delay ac-
cesses to NF'S server.

This shows that cache operation in I/O unit
is important, and works effectively. However,
it is a result with only four clusters and I1/O
units. Improved cache method and sophisti-
cated migration of files to specific I/O units
will be required to realize I/O scalability for
massively parallel processing.

6 Conclusion

In this paper, the I/O subsystem for JUMP-1 is
implemented and evaluated. From experiment
results, we have confirmed that bundles of se-
rial links are effective for an I/O subsystem of
massively parallel computers. We also recog-
nized that the cache mechanism is effective for
scalability of total I/O performance.

We are now going to evaluate this I/O sys-
tem with some I/O intensive applications like

ray tracing. Software implementation to access
devices other than a disk from JUMP-1 is also
considered.
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