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Abstract. Recursive Diagonal Torus, or RDT counsisting of recursively
structured tori is an interconnection network for massively parallel com-
puters. By adding remote links to the diagonal directions of the torus
network recursively, the diameter can be reduced within logs N with s-
maller number of links than that of hypercube.

For an interconnection network for massively parallel computers, a rout-
ing algorithm which can bypass a faulty or congested node are essential.
Although the conventional vector routing is a simple and near-optimal
method, it can only use a deterministic path. In this paper, adaptive
routing algorithms on RDT are proposed and discussed. The first algo-
rithm is based on Duato’s necessary and sufficient condition. With this
method virtual channels are effectively used while paths with redundant
routing steps are prohibited. Another algorithm based on the turn model
is proposed. By prohibiting certain turns on RDT, it permits paths with
additional hops. Both algorithms are proved to be deadlock free.

1 Introduction

Communication network is one of the critical components of a highly paral-
lel multicomputer. Recently, multicomputers providing more than a thousand
computation nodes are commercially available, and efforts have been exerted to
implement Massively Parallel Computers (MPCs) with tens of thousands nodes.
In these systems, the connection topology often dominates the system perfor-
mance.

Instead of hypercube used in first-generation multicomputers, most recent
machines take the 2-D or 3-D mesh (torus) network([1][2][3]. Although the di-
ameter of a mesh network is large ( O(vV/M) or O(/M) for M nodes), it only
requires four or six links per node unlike the hypercube which requires logs M
links per node.

However, in an MPC with more than ten thousands nodes, the large diameter
of the mesh network is intolerable. To address this problem, we proposed a novel
extension of mesh network called Recursive Diagonal Torus (RDT) [4], which
consists of recursively structured mesh (torus) connection. It supports a smaller
diameter and degree than that of the hypercube if the number of nodes is 1000-
10000. Through the computer simulation, the bandwidth and latency are much
improved compared with 2-D/3-D tori [4]. The router chip providing the vector



routing algorithm with multicasting was implemented for a massively parallel
machine JUMP-1[5].

In this paper, deadlock-free adaptive routing algorithms on RDT are pro-
posed. In Section 2, the structure of RDT and the vector routing algorithm are
briefly introduced. An adaptive routing using minimal paths based on Duato’s
method is proposed in Section 3. More flexible routing algorithm based on the
turn model is also proposed in Section 4.

2 Interconnection Network: RDT

Recursive Diagonal Torus (RDT) is a novel class of networks which consists of
recursively structured mesh (torus) connections of meshes with different sizes in
the diagonal directions[4][6].

When four links are added between node (z,y) and nodes (z £ n,y £n) (n:
cardinal number) respectively, additional links result in a new torus-like network.
New torus-like network is formed at an angle of 45 degrees to the original torus,
and the grid size is v/2n times that of the original torus. We call this new torus-
like network the rank-1 torus. On the rank-1 torus, we can form another torus-
like network (rank-2 torus) by providing additional links in the same manner.
Figure 1 shows rank-1 and rank-2 tori when n is 2. The RDT consists of such
recursively formed tori.
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Fig. 1. Upper rank tori

RDT(n,R,m) can be defined as a class of networks in which each node has



links to form base (rank-0) torus and m upper tori (the maximum rank is R)
with cardinal number n. Note that, each node can select different rank of upper
tori from others.

The RDT in which every node has links to form all possible upper tori is
called the perfect RDT (PRDT(n,R)) where n is the cardinal number (usually,
2) and R is the maximum rank. Although PRDT is unrealistic due to its large
degree (4(R+1)), it is important as the basis for establishing routing algorithm,
broadcasting/multicasting, and other message transfer algorithms.

For a system with thousand of nodes, the RDT whose degree is 8 and the
maximum rank of upper tori is 4, that is, RDT(2,4,1) is suitable. In the RDT,
each node can select different rank tori from others. Thus, the structure of the
RDT(2,4,1) also varies with the rank of tori which are assigned to each node. This
assignment is called the torus assignment. Various torus assignment strategies
can be selected considering the traffic of the network.

