
Overwrite Configuration Technique in Multicast Configuration Scheme
for Dynamically Reconfigurable Processor Arrays

Satoshi Tsutsumi, Vasutan Tunbunheng, Yohei Hasegawa, Adepu Parimala,
Takuro Nakamura, Takashi Nishimura, and Hideharu Amano

Department of Information and Computer Science, Keio University
Yokohama, 223-8522, Japan
muccra@am.ics.keio.ac.jp

Abstract
A new configuration scheduling algorithm in multicast

configuration scheme is proposed and evaluated over re-
duction ratio of configuration data transfer cycles and
power/energy overhead on a coarse-grained dynamically
reconfigurable processor array (DRPA). As a case study,
the proposed methods are applied to some real applica-
tions on a DRPA architecture MuCCRA-1. As a result, we
confirmed that the proposed overwrite configuration tech-
nique for DRPAs reduced an application configuration cy-
cles 66.5% at maximum compared to one without multicast
and 20.2% compared to one without the overwrite configu-
ration. It also decreased the configuration energy consump-
tion 18.7% at maximum beyond the overhead of memory
overwrites.

1. Introduction

Coarse-grained dynamically reconfigurable processor ar-
rays (DRPAs) have received an attention to cope with the
demands for media-rich applications on a System-on-a-chip
(SoC). With its efficiency and flexibility, the DRPA as an
off-loading engine will offer a low-power area-efficient de-
sign solution. Some devices are commercially available
[1, 2, 3, 4, 5, 6, 7].

In such SoCs integrating an MPU and DRPA into a
small chip area, a high speed dynamic configuration scheme
of the DRPA, that is, changing the configuration data for
each processing element and interconnect mechanisms of
the DRPA, is essential to accommodate a variety of appli-
cations. Particularly, configuration data transfer time may
often be a bottleneck of the system performance in such re-
configurable systems.

To address this problem, a multicast configuration
scheme called RoMultiC[8] for DRPAs has been proposed.
For FPGAs, the configuration compression scheme using
Wildcard Registers[9] has been researched.

RoMultiC exploits the fact that there exist identical con-
figuration data of Reconfigurable Elements (REs), such as
Processing Elements (PEs) and Switching Elements (SEs),
in an application with high parallelism. RoMultiC has been
employed in MuCCRA[10] and WPPA[11] so far.

In these multicast configuration schemes, the configura-
tion data can be overwritten, and the latest configuration
data are valid. With this nature, these schemes can cut back
further configuration data transfer cycles by scheduling con-
figuration mask patterns and their order.

In this paper, we propose a new configuration scheduling
algorithm using the overwrite configuration technique in the
multicast configuration scheme. We evaluate the overwrite
configuration technique over the reduction effect of config-
uration data transfer time and power/energy overhead on a
coarse-grained DRPA with RoMultiC.

2. Multicast configuration scheme
RoMultiC is similar to the Wildcard Registers but differ-

ent in that it requires no Wildcard Register writes. RoMul-
tiC uses row and column multicast bits directly to specify
configured REs. Configuration data is received by the REs
where the row and column multicast bits are both ‘1’. By
multicasting configuration data, configuration data transfer
time can be substantially shortened. The configurable area
is restricted in a rectangle, but by devising the transfer order,
any complex configuration pattern can be configured.

3. Multicast configuration scheduling
3.1. Overwrite configuration technique

In order to explain the concept of multicast configuration
scheduling, we assume m× n array with k types of config-
uration data. As we introduced before, a reconfigurable ele-
ment such as PE is configured where both the row multicast
bit and column multicast bit are ‘1’. We call a set of con-
figured elements defined by multicast bits a configuration
mask pattern.

The multicast configuration scheduling corresponds to
the process, selecting appropriate configuration mask pat-
terns and arranging them in the order of configuration.

By making the best use of overwriting configuration
data, a set of configuration mask patterns can be replaced
with another configuration pattern. This means that the
number of configuration data transfer cycles is eliminated
by the difference of the configuration mask patterns. The
overwrites occur where the elements are hidden by the up-
per configuration mask pattern.

