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HOG (Histogram of Oriented Gradients) is one of the effec-
tive ways for extracting feature values. Also, Real Adaboost
algorithm has high recognition ratio, and it is adequate to
hardware implementation. Many researches on human detec-
tion systems adopted these two algorithms and had achieved
progress. However, data volume of HOG feature is still a
problem in the whole system. Data volume from only one
frame could be over 1 GB, and this data volume causes some
difficulties from the view point of both sending data to a
server and execution speed. Especially, many internal data
communication between modules are required in hardware
execution, much data volume could be a bottle-neck of the
whole system operating speed.

Here, a high speed and small memory consuming implemen-
tation of human detection system using Hardware-Software
Co-design is proposed. For the executing speed of the system,
HOG feature values are accelerated by an FPGA, and Real
Adaboost detection is executed only by accessing ROM data
in the FPGA. As a result, HOG+Real Adaboost part was
accelerated about 23.1 times faster compared to the software
execution. Whole system had been implemented on a single
board, and it achieved 3.22 times speed up from camera input
to VGA display output. Also we tried to reduce feature data
volume, and achieved 93.75% of data compression compared
to double precision calculation, with only 2.68% loss of the
recognition accuracy.

I. Introduction

As technologies of high performance computing and pattern
recognition have developed rapidly, a human detection system
has also gathered attention recently. Human detection systems
can be applied for many objectives, such as an automobile
safety system, an automatic traffic census system and a crime
prevention system. In these system, collected feature data are
expected to be stored in data base servers, and be used for big
data analysis.

Although various kind of methods for extracting feature data
for human detection system are proposed, HOG (Histogram
of Oriented Gradients)[1] proposed N.Dalal and B.Triggs has
been an effective way for extracting feature values. Also, Ad-
aboost algorithm[2] proposed by R.E. Schapire and Y.Singer
has high recognition ratio and is easy for hardware implemen-
tation. Furthermore, Real Adaboost[3], an improved algorithm
extends output values of weak classifier from a binary number
to a real number.

Fig. 1: Overview of Human Detection System

Figure 1 shows the overview of a human detection system. It
can be divided into two phases: learning phase and recognition
phase. The learning phase extracts HOG feature values from
prepared learning positive and negative data, and performs
learning using Real Adaboost Algorithm. This phase generates
strong classifier, and it is used in the recognition phase. In the
recognition phase, extracting HOG feature values from input
data are judged whether the input data include humans or not.
If the system detects human in the picture, extracted HOG
values are sent to the database server.

A lot of researches on human detection systems adopted
these two algorithms, and achieved a certain progress. How-
ever, data volume of HOG feature is still a problem of the
whole system. Although one of the related work proposed
feature data reduction using binary pattern for HOG feature
values[4], it also causes deterioration of recognizing accuracy.
As performance of detection is the most important evaluation
criteria, it should be kept even data values are reduced.

This paper tries to accelerate a human detection system
through feature data reduction using Hardware-Software Co-
design. For acceleration, FPGA implementation with parallel
execution is promising. In the implementation, both high
performance and high data compression were tried to be
achieved while keeping the resource utilization and recognition
ratio.



This paper is organized as follow. Section II gives an
overview of a human detection system using HOG feature and
Real Adaboost, then Section III mentions the related works.
Section IV explains implementation on FPGA, and Section V
discusses data volumes and how to reduce them. Section VI
shows the result of evaluation, and VII concludes the paper.

II. Human Detection System

This section gives an overview of the human detection
system, and explains algorithms used in there.

A. Feature Extraction

Although various feature extraction methods were proposed,
HOG (Histogram of Oriented Gradients) has been the most
popularly used method in object detection systems. In HOG
feature extraction, input window is divided into some cells,
which are composed by a certain number of pixels. Gradients
histograms are generated in each cell, and they are normalized
in each block, which contains some cells. More details of HOG
algorithm is shown below.