2.1 The vector routing

The vector routing is an assignment independent of routing algorithm which
represents the route of a message with a combination of unit vectors each of
which corresponds to each rank of tori.

On the torus structure, a vector from a source node to the destination node
is represented with a vector A = axqg + byg where xg and yq are unit vectors
of the base (rank-0) torus. The goal of the routing algorithm is to represent
the vector A with a combination of vectors each of which corresponds to a unit
vector of each rank of torus.

First, the direction of the unit vector corresponding to each rank torus must
be defined. Here, the direction of the unit vector for each rank torus is changed
clockwise at an angle of 45 degrees. That is, the unit vectors of rank-(i+1) torus
Xi11,Y;+1 can be represented with the unit vectors of rank-i x;,y; as follows:

Xit1 = nX; + ny;j (1)

Yiq1 = —nX5 +nyj (2)

First, the target vector axqg + byq is represented with a combination of
X1,¥1.%Xg and yg as follows:

axg + byg = 9x1 + fy1 + jxo + kyo (3)

Here, we select maximum ¢ and f in order to use the upper torus as possible.
From equations (1) and (2), maximum integers for g and f are represented as

follows:
a+b a—>b
9= 7f =-
2n 2n
In order to minimize j and k corresponding to the remaining unit vectors of
the rank-0 torus (thus, the required message transfers using the rank-0 torus),




the integer divisor used here is rounded to the nearest whole number (If the
remainder is greater than n, increment the divisor).
Thus, 7 and k are represented with ¢ and f:

axg +byg = g(nxg + nyg) + f(—nxg + nyg) + %0 + kyo
a=ng—nf+j5b=ng+nf+k
j=a—-ng+nf,k=b—ng—nf
Then, gxq + fy1 are represented with a combination of vector x9, y9, X1,
and yq in the same manner. By iterating this process to the maximum rank,

vectors for message routing are obtained.
The routing vectors for each rank are obtained in the array vector[rank].

Step 1 Step 2 Step 3
1.2) (1.2)
(5.9) (5.9)
h \/

g=11/4=3, f=3/4=1 g=(3+1)/4=1,f=-(3-1)/4=0

a=5-1=4, b=9-2=7 - - x1=3-2(1-0)=1
x0=4-2(3-1)=0
yo=7-253+1))=-1 y1=1-2(1+0)=-1

Fig. 2. An example of the vector conversion

Figure 2 shows an example of a vector from (1,2) to (5,9) converted into a
combination of unit vectors of rank-0, rank-1, and rank-2.

3 Adaptive routing with minimal paths

Adaptive routing is a technique to select the route of packet dynamically. When
a packet encounters a faulty or congested node, the packet can select another
bypassing route. The vector routing is useful for a basis of an adaptive rout-
ing, since as alternative routes can be easily obtained by changing the order of
vectors.However, we must not forget that an adaptive routing has a possibili-
ty of deadlock. There are a lot of researches on deadlock free adaptive routing



techniques|7]. These techniques are classified into two methods: using only mini-
mal paths, and using alternative paths with additional routing steps. The former
method does not require extra routings while the latter can use alternative routes
more flexibly. First, deadlock free adaptive routings with minimal routes are pro-
posed for the RDT based on Duato’s protocol. Then, another algorithm which
permits redundant routing steps is proposed based on the turn model.

3.1 Duato’s protocol in the k-ary n-cube

Duato states a general theorem defining a criterion for deadlock freedom and then
uses the theorem to propose a fully adaptive, profitable, progressive protocol[8],
called Duato’s protocol (DP). The theorem states that by separating virtual
channels on a link into restricted and unrestricted partitions, a fully adaptive
routing can be performed and yet be deadlock-free. This is not restricted to a
particular topology or routing algorithm. Cyclic dependencies between channels
are allowed, provided that there exists a connected channel subset free of cyclic
dependencies.
Simple description of Duato’s protocol is as follows.

a. Provide that every packet can always find a path toward its destination
whose channels are not involved in cyclic dependencies(escape path).

b. Guarantee that every packet can send to any destination node using escape
path and the other path which cyclic dependency is broken by escape path.