3.2. Pattern separation scheduling

First, we introduce the pattern separation scheduling
(PSS) algorithm, which does not use the overwrite configu-
ration technique.

Let F be a collection of all possible configuration mask
patterns. Given a target configuration pattern X , we have a
collection of configuration mask patterns C which cover X
with the following greedy set cover algorithm[12].

T ← X , C ← ∅
while T 6= ∅ do

Find a set S ∈ F \ C that maximizes |S ∩ T |
C ← C ∪ {S}
T ← T \ S

end
return C.

3.3. Pattern composition scheduling

Next, we introduce the pattern composition scheduling
(PCS) algorithm. At the beginning of process, the PCS
finds basic configuration mask patterns for each configu-
ration data type. Then, using the overwrite configuration
technique, it decreases configuration data transfer cycles.

We consider two types of the PCS algorithm, the PCS-L
and the PCS-S, each of which has different policy on select-
ing basic configuration mask patterns. The PCS-S is nearly
identical to the algorithm in [9].

3.3.1. Basic configuration mask pattern selection

One of the selection of basic configuration mask patterns
represented with suffix L is obtained by the PSS introduced
before. The other is a set of configuration mask patterns
containing only one configuration data of element repre-
sented with suffix S.

3.3.2. Configuration mask pattern composition

In order to explain composition scheduling algorithm,
we represent a configuration mask pattern as a matrix. A
possible value of element is 1, 2, . . ., k, and φ (transparent).

For m × n matrix A and B, we define a relation A⊆̂B
such that every element of A is covered by that of B where
any value except φ of element in B can cover the corre-
sponding position of the element. And also, we define a
relation C = A∪̂B by the following equation.

∀i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n},

cij =

(
aij if bij = φ,
bij otherwise.

Given a configuration pattern X with k configuration
data types and a collection of basic configuration mask pat-
terns Cbasic, we obtain a collection of configuration mask
patterns P with the following pattern composition schedul-
ing algorithm.

T ← X , C ← Cbasic, P ← ∅
Li ← Ti where T =

S
Ti, ∀i ∈ {1, 2, . . . , k}

while C 6= ∅ do
Find a set S ∈ F that maximizes |H|

where ∀i ∈ {1, 2, . . . , k}, (T ∪̂Li)⊆̂S,
and H ⊆ C is a collection such that
∀E ∈ H, E ⊆ S

P ← P ∪ {S}
C ← C \H
T ← T \ E, ∀E ∈ H

end
return P .

4. Case study

As a case study, we use MuCCRA-1[10] for evaluat-
ing the overwrite configuration technique. MuCCRA-1 is
a coarse-grained dynamically reconfigurable processor in-
corporating a homogeneous PE array including multipliers
and novel configuration schemes with 64 context memory
depth.

As shown in Fig.1, the array is composed of a 4 × 4
24-bit PEs, and four 24-bit multipliers (MULTs) at the left
edge and four 24-bit distributed memory modules (MEMs)
at bottom edge of the PE array. The MULT multiplies two
24-bit data words and outputs the lower 24 bits of the prod-
uct with one clock delay. MEMs are 24-bit× 256-word and
2-port SRAM modules. Like common FPGAs, an island-
style interconnection network is employed in MuCCRA-1.
Data are routed to destinations via SEs at the channel inter-
sections.

The design was described with Verilog-HDL, synthe-
sized with Synopsys’s Design Compiler 2006.06-SP2, and
layouted with Cadence’s SoC Encouter 5.2.

5. Evaluation

We evaluate the three scheduling algorithms, PSS, PCS-
L, and PCS-S, on configuration data transfer cycles.

First, we use 4×4, 6×6, and 8×8 arrays with randomly
generated configuration patterns to measure configuration
data transfer cycles. For each array size and the number of
configuration data types, 4×4 and 6×6 with 1,000 samples
respectively and 8× 8 with 100 samples are examined.