1) Gradient Computation: The first step of calculation is
computing Intensity derivative fx, fy by intensity L(x, y) in
each pixel. Then, intensity gradients m(x, y) and direction of
gradient vector θ(x, y) are computed.

 fx(x, y) = L(x + 1, y) − L(x − 1, y)
fy(x, y) = L(x, y + 1) − L(x, y − 1)

(1)

m(x, y) =
√

fx(x, y)2 + fy(x, y)2 (2)

θ(x, y) = tan−1 fy(x, y)
fx(x, y)

(3)

2) Orientation Binning: The next step is making his-
tograms in each cell. Calculate bin for binning by intensity
gradients θ(x, y) and azimuthal quantum number N.

bin = Round(θ(x, y) +
π

2
) × 180

π
× N

180
(4)

3) Block Normalization: Finally, feature values v are nor-
malized in each block.

vn =
v√√

(
k∑

i=0

v(i))2 + ϵ

(5)

B. Recognition and Classification

Adaboost, a machine learning algorithm proposed by
Y.Freund and R.Schapire, has high degree of detective ratio
and is easy to be implemented. While Adaboost algorithm uses
weak classifier with binary {+1, -1} outputs, Real Adaboost, an
improved version of Adaboost, uses weak classifier with real
number outputs. Compared with Adaboost, Real Adaboost has
high recognition ratio with fewer classifiers.

Specification of Real Adaboost algorithm is shown below.

As a precondition, N learning sample data (xi, yi), (i =
1, ...,N) and weighting number Dt(i) are prepared. xi means
input sample data and yi shows class label which shows
whether any person appears in the sample data or not. Di is
initialized 1/N at the beginning of the learning phase.

The first step of learning generates probability density
distributions. By feature values of learning sample xi and
quantifying number j, two probability density distributions
W j
+,W

j
− are generated.


W j
+ =

∑
i : j∈yi=+1

Dt(i)

W j
− =

∑
i : j∈yi=−1

Dt(i)
(6)

Next, compute candidates of weak classifier h(x) and select
proper weak classifier by evaluation value Zm.

h(x) =
1
2

ln
W j
+ + ϵ

W j
− + ϵ

(7)

Zm = 1 − 2
∑

j

√
W j
+W j
− (8)

Finally, strong classifier is created by adding all classifiers.
λ means a threshold value. If H(x) is positive, it means that
human exists in the window.

H(x) = sign

∑
t

ht(x) − λ
 (9)

III. RelatedWorks

There are three important measures in a human detection
system: detection accuracy, detection speed and data volumes.

To improve the detection accuracy, combining some feature
values is an efficient way. J.Yao, et al, proposed a human
detection system using Covariance features[5], which focuses
on spatial variation from background difference. P.Ott, et al,
proposed Color-HOG[6], which focuses on color information.

In order to accelerate detection speed, many approaches
using hardware architecture are proposed. M.Hahnle, et al.
implemented pedestrian detection using HOG and Support
Vector Machine (SVM) on an FPGA[7], and they achieved
processing of 64 high resolution images (1920x1080 pixels)
per second. R.Benenson, et al. accomplished 100 frames per
second on a single CPU and GPU system[8].

Also for reducing the data volumes, C.Matsushima, et al.
proposed binarized HOG feature on human detection system
using HOG and Real Adaboost[4]. Binarizing HOG feature
using equation (10) reduced feature data to 1/64. vd and
bd represent HOG feature and binarized HOG feature re-
spectively, and th means threshold value which is set in
0.03 in this proposal. Although this data reduction method
declines detection accuracy about 10%, they proposed binary
selection algorithm to keep detection accuracy as same level
as conventional way.



bd =

1 vd ≥ th
0 otherwise

(10)

IV. Implementation

A. Implementation Environment

Table I shows the environment of implementation. Target
FPGA is ZedBoard by Avnet inc., and we used ARM Coretex-
A9 as a processor with the FPGA. ARM Coretex-A9 has 512
MB DDR3 memory, and it operates up to 667 MHz.

Also, we adopt MT9D111 Camera Module by Micron
Technology, Inc. This camera module generates 800x600 pixel
data on 30 fps. Pixel data format from the camera module is
expressed in 565 RGB, it uses 16 bits in each pixel data.

TABLE I: Implementation Environment

Target Device
ZedBoard(XC7Z020-CLG484-1, Avnet,Inc.)
Software Processor

ARM Coretex-A9(Up to 667 MHz operation)
Memory: 512 MB DDR3 memory

Camera Module
MT9D111 Camera Module (Micron Technology, Inc.)