By selecting these two routes a. and b. adaptively, deadlock can be prevented.
Duato applied this method to the k-ary n-cube[9].

3.2 Applying Duato’s protocol on PRDT
Here, we apply this routing algorithm for PRDT.
Definition 1. : Duato’s protocol on PRDT

1. Provide an escape path C; on a torus of PRDT as well as the case for the
k-ary n-cube.

2. Next, the order of rank usage is restricted. Let X; and Y; be channel of each
dimension in the rank z torus. Use the channel in the X first and descending
order of the rank. That is, for PRDT(2,4), the channel is used in the following
order
Xs—=YV3-X—-Y,—-X; -1
We refer this escape path Cf.

3. Add a new virtual channel Cr(Fully adaptive) which is used for the fully
adaptive routing. There are two algorithms: D-A and D-B.

Algorithm: D-A

Provide the virtual channel Cp directly for the escape channel C}. In Cp,
each direction of +X and 4+Y in odd rank and even rank must be the
same direction. In the vector routing, the unit vector for each rank torus



is changed clockwise at an angle of 45 degree as represented in function(1)
and function(2), the unit vector for odd rank torus must be same direction
with the unit vector for rank 0 torus (xo,y,) and the unit vector for even
rank torus must be the same with the one for rank 1 torus(xi,y;).

Algorithm: D-B

Provide the virtual channel Cp,, not for C] but for C; in each rank. Cp,
channels can cross dimensions in any order following a minimal path, but

must cross ranks in descending order.

O

Figure 3 illustrates the fully adaptive virtual channel Cr in Algorithm D-A.
Since Cy is directly assigned to the escape path Cj, the Cp itself must be a
minimal routing. This means that a packet must not use the opposite direction

which used in the past.

,
Ci
cee Destination

Ce

Fig. 3. Channels using Algorithm D-A

On the other hand, the fully adaptive path is assigned to the escape path C;
of each rank in Algorithm D-B(Figure4). Therefore, there is no restriction for
using unit vector, while the order of ranks is restricted.

C.

C,

(=)

o

Crn

Crn

>~eo e

Fig. 4. Channels using algorithm D-B

Figureb illustrates the possible path and impossible path for algorithm D-
A and D-B. The path (b) which uses rank 2 before rank 3 is allowed in the
algorithm D-A while it is prohibited in the algorithm D-B, since the rank is not
be used in the descending order. On the contrary, path (c) in which the unit



vectors of rank 1 and rank 3 are directed opposite to each other is prohibited in
the algorithm D-A but allowed in the algorithm D-B.

rank2

rank3 rank3

rank2 ankl

rank
rank2
rank2
rankl rankl
(a) base vector (b) (c)

Fig. 5. Examples of vectors in algorithm D-A and D-B

Theorem 2. Algorithm D-A is deadlock-free. O

Proof Since the order of the rank is the same as that of the e-cube routing[10],
the escape path C’1 is deadlock free. In Cp, the opposite direction which used in
the past is prohibited, and so Cr is a minimal path. From Duato’s theorem[9],
Algorithm D-A is deadlock-free. O

Theorem 3. Algorithm D-B is deadlock-free. O

Proof C; is the same escape path used in Duato’s protocol, and is deadlock
free. Cpy, is a minimal path in each torus. From Duato’s theorem[9], Algorithm
D-B is deadlock-free in each rank of torus. Since the order of used rank is the
same as the e-cube routing, C; nor C'p,, in any rank does not cause a cycle each
other. Therefore, Algorithm D-B is deadlock-free.O

4 Adaptive routing based on the turn model

Although Duato’s protocol is powerful approach for bypassing the congestion,
only minimal paths can be used. For selecting paths with additional steps, an-
other adaptive routing based on the turn model[11] is proposed here.

