
Background & Motivation

Proposed CGRA App Development Tool

VPCMA(Variable Pipelined Cool Mega Array)[1]

Evaluation

Evaluation Target
• CCSOTB2@20MHz

• A real chip implementation of 
a VPCMA

• GeyserTT@20MHz
• An embedded processor with 

a MIPS R3000 compatible CPU core.

Evaluation Environment

Compiler Framework for Spatial Mapping CGRA using LLVM
Ayaka Ohwada*, Takuya Kojima*, and Hideharu Amano*

*Keio Univ. JAPAN
E-mail: ohwawa@am.ics.keio.ac.jp

Introduction

Coarse-grained reconfigurable architecture (CGRA) is a type of reconfigurable device. There are several steps in CGRA application 
development, such as converting the target application to a data flow graph (DFG), mapping the DFG to a PE array, etc. In this study, we 
implemented and evaluated an application development environment using LLVM for the CGRAs which covers the entire system. 

• PE(Processing Element)
• Composed of

1. Simple ALU
2. Switching Element

• No register file
→No need of clock signal

• PE Array
• 12 cols x 8 rows PEs
• 7 pipeline registers

• Micro-controller
• Controls data transfer 

b/w data memory & PE 
array

Design Verilog HDL

Process Renesas SOTB 65nm

Logic Synthesis Synopsys Design Compiler 2016.03-SP4

Place and Route Synopsys IC Compiler 2016.03-SP4

HDL Simulation Cadence NC-Verilog 15.20-s020

Power-Supply Voltage CCSOTB2:0.55V GeyserTT: 0.75V

Code amount for each kernel 
compared to [3]

87.2%

Comparison of execution time b/w 
CCSOTB2 and GeyserTT

99%

Reference

[1] Ando Naoki, et al. "Variable pipeline structure for coarse grained reconfigurable array CMA." FPT 2016.
[2] Takuya Kojima, et al. “Real chip evaluation of a low power cgra with optimized application mapping,” HEART 2018. 
[3] Vasutan TUNBUNHENG, et al. “A Retargetable Compiler Based on Graph Representation for Dynamically Reconfigurable Processor Arrays”, IEICE Transactions on 
Information and Systems, 2008.

Each step is separate.
Some are manual.

Our tool covers 
entire flow.

Conventional App development flow Flow using the proposed tool

• automation and 
Integration of 
each process

int main() {
int index = 

get_kernel_index(“gray”); 
cgra_setup(index); 
send_host_to_cgra(index, 1, data,

48, 0); 
cgra_run(index, 0, 0, 0);
wait_cma(); 
send_cgra_to_host(index, 1, result,

48, 0); 
}

• MCDPass
(Multi Context Data Pass)
• Extracts each context 

information.
• EDLPass

(Eliminate Duplicate Load Pass)
• Eliminates duplicate load 

instructions which load from 
the same memory address.

• DFGPass
• Analyses LLVM IR and outputs 

DFG in the dot format.
• GenMap[2]
• Maps the DFG to the PE array.

• AsmPass
• Generates assembly code for 

the memory access controller 
in CGRA.

• CGRA Library
• Used to write code that runs 

on the CPU side.
• Provides functions for 

controlling the CPU and the 
CGRA.

• Encapsulates calculation of 
data transfer 
destination/source address.

Application development flow

Sample code using CGRA Library

Sample assembly code

GeyserTT

CCSOTB2

Result

• Four applications were chosen 
for the evaluation.
• alpha: 24bit alpha blender
• gray: 24bit gray scale
• sepia: 24bit sepia filter
• sf: 8bit sepia filter

• All applications were confirmed 
to work properly.

The DFG to convert an RGB image to 
gray scale


