
A Configuration Data Multicasting Method
for Coarse-Grained Reconfigurable Architectures

Takuya Kojima and Hideharu Amano
Dept. of Information and Computer Science, Keio University, Yokohama, Japan

Abstract—This paper proposes a novel configuration data
compression technique for coarse-grained reconfigurable archi-
tectures (CGRAs). The proposed technique is based on a multicast
configuration technique called RoMultiC, which reduces the
configuration time by multicasting the same data to multiple
PEs(Processing Elements) with two bit-maps. Scheduling algo-
rithms for an optimizing the order of multicasting have been
proposed. In general, configuration data for CGRAs can be
divided into some fields like machine code formats. The proposed
scheme confines a part of fields for multicasting so that the
possibility of multicasting more PEs can be increased. This
paper analyzes algorithms to find a configuration pattern which
maximizes the number of multicasted PEs. We implemented
the proposed scheme to CMA (Cool Mega Array), a straight
forward CGRA as a case study. Experimental results show that
the proposed method achieves 40.0% smaller configuration for
an image processing application at maximum. Furthermore, it
achieves 35.6% reduction of the power consumption for the
configuration with a negligible area overhead.

I. INTRODUCTION

Coarse-grained reconfigurable architecture (CGRA) is a
remarkable platform for embedded systems including IoT
devices because of its high degree of energy efficiency and
programmability. CGRAs have an array of reconfigurable
processing elements (PEs) for efficient parallel execution of
compute-intensive application. Each PE operates according to
configuration data which specify behaviors of components in
the PE, and the size of configuration data for the whole PE
array is often quite large.

Considering that a CGRA is connected to a host CPU
with a general purpose interface bus like 32-bit width as
an accelerator, a critical issue is a long time to transfer the
configuration data from the CPU to the CGRA, in other
words, reconfiguration time. That is why an efficient method
of reducing the configuration data is required.

Multicasting is one of techniques for reducing the recon-
figuration time with simple hardware. It enables the multiple
PEs to be configured simultaneously by exploiting a fact that
a certain number of PEs use the same configuration data. The
multicasting is effective, especially when the same data-flow-
graph mapping is repeated on the PE array to utilize data-
level parallelism of an application. RoMultiC is a multicasting
method using two bit-maps for the rows and the columns of the
PE array[1][2]. Other multicasting methods are also proposed
in [6] and [7]. If the configuration data are allowed to be
overwritten, the latest configuration for each PE is actually
used for its operation. A scheduling of multicasting proposed
in [1] can reduce the time for multicasting.

In general, the configuration data can be divided into
some fields such as an opcode and operands for ALU. In
RoMultiC[1], the PEs which have an identical configuration
for all fields are allowed to be multicasted. However, the

Fig. 1: Overview of the PE array

grain size of multicasted fields has not been well investi-
gated. When the partial fields are allowed to be written,
the number of PEs to be multicasted is increased. Here,
we propose a fine grain multicasting method considering a
practical configuration data format. In this work, we compare
two scheduling algorithms: 1) Espresso[3]-base algorithm and
2) Integer-Linear-Program (ILP)-base algorithm for the fine
grain multicasting. Implementation overhead is also important
as well as reducing the configuration time. Thus, the proposed
schemes are implemented considering a real chip CGRA, and
compared with the previous method from the viewpoint of
reconfiguration speed and hardware overhead.

II. BACKGROUND
A. Base Architecture

CMA (Cool Mega Array) is a low power straight forward
style CGRA[4]. In this work, we use CC-SOTB (CMA-Cube-
SOTB)[5], which is an improved version of CMA, as a base
architecture for implementation of the proposed method.

Fig. 1 illustrates an array of 12×8 PEs in the CC-SOTB.
Each PE consists of an ALU and a switch element (SE)
as shown in Fig. 1. PEs are connected to each other with
two types of interconnections: 1) direct links and 2) links
provided by SEs. The main feature of the CC-SOTB is its static
reconfiguration so as to cut down a large power consumption
for a dynamic reconfiguration which changes the configuration
clock-by-clock.

The configuration controller decodes input configuration
data and writes them into the configuration registers. CC-

239

2018 International Conference on Field-Programmable Logic and Applications

978-0-7695-6525-5/18/$31.00 ©2018 IEEE
DOI 10.1109/FPL2018.2018.00048

Fig. 2: Multicasting of Configuration data

Fig. 3: Efficiency of overwriting configuration

SOTB has an external bus and a chip interface for connections
to a host CPU or other accelerators. The external bus consists
of a 22bit address bus and a 32bit data bus. Each module
is mapped to the same address space. Thereby, the host CPU
can access data in CC-SOTB modules via the interface and the
external bus. The configuration data for a PE are composed of
10-bit ALU part (OPCODE, SEL A, and SEL B) and 10-bit
SE part (NORTH, SOUTH, EAST, and WEST). Thus, the total
amount of the configuration data is 20-bit × 96 = 1920-bit. A
configuration of each PE is also mapped to the address space.
Therefore, it takes 96 cycles to complete the reconfiguration
without multicasting.

