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a MIPS R3000 compatible CPU core.
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Introduction

Coarse-grained reconfigurable architecture (CGRA) is a type of reconfigurable device. There are several steps in CGRA application 
development, such as converting the target application to a data flow graph (DFG), mapping the DFG to a PE array, etc. In this study, we 
implemented and evaluated an application development environment using LLVM for the CGRAs which covers the entire system. 

• PE(Processing Element)
• Composed of

1. Simple ALU
2. Switching Element

• No register file
→No need of clock signal

• PE Array
• 12 cols x 8 rows PEs
• 7 pipeline registers

• Micro-controller
• Controls data transfer 

b/w data memory & PE 
array

Design Verilog HDL

Process Renesas SOTB 65nm

Logic Synthesis Synopsys Design Compiler 2016.03-SP4

Place and Route Synopsys IC Compiler 2016.03-SP4

HDL Simulation Cadence NC-Verilog 15.20-s020

Power-Supply Voltage CCSOTB2:0.55V GeyserTT: 0.75V

Code amount for each kernel 
compared to [3]

87.2%

Comparison of execution time b/w 
CCSOTB2 and GeyserTT

99%
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Each step is separate.
Some are manual.

Our tool covers 
entire flow.

Conventional App development flow Flow using the proposed tool

• automation and 
Integration of 
each process

int main() {
int index = 

get_kernel_index(“gray”); 
cgra_setup(index); 
send_host_to_cgra(index, 1, data,

48, 0); 
cgra_run(index, 0, 0, 0);
wait_cma(); 
send_cgra_to_host(index, 1, result,

48, 0); 
}

• MCDPass
(Multi Context Data Pass)
• Extracts each context 

information.
• EDLPass

(Eliminate Duplicate Load Pass)
• Eliminates duplicate load 

instructions which load from 
the same memory address.

• DFGPass
• Analyses LLVM IR and outputs 

DFG in the dot format.
• GenMap[2]
• Maps the DFG to the PE array.

• AsmPass
• Generates assembly code for 

the memory access controller 
in CGRA.

• CGRA Library
• Used to write code that runs 

on the CPU side.
• Provides functions for 

controlling the CPU and the 
CGRA.

• Encapsulates calculation of 
data transfer 
destination/source address.

Application development flow

Sample code using CGRA Library

Sample assembly code

GeyserTT

CCSOTB2

Result

• Four applications were chosen 
for the evaluation.
• alpha: 24bit alpha blender
• gray: 24bit gray scale
• sepia: 24bit sepia filter
• sf: 8bit sepia filter

• All applications were confirmed 
to work properly.

The DFG to convert an RGB image to 
gray scale