Input image: 800x600 px
Frame ratio: 30 fps
Data format: 565 RGB

B. Algorithm

Listing 1 shows C-like pseud code of our human detection
system. Gray scaling() converts input data to gray scaled
picture, and initialization() allocates memory and initializes
their value.

Though block window is shifted in a target window in the
HOG calculation, processing unit accesses same place of pixel
data. As this increases the number of memory access, it is bet-
ter to calculate all gradients values before extracting the target
window. Gradient computation() and Orientation binning()
execute pre-calculations of Equation (2) and (4).

In for block, target windows are extracted by Raster Scan.
Load Histogram() fetches histogram values from DDR mem-
ory, and Normalization() executes Equation (5). Detecting
results by RealAdaboost() are stored into an array by Voting().

After the raster scanning, detected windows are inte-
grated by Mean Shift() and Nearest Neighbor(), and Out-
put image() stores output image data to DDR, then finally
these data are sent to VGA display.

Listing 1: Pseud Code of Human Detection System
1 int main() {
2 Input image();
3 gray scaling();
4 initialization();
5 // Calculate gradients before extract window.
6 Gradient computation();
7 Orientation binning();
8 for(Raster Scan){
9 // HOG Extraction

10 Load Histogram();
11 Normalization();
12 // Detecting by Real Adaboost

13 if(Adaboost() == true)
14 Voting();
15 }
16 Mean Shift();
17 Nearest Neighbor();
18 Output Image();
19 }

C. Profiling the whole application

Table II shows profiling result by ARM Coretex-A9 proces-
sor on ZedBoard. As top four routines occupy about 96% of
whole execution time, we focus on these routines. Since most
of operations in Load Histogram and Orientation Binning are
accessing to DDR3 memory, however, acceleration by FPGA
cannot be expected much. Thus, we try to accelerate Nor-
malization, RealAdaboost and Gradient Computation routines
using an FPGA.

TABLE II: Result of Profiling

Sub Routine Name # of Call Execution Time Ratio
Normalization 23,510 3.23 sec 42.27%

Load Histogram 23,510 2.04 sec 26.69%
Real Adaboost 23,510 1.86 sec 24.29%

Orientation Binning 1 0.24 sec 3.15%
Gradient Computation 1 0.18 sec 2.39%

Gray Scaling 1 0.047 sec 0.61%
Window Merging 1 0.015 sec 0.19%

Initialization 1 0.13 sec 0.17%
Voting 16 0.0091 sec 0.12%

Input image 1 0.0086 sec 0.11%
7.64 sec 100%

D. Software/Hardware Partitioning

Figure 2 shows software and hardware partitioning based
on Listing 1.

First, camera module inputs image data into the FPGA
through Camera Interface. ARM Coretex-A9 processor loads
them and executes gray scaling and initialization. HOG 1
module on programmable logic calculates gradient values,
and sends back to ARM processor. Normalization and Real
Adaboost logic also work as mentioned above, and finally
Display Controller module loads output image data on DDR3
memory, then outputs to VGA display.

E. Architecture

Figure 3 shows the whole architecture in the FPGA. There
are three accelerated modules, shown by light-yellow, are
mapped on Programmable Logic, and they are connected to
ARM Coretex-A9 processor. AXI DMA Engines are used for
converting AXI4 (Memory Mapped communication) to AXI4-
Stream communication.

More specifications of these logic are mentioned below.
1) Gradient Computation: For 18 bit x 1 frame (800x600

pixels) input, 14 bit x one frame is outputted. Gradient
Computation module, shown in Figure 4, operates as Gra-
dient computation() routine in Listing 1. One input data
composed of two Intensity derivative ( fx, fy) are pushed into
a FIFO. These input data are calculated as Equation (1) to



Fig. 2: Software and Hardware Partition

Fig. 3: Whole Architecture

(4), then the pair of intensity gradient m(x, y) and direction of
gradient bin are sent back to ARM core.

Bit width of each signal is shown in red letter, and SQRT
and Arctan, which are shown in light-yellow box, are generated
by Xilinx Core generator.