B. Multicast Configuration
In order to reduce the reconfiguration time, RoMultiC

scheme [1], which is one of multicasting method, is applied
to the CC-SOTB. In RoMultiC, the transferred data use two
bit-maps which respectively indicate multicasted rows and
columns in the PE array. As for a PE at the coordinate (x, y),
the configuration data is multicasted when both x-th bit of
the column bit-map and y-th bit of the row bit-map are set
to “1”. The data format for multicasting is shown in Fig. 2.
Unlike an original format used in [1], the configuration data
are written separately divided into the two parts, ALU part and
SE part because there is not enough data space in the format.
The bit-maps need 8 + 12 = 20 bits and then 12 bits remain
for the configuration data of PEs. The part shaded gray (2 bit)
in Fig. 2 is unused.

In order to show how overwriting reduces the configuration
data, we use a simple example illustrated in Fig. 3. The
example illustrates that the multicasting with the overwrite
takes 3 cycles to complete the target configuration. First,
configuration “A” is multicasted to the whole PEs. Next,
configuration “B” is multicasted to two PEs at the coordinates
(1, 2) and (2, 2). Lastly, configuration “C” is multicasted to two
PEs at the coordinates (3, 1) and (3, 2). Without the overwrite,
it takes 4 cycles since the configuration “A”s are completed
with multicasting twice.

III. MOTIVATION

A. Fine Grain Multicasting
As explained in Section II, the configuration data are

multicasted ALU-by-ALU or SE-by-SE. It is not clear that
the grain of multicasting is really effective in reducing the
configuration data. Here, we consider to use smaller units and
propose the fine grain multicasting.

Fig. 4: Fine grain multicasting

In order to implement the scheme to CC-SOTB, a new
data format for the multicasting is described in Fig. 4. In
the fine grain multicasting, any combination of the fields can
be multicasted unless the required data size exceeds in the
available data size. Optimized combination of the fields can
increase the possibility of either multicasting more PEs or
utilizing the available data space in the format. Fig. 4 shows an
example of the best case that the data space is fully utilized. In
this case, the configuration data include 4 fields which require
12 bits totally.

Although additional flag bits are necessary to decide which
fields the configuration data contain, in our case, it can be
included in the address space. In other words, only 128-byte
address space has to be reserved for the fine grain multicasting.
Assuming n fields, 2n-byte is needed. Of course, the flag bits
are included in the data format. Nevertheless, it increases the
overhead for multicasting in addition to the bit-maps.

B. Using Espresso
As a way to find the suitable bit-maps, a natural way

is using CAD algorithms. Here, Espresso, a classic logic
minimization algorithm, is employed like [8]. It can treat
“Don’t Care” denoted by X as well as logic 0 and 1. A truth
table whose entry corresponds to each PE in the PE array
is used in Espresso. 1 indicates that the PE has the same
configuration data, while 0 means that the PE has a different
configuration data and is already written. X is used when a PE
has a different configuration data but have not written yet.

Although Espresso itself is a highly efficient heuristic
algorithm, sometimes it does not work well to find the bit-
maps. For instance, when a target configuration shown in
Fig. 5(a) is given, a truth table in Fig. 5(b) for multicasting
configuration “A” is generated. The parts shaded gray indicate
PEs whose configuration is already written. Then, a Karnaugh
map associated with the row bit-map is created as described in
Fig. 5(c). However, a cube which covers multiple cells cannot
be found. A cube corresponds to a group of multicasted PEs.
In other words, the four PEs which have the configuration “A”
cannot be multicasted simultaneously.

It should be discussed how the disadvantage of Espresso
for the fine grain multicasting has influence on the reduction
of configuration data. Here, we propose another method using
Integer-Linear-Program in the next section.

IV. NEW MULTICASTING METHOD

As mentioned in Section II-B, scheduling an order of the
overwrite is important to reduce the configuration data. Here,
we employ a greedy algorithm for scheduling similarly to
[1][8] because of the simplicity of the algorithm. Given a
target configuration, finding the bit-maps which maximize the
number of written bits is repeated until the configurations of
all fields in the PEs are fixed. Please note that the bits of
multicasted fields which are overwritten later are not counted
for maximizing.

