
A HIGH SPEED DESIGN AND IMPLEMENTATION OF DYNAMICALLY
RECONFIGURABLE PROCESSOR USING 28NM SOI TECHNOLOGY

Toru Katagiri and Hideharu Amano

Dept. of ICS, Keio University, Yokohama Japan
email: wasmii@am.ics.keio.ac.jp

ABSTRACT

Although dynamically reconfigurable processor arrays (DR-
PAs) are advantageous for embedded devices because of their
high energy efficiency, many of the recent mobile devices
are required to execute increasingly performance-centricjobs.
One fairly straingtfoward way of increasing the clock fre-
quency is introducing a pipelined structure into each PE.
However, this results in frequent pipeline stalls due to the
data hazard between multiple PEs.

In order to mitigate the effect of data hazard between
PEs, we propose a tiny vector instruction mechanism. With
a single vector instruction, a small amount of data is continu-
ously processed in the pipeline of the PE. Pipeline stalls are
removed without increasing the number of hardware con-
texts, and thus the amount of configuration data. Evalua-
tion results based on the implementation using 28nm SOI
process technology, a DRPA with tiny vector instructions
(DRPA-TVI) improves the performance by 2.4 three times
compared to a base DRPA with just a small increase of area
and power consumption.

1. INTRODUCTION

Coarse-grained dynamically reconfigurable processor arrays
(DRPAs) have been attracting attention as flexible and power-
efficient accelerators for multimedia applications on system
on chip (SoC) circuits. Some of these devices are now com-
mercially available[1][2], and others have been the subject
of various academic research.

A typical DRPA consists of processing elements (PEs)
for calculation, local data memories, context memories, and
switching elements (SEs) for interconnection of PEs. Here,
context means a set of configuration data for operations and
the interconnection of the PE array to be pre-loaded before
running the applications. The behavior of PEs and the con-
nection between PEs are dynamically reconfigured in accor-
dance with hardware contexts read from context memories,
and dynamic reconfiguration can be performed in either one
or several clock cycles. DRPAs with such a mechanism are

The authors thank to VDEC, STARC, CMT, STmicro, Cadence and
Synopsys for their cooperation of chip development.

called multi-context DRPAs. By preparing contexts for each
target application, DRPAs can execute various types of pro-
cessing, unlike fixed hardware. For example, in ASICs con-
sisting of hardwired logic, not the whole circuit but only one
part usually works. By dividing the processing of the appli-
cation into contexts, DRPAs can perform the whole function
of an ASIC on a small semiconductor area without much
performance degradation. DRPAs are thus advantageous in
terms of development cost, area, and power consumption.

In recent years, a performance enhancement of DRPA
is required along with the increasing demand for versatile
mobile devices. One way to achieve a higher performance
on DRPAs is to increase the number of PEs in the array.
However, the utilization of PEs is limited depending on the
application, and relying on highly parallel processing is not
always the best solution.

The simplest method is to improve the operational speed
of PEs rather than increasing their number. Although us-
ing pipelined PEs helps increase the operational frequency
of DRPAs, it is difficult to fill all stages of a number of
pipelined PEs. We propose in this study, tiny vector instruc-
tions into DRPAs to prevent stalls in the pipelined PEs with
a limited number of contexts. Then, we show a design exam-
ple using 28nm SOI technology with the evaluation results
on area, performance and energy consumption.

2. INTRODUCING PIPELINED PE STRUCTURE

2.1. Base DRPA Architecture

The base DRPA used in this paper is referred to as DRPA-
base. It is designed based on MuCCRA-3 [3] a prototype re-
search DRPA except the structure of both interconnections.
In order to increase the operational frequency, island-style
network in MuCCRA-3 is changed into a point-to-point in-
terconnection in DRPA-base.

2.2. Pipelined PE

The simplest way to increase the operational frequency is
introducing a pipelined structure. As with conventional pro-
cessors, four steps are needed to execute arithmetic oper-

ations in the PE: instruction fetch (IF), instruction decode
(ID), execution (EX), and write back (WB). The process is
divided by inserting pipeline registers between each stage
(IF0, IF1, ID, EX, and WB) so that a standard five-stage
pipeline can be built.

