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Abstract—In recent many-core architectures, the number of
cores has been steadily increasing and thus the network latency
between cores becomes an important issue for parallel applica-
tion programs. Because packet-switched network structures are
widely used for core-to-core communications, a topology among
cores has a major impact on the network latency. It has been
reported that a small-world Network-on-Chip that adds links
between randomly-selected routers on a regular router topology
is effective for reducing the network latency. In this study, we
extend this framework by connecting multiple links between
a single core and quasi-optimally selected neighboring routers
to form multiple links from each core on a 2D MESH router
topology. Results obtained by a flit-level discrete event simulator
show that our optimized core-link topologies can achieve the
average latency up to 48% lower than that of baseline topologies.
Furthermore, full-system CMP simulation results show that
by using optimized core-links we can improve the application
execution time on the NAS Parallel Benchmarks by up to 10.1%.

I. INTRODUCTION

The advances in semiconductor technologies enable to inte-
grate many processing cores on a single chip, such as Intel
Single-chip Cloud Computer (SCC), Xeon Phi, and Tilera
TILE-Gx. To provide high-bandwidth and low-latency inter-
core communications, a Network-on-Chip (NoC) is essential
for such many-core processors. For instance, an ultra wide ring
network (512-bit bi-directional) is used in Xeon Phi and five
independent MESH networks are used for TILE-Gx.

The network latency in NoCs often dominates the applica-
tion performance, and its influence grows as the number of
cores on a chip increases. Since the end-to-end packet latency
is affected by a network topology of routers, state-of-the-art
works use long physical links to reduce the number of hops,
taking into account the layout for easing of the wire complex-
ity [1], [2]. An alternative aggressive technique to implement
long shortcut links uses 60 GHz wireless interconnects [3].
Other recently proposed approaches create virtual paths to
bypass the router pipeline stages [4], [5]. Existing works
usually focus on the connection between on-chip routers. In
this case, the latencies of the first 1-hop from a source core to
a router and the last 1-hop from a router to a destination core
are ignored to compute the end-to-end latency. Since the path
hops between routers can be reduced by introducing recent
topologies or flow-control mechanisms, the latency between a
core and a router is relatively becoming more important.

Here, the reduction of the first and the last 1-hop latencies is
focused. We augment an existing network topology of routers
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Fig. 1: Optimized core-links (4×4 MESH).

with links between a single core and quasi-optimally selected
neighboring routers to introduce multiple links from each
core. Multiple core-links are utilized in densely connected
topologies such as Fat H-tree [6] and PC-Mesh [7]. We pursue
a more efficient method to reduce the end-to-end latency. Our
key idea is motivated by both (1) a random network in which
random shortcut links effectively reduce the path hops [8]
and (2) a low-latency small-world NoC that does not rely on
“randomness” [9]. We present a meta-heuristic optimization
method to find the best construction of multiple links between
a core and routers on a 2D MESH router topology for given
constraints. An example of an optimized core-link topology
is illustrated in Figure 1. In this figure, only a portion of the
core-links is illustrated for brevity.

II. OPTIMIZED CORE-LINK TOPOLOGY ON A CHIP

A. Topology Construction

Tile-based on-chip networks consist of m × n routers and
cores, which can support multiple network interfaces. We can
connect each network interface to a router port with a core-
to-router link directly. Here, we call these links “core-links.”
We aim to reduce the end-to-end network latency among cores
on an NoC by connecting a core directly to multiple routers
using the core-links. Our multiple core-link topologies satisfy
the conditions that (i) each core has x core-links, which are
connected to different routers, and that (ii) each router also
has x ports that are used for connecting different x cores. To
avoid long on-chip wires that introduce significant wire delay,
multiple core-links are picked so that they will not be longer
than a given maximum long-range link length constraint.



Fig. 2: Example of an individual (N = 4, x = 2).

B. Core-link Optimization on a 2D MESH Router Topology

1) Problem definition: To reduce the network latency on
a 2D MESH router topology, we show the definition of the
core-link construction problem. We assume these parameters
as inputs: the number of tiles N , the number of core-links
per core or router x, and the maximum core-link length y,
which is calculated by a unit of one-tile length on an NoC
and computed using Manhattan distance. Given these inputs,
we determine a set of core-links to be connected between cores
and routers, such that the maximum and the average shortest
path lengths are minimized. The shortest path length between
two cores on the i-th and the j-th tile hi,j is calculated by the
smallest number of links traversed between them.