SE
30

SE
20

SE
10

SE
00

SE
41

SE
31

SE
21

SE
11

SE
01

SE
42

SE
32

SE
22

SE
12

SE
02

SE
43

SE
33

SE
23

SE
13

SE
03

SE
44

SE
34

SE
24

SE
14

SE
04

MULT3

channel d0/d1
(26bit x 2)

PE
30

PE
31

PE
32

PE
33

PE
20

PE
21

PE
22

PE
23

PE
10

PE
11

PE
12

PE
13

PE
00

PE
01

PE
02

PE
03

MEM0 MEM1 MEM2 MEM3

MULT2

MULT1

MULT0

SE
40

Figure 1. PE array.

Then, we have implemented some practical applications
on MuCCRA-1 listed in Table 1 with their characteris-
tics and evaluated on reduction effect of configuration data
transfer cycles and power/energy overhead.

We have developed a scheduling program in C++ and run
on a PC (Athlon 64 FX-57 (2.8GHz), 2GB memory, and
Linux kernel-2.6.8 (64bit)). The power consumption for
configuration in MuCCRA-1 is evaluated with Power Com-
piler 2006.06-SP2, back-annotating a SAIF file obtained by
the post-layout simulation.

5.1. Reduction of configuration data trans-
fer cycles

5.1.1. Evaluation with random patterns

The average reduction effect of configuration data trans-
fer cycles for each array size is shown in Fig.2. We can find
the most effective scheduling algorithm is the PCS-L. It re-
duces the configuration data transfer cycles to about 60%
of the case without RoMultiC. The impact of the overwrite
configuration technique can be seen in the difference be-
tween the results of the PSS and PCS-L. With the overwrite
configuration, the configuration data transfer cycles are de-
creased 20% at maximum compared to one without over-
writes. Note that although the reduction effect of the PCS-S
is slightly inferior to the PCS-L, from the experiment, we
confirmed that the PCS-S became superior to the PCS-L for
some configuration data arrangements. In practical use, we

Table 1. Application characteristics.

BlkSize (bits) Cntxt Delay (ns) ExecClks
DCT 1,024 41 40 195
α-Blender 8,192 8 24 644
SHA-1 512 12 50 418
Viterbi 16 13 34 370

4x4 Array 6x6 Array 8x8 Array

100

90

80

No RoMultiC
PSS
PCS-L
PCS-S78.3

62.7 64.0

76.5

61.9 63.0

74.2

60.9 61.5
70

60

50

40

30

20

10

 0

R
ed

uc
tio

n
ef

fe
ct

 (%
)

100 100 100

Figure 2. Reduction effect of configuration
data transfer cycles in random patterns.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
ed

uc
tio

n
ef

fe
ct

 (%
)

The number of configuration data types

PSS 8x8
PCS-L 8x8
PCS-S 8x8

Figure 3. Reduction effect of configuration
data transfer cycles (8× 8 array).

can employ both the algorithms to get a better result.
Fig.3 shows the relations between average reduction ef-

fect of configuration data transfer cycles and various con-
figuration data types normalized with the sequential config-
uration (100%). The results of the other array sizes show
almost the same tendency. This relation implies how the
reduction effect varies with the degree of parallelism.

5.1.2. Evaluation with real applications
Fig.4 depicts the impact of each configuration schedul-

ing on the configuration data transfer cycles with real ap-
plications. It is greatly influenced by the parallelism of the
application and the resource utilization.

5.2. Energy consumption overhead

Energy consumption overhead is evaluated with the no
overwrite configuration scheduling PSS and the overwrite
configuration scheduling PCS-L. The result of the PCS-S is
almost the same as the PCS-L.

Table 2 shows the average power consumption during the
configuration data transfer. The PCS-L requires a slightly
larger power due to the memory overwrites.

100

90

80

DCT Alpha-Blender SHA-1

No RoMultiC
PSS
PCS-L
PCS-S

Viterbi

63.4
58.558.8

80.3

73.373.3

42.0

33.533.5

54.1
48.148.3

70

60

50

40

30

20

10

 0

100 100 100 100

R
ed

uc
tio

n
ef

fe
ct

 (%
)

Figure 4. Reduction effect of configuration
data transfer cycles in real applications.