240

(a) Example of configuration

(b) Truth Table (c) Karnaugh map

Fig. 5: Worst case with espresso

Algorithm 1 Algorithm for obtaining bitmaps with Espresso
Input: Cfix, Cunfix

Output: Bmax,r, Bmax,c, fmax, dmax

1: Smax ← 0, Br,max ← None, Bc,max ← None,
fmax ← φ, dmax ← None

2: F = {OPCODE,SEL A, SEL B,
NORTH,SOUTH,EAST,WEST}

3: for all f ∈ 2F do
4: if bit width(f) ≤ max width then
5: D ← enumerate config data(Cunfix, f)
6: for all d ∈D do
7: tt = make truth table(Cfix, Cunfix, d, f)
8: Br, Bc = espresso(tt)
9: for all br, bc ∈ Br, Bc do

10: S ← count bits(br, bc, f)
11: if S > Smax then
12: Smax ← S, Br,max ← br , Bc,max ← bc
13: fmax ← f , dmax ← d
14: end if
15: end for
16: end for
17: end if
18: end for

In this work, two algorithms for finding two bit-maps
are presented respectively in the subsection IV-A and the
subsection IV-B. Both algorithms return bit-maps for the rows
Br and the columns Bc, the group of fields in the configuration
format f and multicasted data d.

A. Espresso for finding the bit-maps
Algorithm 1 shows a solution for finding the bit-maps with

Espresso. Cfix is a set of fixed configurations and they can
not be overwritten except when all multicasted fields are the
same as the previously written. In this case, the value of the
truth table is set to X (Don’t care).

Like Fig. 5, a truth table tt for each combination of the
fields f and for each configuration data d are generated.
2F denotes the power set of the fields F , that is, possible
combinations of the fields. In our case, the number of the
available combinations is 94. After Espresso finds cubes, bit-
maps of the rows and the columns for each cube are generated.
Then, the sum of written bits are calculated and the best bit-
maps Br,max and Bc,max are obtained. This method does not
maximize the number of bits multicasted at the same time, but
maximizes the number of multicasted rows and columns for

Algorithm 2 Algorithm for obtaining bitmaps with ILP

Input: Cfix, Cunfix

Output: Bmax,r, Bmax,c, fmax, dmax

1: Smax ← 0
2: for all d ∈ enumerate config data(Cunfix) do
3: S,Br, Bc, f ← find bitmap by ILP(d)
4: if Smax > S then
5: Smax ← S,Bmax,r ← Br, Bmax,c ← Bc

6: fmax ← f, dmax ← d
7: end if
8: end for

given the combination of the fields. This is because Espresso
can treat only single output logic.

B. ILP for finding the bit-maps
In addition to the Espresso-based algorithm, we consider

using an integer linear program (ILP) in order to obtain an
optimal solution of the bit-maps. An overview of the algorithm
is shown in Algorithm 2. In addition, an ILP model used in
the function “find bitmap by ILP” is formulated as follows.

isF ieldi =

{
1 if the i-th field is written
0 otherwise

(1)

isRowj =

{
1 if the j-th row is written
0 otherwise

(2)

isColk =

{
1 if the k-th column is written
0 otherwise

(3)

maxS =
∑
i

∑
j

∑
k

Sijk ∗ isF ieldi ∗ isRowj ∗ isColk (4)

subject to∑
i

bit widthi ∗ isF ieldi ≤ bit widthmax (5)

if i-th field of the PE in the j-th row and the k-th column
is already fixed, then

isF ieldi = 0 ∨ isRowj = 0 ∨ isColk = 0 (6)

where Sijk is the number of bits for i-th field of the PE
in the j-th row and the k-th column, bit widthi is the bit
width of configuration data in i-th field, and bit widthmax is
available bit width in a multicasted data. Sijk is non-zero value
only if i-th field of the PE in the j-th row and k-th column
has the same the configuration data which are considered
to be multicasted. Given a multicasted configuration data,
each Sijk can be calculated. Therefore, Sijks are constant
values. bit widthi and bit widthmax are also constant. At
first glance, the objective function is not linear. However, the
product of binary valuables can be replaced with an additional
variable and two constraints.

V. EVALUATION

A. Reduction of the configuration data
First, we develop tools which can generate data for mul-

ticasting with the three methods: 1) previous method, 2) fine
grain multicasting with Espresso (FGM-E) and 3) fine grain
multicasting with ILPs (FGM-I). The possibility of reducing
the configuration data for each method is then evaluated.

The drawback of Espresso depends on a mapping size
of an application. For instance, when many PEs are utilized,

241

Fig. 6: Reduction ratios for each algorithm

Fig. 7: Execution time for each method

Espresso is likely to fail the multicasting. In order to evaluate
the influence, a lot of data-flow-graphs (DFGs) with various
node size are generated randomly. Then, the multicasted data
for each method are calculated. The average reduction ratio
between the previous method[1] and both FGM-E and FGM-
I are shown in Fig. 6. Compared to the previous method,
the FGM-I achieves 23.8% reduction of configuration data
in average. Originally, the previous method can reduce the
configuration data by 60% in comparison with single-cast
method. As expected, the larger DFG is configured, the smaller
reduction ratio of FGM-E can be observed. On the other hand,
FGM-I achieves similar reduction ratio for all configurations.
Furthermore, three methods are applied to four image pro-
cessing applications (gray, sepia, af, sf), which are used for
evaluations in [5]. As the results, the reducation ratios of FGM-
E and FGM-I are respectively 11.7% and 19.1% in average
for the real applications. In the best case (sepia application),
FGM-I achieves 40.0% reduction.