2) Overview of the Optimization Method: For the optimiza-
tion approach, Genetic Algorithm (GA) is taken in this paper.
This is because the problem of generating a graph that has
the smallest maximum and average shortest path lengths is
known as an NP-hard problem; thus an exhaustive approach
is not feasible. By using GA, we can provide the best tradeoff
between the core-link length and the number of hops. A set of
core-links is represented by an individual as shown in Figure
2. Each individual is a vector of the same size, xN . The i-
th value (0 ≤ i ≤ (xN − 1)) in a vector is an index of
the destination router, which the ⌊i/x⌋-th core is connected
with. We initially generate random individuals, all of which
represent a set of core-links that satisfies the two conditions
shown in Section II-A.

We use a crossover operator that produces a new individual
by concatenating a prefix of an individual with a suffix of
another individual. We also define two mutation operators:
one swaps two values in a vector, and the other replaces one
value by a random value. After the crossover operator or one
of the two mutation operators is applied to an individual, its
values are immediately and minimally modified so that its
corresponding set of core-links satisfies the two conditions
shown in Section II-A. More specifically, firstly the excessive
values are removed and the lacking values are added so as
to meet the former condition in Section II-A. The duplicate
values in a portion of a vector belonging to each core are then
swapped for the randomly-chosen other values in the vector.
The values are swapped repeatedly until the latter condition
in Section II-A is satisfied.

The fitness of each individual k is determined as follows,
with a low fitness being more preferable.

fk =

{
α(βI +

∑N−1
i=0

∑x−1
j=0 li,j) (I > 0)

max(h) + mean(h) (otherwise)

Here, I represents the number of “invalid” core-links, which
are longer than the maximum core-link length y tiles. li,j
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Fig. 3: Maximum and average zero-load latencies vs. number
of core-links.

represents the length of the j-th core-link that the core in the i-
th tile has. The value α is set to a large value (e.g. 1,000) such
that the fitness value of an individual that has some “invalid”
core-links is always larger than that of an individual that does
not have. The value β is also set to be a large value (e.g.
1,000) because the value

∑N−1
i=0

∑x−1
j=0 li,j , the total core-link

length, is a supplemental parameter for reducing the value of
I . Therefore, when an individual represents a set of the core-
links that includes some links longer than y tiles, the former
fitness function is applied in order to shorten the long core-
links. Otherwise the latter fitness function is applied in order
to reduce the maximum and the average shortest path lengths.

We use a population size of 100, a crossover probability
of 0.01, and a mutation probability of 0.2 (for both mutation
operators). We execute the GA for 20,000 generations. At each
generation we select individuals using tournaments of size 3.
In our analysis and evaluations, all of the optimized core-link
topologies generated by the optimization method satisfy the
given maximum core-link length constraint.

III. GRAPH ANALYSIS

We analyze various design parameters for using optimized
core-links to a wired 2D NoC in terms of the zero-load latency.
To make comparisons stable, in our graph analysis we generate
ten NoC topologies with optimized core-links and calculate the
average and the standard deviation for each plot. The router
latency is set to be three cycles. The core-link and the inter-
router link latencies are selected based on the distance between
two end points; a single cycle is assumed for 1- and 2-tile
distances, while two cycles are assumed for longer distances.

A. Number of Core-links

Figure 3 plots the maximum and the average zero-load
latencies of 2D MESH router topologies for 4×4 and 8×8
cores, in which the maximum lengths of core-links do not
exceed two and four tiles, respectively. Note that when the
number of core-links for each core is one, only a “local”
core-link that is connected to the router in the same tile is
used for each core. Using two optimized core-links for each
core significantly improves the maximum and the average
zero-load latencies, while more core-links gracefully decrease
them. Thus, using two core-links per core is our recommended
solution for reducing the network latency between cores.
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Fig. 4: Maximum and average zero-load latencies vs. maxi-
mum core-link length.
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Fig. 5: Average zero-load latency vs. number of additional
router ports.

B. Maximum Length of Core-links

We analyze the impact of the maximum length of core-links
to the latency reduction. Figure 4 plots the maximum and the
average zero-load latencies of 2D MESH router topologies for
4×4 and 8×8 cores with two core-links connected to each core
when the maximum core-link length is varied. Relatively short
core-links significantly reduce the zero-load latency, while
longer core-links cannot further decrease it. Considering this
observation, bypassing relatively small number of hops using
short core-links is an economical choice in order to reduce the
latency. In the rest of our analysis, we set the default values of
the maximum core-link length to two and four tiles for 4×4
and 8×8 cores, respectively.

C. Comparison with Adding Random Links between Routers

We compare random inter-router links added to a regular
router topology to form small-world networks among routers
and the optimized core-links. In this analysis, we adopt a
2D MESH router topology with a single core-link for each
core as a baseline. We vary the number of additional router
ports, which are used for adding random links between routers
or connecting optimized core-links. The lengths of additional
random inter-router links are not limited, while the maximum
core-link lengths are set to two and four tiles for 4×4 and
8×8 cores, respectively.