2.3. Pipeline Hazard and Related Work

The operating frequency is improved by introducing a pipeline
structure to the PE. However, the pipelined PE structure is
not commonly used in DRPAs because it is substantially un-
suitable for its control mechanism. In DRPAs, the results of
a PE are utilized by other PEs, which create data dependency
between PEs. This means there are a lot of data hazards be-
tween the pipelines of multiple PEs and the accompanying
risk of stalls. In DRPAs, all instructions are fetched from the
context memory according to the common context pointer
distributed from the controller, and once the pipeline of a
PE stalls, it will cause all the PEs in the array to stall. Fre-
quent instruction stalling thus occurs, which virtually kills
any benefit provided by the pipelining. Out-of-order exe-
cution of context, which corresponds to the out-of-order in-
struction execution in conventional processors, is not a re-
alistic solution since almost no hardware contexts can have
their execution order changed.

For this reason, pipelined PEs are not so popular in multi-
context DRPAs. In PipeRench [4], a row of PEs form a
pipeline stage on which pipeline operation is performed with
the whole PE array. The operation of the stage is reconfig-
ured clock by clock, which allows for the implementation of
a virtual long pipeline. In other DRPAs, pipeline operation
is adopted between PEs globally rather than inside the PE
locally.

3. TINY VECTOR INSTRUCTIONS

3.1. Introducing Vector Instructions

Here, we propose using vector instructions in the pipelined
structure in order to treat multiple pieces of data with one
instruction. By iteratively executing a single instruction to
multiple data elements, stalls in the pipelined PEs can be
eliminated without increasing the number of hardware con-
texts. In general, vector instruction is effective for process-
ing with loop-level parallelism such as multimedia applica-
tion, which is one of the main target applications of DRPAs.
However, the pipeline depth of the DRPA-base is much shal-
lower than that of the conventional vector processor [5] [6],
which uses floating point instructions. Moreover, introduc-
ing vector registers will increase the total amount of hard-
ware in the PE array. Therefore, we introduce tiny vector
instructions just for keeping the PE pipeline full. Unlike
with conventional vector instructions, only a small number
of data elements are the target of the vector processing.

loop(N/2) {
 Inst.A(i)
 Inst.A(i+1)

 Inst.B(i)
 Inst.B(i+1)
}

loop(N) {
 Inst.A

 Inst.B
}

(a) (b)

Fig. 1. Example of tiny vector instructions.

As an example to explain how this technique works, a
cord with data dependence is shown in Fig. 1(a), with data
dependence existing between Inst.A and Inst.B. Convention-
ally, in order to ensure proper execution on a pipelined PE,
it would be necessary to create a stall (or insert an NOP in-
struction) between Inst.A and Inst.B.

In contrast, by using tiny vector instruction, the process-
ing is performed automatically, similarly to scheduled loop
unrolling, as shown in Fig. 1(b). The stall (NOP) between
Inst.A and Inst.B is eliminated, since it is possible to keepa
distance between them that has data dependence, indicated
by the arrows in the figure. Therefore, the PE can execute
the instructions efficiently. Although it is also possible to
perform the same processing as Fig. 1(b) by rewriting the
program explicitly, as with loop unrolling in conventional
processors, the number of contexts, i.e., the configuration
data, is doubled. Unlike conventional processors, which
can use an enormous number of instructions, the number
of hardware contexts in DRPAs is limited to from 16 to 64.
Here, the number of vector elements is fixed as two and vec-
tor execution is specified as a bit attached to an instruction.
Thus, almost no overhead is required for introducing tiny
vector instructions. From here, we call DRPA-PL with such
tiny vector instructions DRPA-TVI.

3.2. Example of Scheduling and Mapping

Figure 2(b), (c), and (d) show how instructions are sched-
uled and mapped on the PEs of DRPA-base, DRPA-PL, and
DRPA-TVI, respectively, when the data flow graph shown
in Fig. 2(a) is processed repeatedly in two PEs.