4.1 Turn model for Two-Dimensional Meshes

Deadlock in the wormhole routing is caused by message packets waiting for each
other in a cycle. The turn model proposed by Glass is a method which prevents
deadlock by prohibiting certain turns.

For two-dimensional meshes, Figure6(a) shows the possible turns and simple
cycles. Deadlock can be prevented by prohibiting only one turn from each cycle,



(a) (b) west-first (C) north-last

Fig. 6. The turn model for two-dimensional meshes.

as shown in Figure6(b),(c). These routing algorithms are called the west-first
routing algorithm and north-last routing algorithm, respectively. Although this
model is for a simple mesh network without cyclic links, it is easily used in the
torus by introducing extra channels like the e-cube routing.

4.2 The turn model for RDT

Fig. 7. The possible turns and simple cycles in RDT.

Here, we extend the turn model for two-dimensional meshes of the RDT. The
possible turns in RDT are expressed in Figure7. As shown in Figure7, there are
eight different directions in the RDT, so there exists sixteen 45-degree turns,
sixteen 90-degree turns and sixteen 135-degree turns.

Here, like the north-last routing algorithm for two dimensional mesh, the
right top turns and left top turns of cycles are prohibited as shown in Figure8(a).

However, these restrictions are not sufficient for RDT. Cycles without left
top turns or right top turns are still possible as shown Figure8(b). In order to
break such triangle cycles, dotted turns shown in Figure8(c) must be prohibited.
As a result, the following turns are prohibited in RDT.

Definition 4. : North-last routing for PRDT
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(a) The first step to the north-last
routing on RDT.
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(c) Completed form of the north-last
routing on RDT.

Fig. 8. The north-last routing on RDT.

North-last routing for PRDT is a routing in which fourteen turns shown in
Figured.2 are prohibited. A packet transfer through cyclic links is also prohibited.
O

As well as the turn model for two dimensional torus, cyclic links can be used by
introducing an extra channel for the e-cube routing. Also, this routing can be
directly applied for any type of RDT including RDT(2,4,1)/c.

For showing that the proposed north-last routing algorithm for RDT is dead-
lock free, the channel numbering method by Dally and Seitz[10] is applied. In
this method, channels in the direct network is numbered so that every packet
is transferred along channels with strictly increasing (or decreasing) numbers.
If such a numbering is possible, it shows that there is no cyclic path between
buffers in channels.

Theorem 5. The north-last routing for RDT is deadlock-free. O

Proof Assuming that the size of the base torus of RDT is m x m. Assign two
dimensional number of channel from a node (z,y) according to its direction as
shown in Figure9, and let the unique number of the channel be ¢, x m +¢,,.

Since the size of the base torus of RDT is m x n, the range of the possible
channel number (cg, c,) is represented by the following equations.



(4(n-1)+y+1, 0)

(3(n-1)+ y+1, (3(n-1)+y+1, 0)

(3D =, mi=0 Xy (3(-1) -y}, x)

(3{(n-1)-yp2, 1) (3{(n-1)-yp2, 0
(3{(n-1) -yH1, 0)

Fig. 9. Numbering of the channels leaving each node (z,y) for the north-last routing
algorithm for RDT.

0<e; <5(n-1)
0<cy,<m-—2

In RDT, there are eight possible input directions. As shown in Figure 10, all
possible output channel numbers are larger than the number of input channel.
In other words, the packet transfer to an output channel whose number is less
than input channel is prohibited by the Definition 2 within the range shown in
the above equations.

Therefore, channels are used in the increasing order on RDT.O

Figurell shows an example of routing on the 4x4 RDT. The blocked channels
are bypassed with a path consisting of channels in increasing order. This figure
also shows that the number of permitted output channel is lager than that of
input channel.

5 Conclusion

Two adaptive routing algorithms on RDT are proposed and proved to be deadlock-
free. A simulation study which demonstrates the effect of the proposed routing
algorithm is required.
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Fig. 10. The possible output channels for each input channel.
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