Figure 5 plots the average zero-load latencies of 2D MESH
router topologies with inter-router random links and optimized
core-links for 4×4 and 8×8 cores. Surprisingly, the optimized
core-link topology with its limited length achieves better
performance than the random inter-router link topology using
the additional long-range links, whose lengths are unlimited,
for both 4×4 cores and 8×8 cores.

TABLE I: Network parameters.

Switching Wormhole
Control / Data Packet size 1 flit / 5 flits

Flit size 128-bit
Number of VCs 3

Buffer size per VC 4 flits
Topology of routers MESH

Routing Dimension order routing
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Fig. 6: Average latency vs. accepted traffic (16 cores).
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Fig. 7: Average latency vs. accepted traffic (64 cores).

IV. NETWORK SIMULATION

To evaluate the proposed optimized core-link topologies, we
use a full-system CMP simulator GEM5, which can also be
utilized as a discrete-event flit-level network simulator. The
router latency and the link latency are the same as in Section
III. Other network parameters are shown in Table I. The cores
inject packets into the network independently from each other.
In the case of multiple x core-links per core, the shortest
path among x2 paths is selected between the source and the
destination core. A single core sends or receives only one
packet at once; it does not use multiple core-links in one cycle
either to send multiple packets to different destination cores
or to receive multiple packets from different source cores.

In this simulation, 4×4 MESH and 8×8 MESH are adopted
as router topologies, in which at most four core-links can
be connected with each core. The maximum core-link length
is set to be two in the case of 4×4 MESH, and four in
the case of 8×8 MESH. Two synthetic traffic patterns are
used to determine each source-and-destination pair: uniform



TABLE II: Parameters of full-system simulation.

Processor X86 64
L1 I/D cache size 32 KB (line: 64 B)
L1 cache latency 1 cycle

L2 cache bank size 256 KB (assoc: 8)
L2 cache latency 6 cycles

Memory size 2 GB
Memory latency 160 cycles

TABLE III: Chip configuration.

4×4 MESH 8×8 MESH
# of CPUs / L1 Caches 4 8

# of L2 Caches 8 48
# of Directory Controllers 4 8
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Fig. 8: Execution time of applications.

(randomly uniform) and bit complement.
Figures 6 and 7 show the results. As shown in these figures,

optimized core-links can reduce the latency especially with a
low injection rate. Four core-links per core can reduce the
latency by 42% and 45% for uniform traffic, and by 48%
and 46% for bit complement traffic on 4×4 MESH and 8×8
MESH, respectively. When simulating bit complement traffic
for 8×8 MESH (Figure 7b), using four core-links for each core
degrades the network throughput. This is because we use the
single-path routing among cores and therefore multiple core-
links lose traffic load balancing in a router topology. Using
the multiple-path routing for load balancing will alleviate this
performance problem. This is left for future work.

V. FULL-SYSTEM SIMULATION

We perform full-system simulations of 2D CMPs to measure
the impact of optimized core-links to real application perfor-
mance. We use GEM5 as a full-system multi-processor simu-
lator. We evaluate the same optimized core-link topologies as
in Section IV. A routing method with multiple core-links and
network parameters are also the same as in Section IV. We
use a directory-based MOESI coherence protocol, which uses
three virtual channels for three message classes. Simulation
parameters are listed in Table II.

We assume shared-memory CMPs, which consist of CPUs,
L2 cache banks, and directory controllers. In the target CMPs,
each CPU has private L1 data and instruction caches, while
all the CPUs share the unified L2 cache banks. The chip
configuration of each topology is shown in Table III. Each
tile on a chip has a local on-chip router, and all of them form

TABLE IV: Wire density in a single tile for 8×8 F-TORUS
with a single link for each core and 8×8 MESH with two
links for each core (64 cores).

8×8 F-TORUS 8×8 MESH
w/ 1 link per core w/ 2 links per core

Maximum wire density 1.00 links 5.40 links
Average wire density 0.75 links 3.06 links

Standard deviation 0.43 links 1.58 links
Relative 0.58 0.52standard deviation

a 2D MESH topology. To evaluate the application performance
of these optimized core-link topologies, we use seven parallel
programs from the OpenMP implementation of the NAS
Parallel Benchmarks (NPB). The number of threads is set to
be equal to the number of CPUs that each topology has.

Figure 8 shows the application execution times for the seven
applications, which are normalized to those in the case of using
one core-link for each core. As shown in these figures, multiple
optimized core-links for each core can reduce the execution
time in almost all the applications. Using four core-links per
core for an 8×8 MESH router topology improves the execution
time by up to 10.1% compared to the baseline topology.