On DRPA-base, instructions can be scheduled in a form
similar to the data flow graph shown in Fig. 2(b). In contrast,
on DRPA-PL, it is necessary to stall (insert NOP), as shown
in Fig. 2(c), to accommodate the data dependence. Conse-
quently, for every loop, there are two instructions that arenot
effectively used. DRPA-TVI can use pipelined PEs effec-
tively by executing the same instruction twice and maintain-
ing the distance between instructions with data dependence.
In addition, the instructions of the second iteration (indi-

Inst.A(1)

Inst.A(2)

Inst.C(1)

Inst.C(2)

Inst.B(1)

Inst.B(2)

Inst.D(1)

Inst.D(2)

PE0 PE1

0

2

4

t

Inst.A(1)

Inst.C(1)

Inst.B(1)

Inst.D(1)

PE0 PE1

0

2

4

t

NOP

NOP

A

C B

D

(a) data flow graph

(c)Mapping on DRPA-PL (d) Mapping on DRPA-TVI

Inst.A(1)

Inst.C(1) Inst.B(1)

Inst.D(1)

PE0 PE1

0

4

8

t

(b) Mapping on DRPA-base

Fig. 2. The scheduling and mapping of instructions.

cated by shading in the figure) do not have to be prepared
as configuration data. These instructions are automatically
executed, and so the same configuration data for DRPA-base
can be used in DRPA-TVI.

4. EVALUATION

4.1. Implementation using 28nm SOI

DRPA-TVI was designed using ST micro’s 28nm SOI pro-
cess technology. The design was described in Verilog-HDL,
and Cadence NC-Verilog was used for simulation. Synthesis
and layout were done with Synopsys Design Compiler and
IC-Compiler. Since the usable area is limited to just 0.8mm
square, only a small PE array of 2× 2 was implemented.
Empty area of the left side was used to test other circuits,
an inductive coupling through chip interface. Although the
size of PE array and the number of I/O were strictly lim-
ited, the pipeline structure and TVI mechanisms were fully
implemented.

 0

 100000

 200000

 300000

 400000

 500000

 600000

MuCCRA-3 DRPA-base DRPA-PL DRPA-TVI

ar
ea

(u
m

2)

Fig. 3. Evaluation results: Area.

Table 1. Operational frequency.
Architecture Frequency

MuCCRA-3 344MHz
DRPA-base 606MHz

DRPA-PL/DRPA-TVI 1.47GHz

4.2. Area and clock frequency

We assumed area enough to implement a PE array of4× 4,
and layou-ted DRPA-base, DRPA-PL, and DRPA-TVI. For
comparison, we implemented MuCCRA-3[3] with the same
process. As described before, MuCCRA-3 uses a combina-
tion network with the island style and direct interconnection.
The structure of the PE is the same as DRPA-base. Figure 3
shows the area of MuCCAR-3, DRPA-base, DRPA-PL, and
DRPA-TVI. The area is represented with the total amount of
cell area.

Compared to DRPA-base, the area of DRPA-PL and DRPA-
TVI increased gradually. However, the area increase for
pipeline and tiny vector instructions is about 3% in total.

Table 1 shows the frequency obtained in the post-place
and the route simulation of MuCCRA-3, DRPA-base, DRPA-
PL, and DRPA-TVI. The clock frequency of MuCCRA-3 is
much lower than DRPA-base because of the island style net-
work in the PE array. Pipelined PE improves the frequency
of DRPA-PL and DRPA-TVI by 2.4 times as that of DRPA-
base. A high clock frequency of 1.47GHz is achieved by
using the pipelined structure and the point-to-point network.

4.3. Performance of application programs

Five application programs were used for evaluation. Alpha
Blender, Sepia Filter and FIR Filter are simple image fil-
ters. DCT is discrete Cosine transfer used for JPEG encoder
and SAD is sum of absolute difference used for template

 0

 0.2

 0.4

 0.6

 0.8

 1

 Alpha Sepia FIR DCT SAD

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

DRPA-base
DRPA-PL

DRPA-TVI

Fig. 4. Evaluation results: Relative execution time.

matching. Each program was described with an assembly
tool calledmucasm2, whose input file included an assem-
bly code representing the operations of each PE and DMEM
for all contexts. Routing between the allocated operations
is performed automatically and configuration data to which
RoMultiC bits are added for each generated context.