Fig. 4: Block Diagram of Gradient Computation

2) Normalization: For 13 bit x 1152 inputs, 6 bit x 3780
frame are outputted. This module normalizes each block in
input window. One window has 8x16 cells, and each cell has
9 features. Thus, there are 1152 inputs. Also, as we set 2x2

cells in one block, there are 3780 output data.

Fig. 5: Block Diagram of Normalization logic

3) Real Adaboost: Figure 6 shows block diagram of Real
Adaboost module. As the only execution in this module is
accessing ROM data which has previous classifier calculation
data, block diagram of this module is simple. After accessing
the ROM, all of these data are summed up and compared with
λ, a threshold for detection.

Fig. 6: Block Diagram of Real Adaboost module

V. Data Reduction

HOG feature has N feature values in each cell (N represents
an azimuthal quantum number in equation (4)), and also these
feature values are normalized in shifted block. If we assume
that one window has 8x16 cells, one block composed by 2x2
cells and azimuthal quantum number is 9, there are 3780
(7x15x2x2x9) feature data generated in total. In software exe-
cution, HOG feature values are calculated in double precision
(8 byte), thus, total data volume per window becomes 30.24K
Byte.

As detection window slides and also window size is scaled
in the recognition phase, total occupied memory space is
increased. If we assume that scanning 50,000 windows per
one input image, total amount of memory space exceeds
1.5 GB. Using such a huge memory space in an FPGA,
we need external memory like DDR3 SDRAM. It means
communication with DDR3 and programmable logic might be
a bottleneck of execution speed. Also from the view of saving
feature data to a data server, too much data volume increases
its running cost.

As we showed in Section III, data reduction method from
64 bit to 1 bit using binarized HOG[4] had been proposed.



Although this proposal reduced feature data volume much,
detection accuracy is also decreased. If they kept detection
accuracy as same level as conventional way by introducing bi-
nary pattern and binary selection algorithm, occupied resource
and latency in the FPGA are increased.

In this paper, we propose an approach that is using fixed
point calculation to reduce feature data volume without large
additional resource and complex coding.

A. Data Reduction Method

In the classification phase of Real Adaboost, the accuracy
of weak classifier outputs has the highest effects on the output
accuracy, and classifier outputs are calculated by HOG feature
value (Equation (7)).

Considering the above, we calculated all possible outputs
data of weak classifier (Equation (6)) in a high precision
in advance, and storing them into the ROM on the FPGA.
Therefore, in the FPGA, we need to access the ROM only.
As the probability density is distributed in a weak classifier
binning in 64 (26), bit width for accessing the ROM is 6 bits.
This method can decrease HOG feature data from 64 bits
to 6 bits, with the same accuracy as software execution in
double precision. Figure 7 compares original Real Adaboost
classification algorithm and ours.

Fig. 7: Data reduction method

VI. Evaluation

A. Resource Utilization

Table III shows resource utilization in the FPGA. As the
slice register and LUTs are 19% and 27% respectively, there
is a room to increase modules for parallel processing in the
future extension.

TABLE III: Resource Utilization

Logic Utilization Used Available Utilization
Number of Slice Register 20,648 106,400 19%
Number of Slice LUTs 14,821 53,200 27%
Number of Block RAM 99 420 24%
Number of bonded IOBs 30 200 15%
Number of RAMB36E1/FIFO36E1s 27 140 19%
Number of RAMB18E1/FIFO18E1s 72 280 25%
Number of DSP48E1s 13 220 5%

B. Execution speed

1) Hardware Operating Speed: From the implementation
report, FPGA operates in 120.7 MHz. Since Gradient Compu-
tation takes 960,600 clock cycles per frame and Normalization
+ Real Adaboost takes 576 clock cycles per window, it
takes 120m seconds per frame, which means 8.32 fps, when
23,510 windows are extracted in one frame. As only software
execution takes 2.77 sec per frame in this case, our hardware
modules operate in 23.1 times faster than software operation.