VI. COST OF OPTIMIZED CORE-LINK TOPOLOGY

A. Variance in Wire Density

A certain number of metal wires is required for multiple
core-links, and some tiles may have much more links than the
others because of their randomness. The variance in the wire
density on each tile caused by multiple core-links is analyzed.
We define the wire density as the number of links, which have
the same directions (x or y), inside a tile. For the layout of
an optimized core-link topology, we perform a meta-heuristic
solution using GA that examines 5,000 generations to reduce
the variance of the wire density. To avoid the influence of
an extreme case, ten topologies with optimized core-links are
generated. We adopt an 8×8 MESH topology, in which two
optimized core-links are connected to each core. We set the
maximum length of core-links to four tiles. For comparison
we also adopt an 8×8 F-TORUS (Folded TORUS) topology,
in which one local core-link is used for each core.

Table IV shows the maximum, average, standard deviation,
and relative standard deviation in the wire density for an F-
TORUS topology and a MESH optimized core-link topology.
Compared to an F-TORUS topology, the optimized core-link
topology increases the maximum wire density by 440% and
the average by at least 300%. It can decrease the relative
standard deviation in the wire density by 10%.

B. Area Overhead of Routers

We measure the area overhead of routers due to the large
number of ports for multiple core-links. Routers are synthe-
sized with Synopsys Design Compiler, using Fujitsu 65 nm
process with CS202SN standard cell library. We compare the
case of using two core-links for each core and using only local
core-links for 4×4 MESH and 8×8 MESH router topologies.
Table V shows the results. Using two core-links for each core



TABLE V: Comparison of router area.

4×4 MESH 8×8 MESH
1 link per core 1.63 mm2 7.71 mm2

2 links per core 2.13 mm2 9.86 mm2
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Fig. 9: Average energy consumption vs. number of core-links.

increases the area of routers by 30.8% and 27.8% for 4×4
MESH and 8×8 MESH router topologies, respectively.

C. Energy Consumption

We evaluate the optimized core-link topology in terms of
the average energy consumption when sending a single flit
from the source to destination cores. The energy consumption
per flit is estimated as follows:

Eflit = w(Ehop
routerhrouter + Ehop

linkhlink),

where w represents the flit-width, Ehop
router and Ehop

link represent
the energy consumed by transmitting a single bit data via a
router and a 2 mm link, and hrouter and hlink represent the
number of router and link traversals on average. We calculate
hlink by a unit of one-tile length. The w is set to be 128-
bit. The Ehop

router is set to be 0.20 pJ, based on the post-layout
simulations of on-chip routers when a 65 nm CMOS process
with a 1.2 V supply voltage is used. The Ehop

link is set to be
0.43 pJ, assuming that a semi-global interconnect whose wire
capacitance load is 0.20 pF/mm (from ITRS 2007) is used for
the 2 mm links with repeaters inserted. We calculate the Eflit

value of the optimized core-link topologies and the baseline
topologies for 4×4 MESH and 8×8 MESH router topologies.
The hop counts are extracted from the graph analysis results
in Section III.

Figure 9 shows the results. For 4×4 MESH, two optimized
core-links for each core increase the energy consumption by
21.7%, because of the long-range links traversed, while four
core-links for each core can reduce it by 10.3% because they
can reduce the number of intermediate routers on the shortest
path. For 8×8 MESH, four core-links for each core suppress
the increase of the energy consumption by 3.0%.

VII. CONCLUSION AND FUTURE WORK

To reduce the end-to-end communication latency, in this
paper we proposed an NoC topology that has multiple links
between a single core and quasi-optimally selected neighbor-
ing routers. We have found that using optimized core-links for
a 2D MESH topology drastically improves the maximum and
the average zero-load latencies, and simulations have shown

the improvements of the latency and the execution time of
applications, even when limiting the lengths of the core-links.

As a future work, we are planning to explore the task
mapping and routing for the optimized core-link topologies.
In our architecture, applications that prefer a non-random
topology, such as 2D MESH, can execute on the topology’s
structure with a single core-link for each core. By contrast,
multiple optimized core-links can be fully used for latency-
sensitive or non-predictable traffic patterns. By updating the
routing paths to determine whether multiple core-links for each
core are enabled or not, programmers can select the network
structure on a chip. We are going to implement these mapping
and routing scheme and evaluate them.
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[9] Ü. Y. Ogras and R. Marculescu, “”It’s a Small World After All”:
NoC Performance Optimization Via Long-Range Link Insertion,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 14, no. 7, pp.
693–706, Jul. 2006.