4.3.1. Performance

The relative execution times of applications to MuCCRA-3
are shown Fig. 4. Here, the loading time of configuration
data to context memories from an external memory is not
included. The data input/output can also be eliminated since
it can be overlapped with the computation. The results are
normalized to the execution time using DRPA-base. The
vector length is set to two, as this is enough to remove all
pipeline stalls.

Compared to DRPA-base, the performance improvement
of DRPA-PL was only about 1.5 times due to frequent stalls
caused by the data hazard. In contrast, DRPA-TVI improved
the performance by the operational clock ratio of 2.4 times
by eliminating the stalls with the tiny vector instructions.

4.3.2. Energy consumption

We calculated energy consumption from the results of power
consumption and execution time. The relative energy con-
sumption is shown Fig. 5. It is also normalized to MuCCRA-
3.

DRPA-PL suffered from a severe increase of energy con-
sumption due to the frequent stalls. In contrast, in DRPA-
TVI there was almost no energy overhead since the execu-
tion time was reduced along with increasing the clock fre-
quency.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

M
uC

C
R

A
-3

D
R

P
A

-base
D

R
P

A
-P

L
D

R
P

A
-T

V
I

M
uC

C
R

A
-3

D
R

P
A

-base
D

R
P

A
-P

L
D

R
P

A
-T

V
I

M
uC

C
R

A
-3

D
R

P
A

-base

D
R

P
A

-P
L

D
R

P
A

-T
V

I

M
uC

C
R

A
-3

D
R

P
A

-base
D

R
P

A
-P

L
D

R
P

A
-T

V
I

M
uC

C
R

A
-3

D
R

P
A

-base
D

R
P

A
-P

L
D

R
P

A
-T

V
I

R
el

at
iv

e
E

ne
rg

y
C

on
su

m
pt

io
n

 Alpha Sepia FIR DCT SAD

Dynamic
Leak

Fig. 5. Evaluation results: Relative energy consumption.

5. CONCLUSION

In this paper, we proposed enhancing the operational speed
of DRPAs by introducing a pipelined structure into each PE.
In order to mitigate of the influence of data hazard between
PEs, tiny vector instruction is introduced. With a single vec-
tor instruction, a small amount of data is continuously pro-
cessed in the pipeline of the PE. Pipeline stalls are elimi-
nated without increasing the number of hardware contexts
and thus the amount of configuration data. DRPA with tiny
vector instructions (DRPA-TVI) improved the performance
by almost 2.4 times compared to a base DRPA with only a
small increase of area and power consumption.

6. REFERENCES

[1] T. Toi et al., “Optimizing Time and Space Multiplexed Com-
putation in a Dynamically Reconfigurable Processor,” in Prof.
of FPT2013, 2013, pp. 106–111.

[2] J. Lee et al., “Real-time Ray Tracing on Coarse-grained Re-
configurable Processor,” in Prof. of FPT2013, 2013, pp. 192–
197.

[3] H.Amano et.al, “MuCCRA Chips: Configurable Dynamically-
Reconfigurable Processors,”Proc. of ASSCC, pp. 384–387,
2007.

[4] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. Taylor, “Piperench: a reconfigurable architecture and com-
piler,” Proc. 26th Annual International symposium on Com-
puter Architecture, vol. 33, no. 4, pp. 70–77, 2000.

[5] R. M. Russell, “The CRAY-1 computer system,”Commun.
ACM, vol. 21, no. 1, pp. 63–72, Jan. 1978.

[6] H. Kobayashi, R. Egawa, H. Takizawa, K. Okabe, A. Musa,
T. Soga, and Y. Shimomura, “First experiences with NEC SX-
9,” in High Performance Computing on Vector Systems 2008.
Springer, 2009, pp. 3–11.