B. Time to schedule the configuration data
Fig. 7 depicts the execution time when the algorithms

are executed on an Intel Xeon with 12 threads. Although
FGM-I indicates better reduction ratio than FGM-E and the
previous method regardless of the DFG size, it takes a long
time to generate the multicasted data. When the large DFG is
configured, FGM-E also takes a long time

C. Overheads
The CC-SOTB architecture with the configuration con-

troller which supports the fine grain multicasting is imple-
mented using SOTB 65 nm process technology with Synopsys
Design Compiler to analyze overheads of the proposed method.
Area overhead of the proposed method is shown in Table I.
It also includes power consumptions of both implementations.
The power consumptions are simulated with Synopsys Prime-
Time and Cadence NC-Verilog. The operating frequency and

TABLE I: Comparison of area and power consumption

area (mm2) overhead (%)

previous method 0.944 —

FGM 1.04 9.76

Dynamic power (μW) Static power (μW)

previous method 514.5 6.125

FGM 329.3 6.247

the supply voltage are respectively set to 30 MHz and 0.55 V.
The proposed method achieves 35.6% lower dynamic power
consumption than the previous method, because writing the
configuration data finely minimizes unnecessary switching in
the configuration registers.

VI. CONCLUSION

In this work, we have introduced a new configuration
multicasting scheme for CGRAs. By optimizing the grain
of multicasting, the proposed method can reduce both the
configuration data and the dynamic power consumption. In
order to generate multicasted data, two algorithms based on
Espresso and ILP are considered. As the experimental results,
they provide a possibility of a trade-off between the reduction
ratio and the execution time. When the proposed method
is applied to real applications, about 40% reduction of the
configuration data can be achieved in the best case.

ACKNOWLEDGMENT

This work is partially supported by JSPS KAKENHI S
Grant Number 25220002 and JSPS KAKENHI B Grant Num-
ber 18H03215. This work is supported by VLSI Design and
Education Center(VDEC), the University of Tokyo in collab-
oration with Synopsys, Inc and Cadence Design Systems, Inc.

REFERENCES

[1] S. Tsutsumi, V. Tunbunheng, Y. Hasegawa, A. Parimala, T. Nakamura,
T. Nishimura, and H. Amano, “Overwrite configuration technique in
multicast configuration scheme for dynamically reconfigurable processor
arrays,” in Field-Programmable Technology, 2007. ICFPT 2007. Inter-
national Conference on. IEEE, 2007, pp. 273–276.

[2] S. M. Jafri, A. Hemani, K. Paul, J. Plosila, and H. Tenhunen, “Com-
pression based efficient and agile configuration mechanism for coarse
grained reconfigurable architectures,” in Parallel and Distributed Pro-
cessing Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on. IEEE, 2011, pp. 290–293.

[3] S. Park and K. Choi, “An approach to code compression for CGRA,”
in Quality Electronic Design (ASQED), 2011 3rd Asia Symposium on.
IEEE, 2011, pp. 240–245.

[4] B. Liu, W.-Y. Zhu, Y. Liu, and P. Cao, “A configuration compression
approach for coarse-grain reconfigurable architecture for radar signal
processing,” in Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2014 International Conference on. IEEE, 2014,
pp. 448–453.

[5] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic minimization algorithms for VLSI synthesis. Springer
Science & Business Media, 1984, vol. 2.

[6] N. Ozaki, Y. Yasuda, M. Izawa, Y. Saito, D. Ikebuchi, H. Amano,
H. Nakamura, K. Usami, M. Namiki, and M. Kondo, “Cool Mega-Arrays:
Ultralow-Power Reconfigurable Accelerator Chips,” IEEE Micro, vol. 31,
no. 6, pp. 6–18, Nov 2011.

[7] Y. Matsushita, H. Okuhara, K. Masuyama, Y. Fujita, R. Kawano, and
H. Amano, “Body bias grain size exploration for a coarse grained
reconfigurable accelerator,” in 2016 26th International Conference on
Field Programmable Logic and Applications (FPL), Aug 2016, pp. 1–4.

[8] S. Hauck, Z. Li, and E. Schwabe, “Configuration compression for the
Xilinx XC6200 FPGA,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 18, no. 8, pp. 1107–1113, 1999.

242