2) Whole System Operating Speed: Whole system oper-
ating speed, including communication between HW/SW, is
shown in Table V. Only SW row shows operating time by only
ARM Coretex-A9 processor on ZedBoard. Gradient Compu-
tation, including communication with Software, operates in
4.025 millisecond on our system, while operates in 19.66
millisecond on Software execution. Normalization and Real
Adaboost operates 22.27 microseconds per window, while
operates in 22.27 microseconds on Software execution. In
total, our whole design achieved 3.22 speedup as software
execution with 1,540 detecting windows per frame, which is
same number of detecting windows with [4].

TABLE V: Operating Speed

Only SW Our design speed up
Gradient Computation 19.66 ms/f 4.025 ms/f 4.89

Normalization+RealAdaboost 117.26 us/w 22.27 us/w 5.27
Whole system 2.93 s/f 0.91 s/f 3.22

C. Detecting accuracy

For objective estimation, we refer the classifier of Real
Adaboost which is purveyed by Chubu University[10]. This
classifier uses 2,054 positive samples and 6,258 negative
samples, and learning in 500 times.

For test sample, we use 152 positive samples and 250 neg-
ative samples from INRIA Person Dataset[11]. Each positive
sample has one pedestrian and each negative sample has no
pedestrian.

Figure 8 shows Detection Error Trade-off (DET) curves
of our system. DET curves plot false positives per window
(FPPW) in x-axis and miss rate in y-axis. A perfect system
with zero misses and false positives per window would be
positioned at the origin, thus, closer to the origin means better
classifier.

In Figure 8, testing result of original system which is
operated by Software is shown by red solid line. Other dashed
lines show the result of our system with adjusting bit width
of output signal of Gradient Computation module. integer
means output of Gradient Computation is truncated to integer
value. 16bit fractional, 8bit fractional and 4bit fractional mean
output signal is rounded to each bits after the decimal point.
As we can see from Figure 8, 16bit, 8bit and 4bit fractional
approximate to original system, while integer shows somewhat
far from original system.



TABLE IV: Summary of Comparison with related works

Device Algorithm frequency[MHz] fps windows/frame Registers LUTs DSPs
[7] Xilinx Virtex-5 HOG + SVM 270 64 - 42,987 38,535 357
[8] Nvidia GeForce GTX 470 HOG + FPDW - 135 - - - -
[4] Xilinx Virtex-5 Binarized HOG + Adaboost 44.85 62.5 1,540 2,181 17,383 -
[9] Cyclone IV HOG+SVM 40 72 - 34,403 23,247 68
Ours Avnet ZedBoard HOG + Real Adaboost 120.7 8.3 23,510 20,648 14,821 13

Fig. 8: DET curve of the system

D. Data volume

By using fixed point expressions, feature data are expressed
by 6 bits. It means that the total compression ratio compared
to the implementation using double precision floating point
numbers is about 93.75%

In the proposed method, since the values of weak classifier
outputs (Equation (7)) are calculated in advanced by double
precision numbers and stored in the ROM on the FPGA, the
accuracy is not much changed as that of the software execution
as shown in the previous section.

Table VI shows that comparison between our method and
related work. Binaryzed HOG[4] compressed HOG feature to
1/64 with accuracy deterioration of about 9.8%. In [4], they
also proposed Integrating binaryzed HOG in order to prevent
accuracy deterioration, however, it increases both the resource
usage and the latency.

TABLE VI: Data volume comparison

HOG Our Method Binalized HOG[4]
Data volume/window[Byte] 30,240 1968 472.5
Compression ratio - 93.5% 98.4%
Accuracy deterioration - 2.7% 9.8%

VII. Conclusion

We implemented a human detection system using HOG
feature values and Real Adaboost detecting algorithm. In
the human detection system, especially executing speed and
feature data are important evaluation criteria. For the executing
speed of the system, HOG feature values are accelerated
by an FPGA, and Real Adaboost detection is executed only
by accessing ROM data in the FPGA. Also we tried to
reduce feature data volume, and achieved 93.75% of data
compression compared with double precision calculation in
Software processor, without additional complex modification.

Table IV summarizes comparison with related works. Al-
though other works accomplished faster fps than our system,
our system extracts much window in one frame. Reducing
feature data would be an important contribution because of
these two viewpoints; storing to the data server and data
parallelization in an FPGA. FPGA implementation using fixed
point expression would be a good solution for making the
system practical.
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