Table 2. Power consumption overhead.
PSS (mW) PCS-L (mW) OH. (%)

DCT 28.731 28.916 0.647
α-Blender 48.334 49.260 1.92
SHA-1 23.408 23.573 0.705
Viterbi 33.614 33.717 0.306

As shown in Table 3, the total energy consumption,
meanwhile, is decreased. This is because the portion of en-
ergy consumption for memory overwrites is not dominant
whereas the left portion of it irrelevant with the transfer or-
der is rather large. As a result of the cycle reduction, the
reduced energy consumption of them can completely hide
the overhead of memory overwrites and rather reduce the
total energy consumption.

6. Conclusion
In this paper, we presented the new configuration

scheduling algorithm using the overwrite configuration
technique in the multicast configuration scheme.

As the results of evaluation with some real applica-
tions, we confirmed that our proposed overwrite configu-
ration technique reduced the configuration data transfer cy-
cles 66.5% at maximum compared to one without multi-
cast and 20.2% compared to one without overwrites. It also
decreased the configuration energy consumption 18.7% at
maximum hiding the overhead of memory overwrites.

Table 3. Energy consumption overhead.
PSS PCS-L

Config. Energy Config. Energy OH.
(clks) (nJ) (clks) (nJ) (%)

DCT 554 636.68 493 570.24 -10.4
α-Blender 84 97.441 67 79.210 -18.7
SHA-1 241 282.07 220 259.30 -8.07
Viterbi 206 235.43 190 217.81 -7.49

Acknowledgment: This work is supported in part by Japan Sci-
ence and Technology Agency (JST). The authors thank to VLSI
Design and Education Center (VDEC) for the design flow of the
Rohm 0.18µm CMOS technology.

References
[1] F. Veredas, M. Scheppler, W. Moffat, and B. Mei. Cus-

tom Implementation of the Coarse-Grained Reconfigurable
ADRES Architecture for Multimedia Purposes. In Proc. of
Int’l Conf. on Field Programmable Logic and Application
(FPL), pages 106–111, August 2005.

[2] M. Motomura. A Dynamically Reconfigurable Processor Ar-
chitecture. In Microprocessor Forum, October 2002.

[3] T. Sugawara, K. Ide, and T. Sato. Dynamically Recon-
figurable Processor Implemented with IPFlex’s DAPDNA
Technology. IEICE Trans. on Information & System, E87-
D(8):1997–2003, May 2004.

[4] M. Petrov et al. The XPP Architecture and Its Co-simulation
within the Simulink Environment. In Proc. of Int’l Conf.
on Field Programmable Logic and Application (FPL), pages
761–770, August 2004.

[5] Inc. Rapport. http://www.rapportincorporated.com/.

[6] T. Kodama et al. Flexible Engine: A Dynamic Reconfig-
urable Accelerator with High Performance and Low Power
Consumption. In Proc. Int’l Symposium on Low-Power and
High-Speed Chips (COOL Chips), pages 393–408, April
2006.

[7] T. Stansfield. Using Multiplexers for Control and Data in D-
Fabrix. In Proc. of Int’l Conf. on Field Programmable Logic
and Application (FPL), pages 416–425, September 2003.

[8] V. Tunbunheng, M. Suzuki, and H. Amano. RoMultiC:
Fast and Simple Configuration Data Multicasting Scheme for
Coarse Grain Reconfigurable Devices. In Proc. of IEEE Int’l
Conf. on Field Programmable Technology (FPT), pages 129–
136, 2005.

[9] S. Hauck, Li Zhiyuan, and E. Schwabe. Configuration com-
pression for the Xilinx XC6200 FPGA. In Proc. of IEEE
Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), pages 138–146, April 1998.

[10] Y. Hasegawa and H. Amano. Design methodology and
trade-offs analysis for parameterized dynamically reconfig-
urable processor arrays. In Proc. of Int’l Conf. on Field Pro-
grammable Logic and Application (FPL), August 2007.

[11] D. Kissler, F. Hannig, A. Kupriyanov, and J. Teich. A Highly
Parameterizable Parallel Processor Array Architecture. In
Proc. of IEEE Int’l Conf. on Field Programmable Technology
(FPT), pages 105–112, December 2006.

[12] V. Chvátal. A greedy heuristic for the set-covering problem.
In Math. of OR, volume 4, pages 233–235, 1979.

