CONFIGURATION WITH SELF-CONFIGURED DATAPATH: A HIGH SPEED
CONFIGURATION METHOD FOR DYNAMICALLY RECONFIGURABLE PROCESSORS

Toru Sano, Yoshiki Saito and Hideharu Amano

Department of Information and Computer Science, Keio University
3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
muccra@am.ics.keio.ac.jp

ABSTRACT

Configuration with Self-configured Data Path (CSDP) is
a high speed configuration data loading method for Dy-
namically Reconfigurable Processors (DRPs). By using a
prepared configuration data, a network for computation in
DRPs can be used as a configuration data path when the
computation is stalled and the controller requires the con-
figuration data transfer. Design and implementation of a
DRP called MuCCRA-3.32b with CSDP demonstrates that
the time for computation can be reduced to a half with only
1.3% hardware overhead. Energy consumption for configu-
ration data loading can be also reduced.

1. INTRODUCTION

Coarse-grained Dynamically Reconfigurable Processors
(DRPs) have received an attention as a power-efficient ac-
celerators for media-rich applications on a System-on-a-
chip (SoC). Some devices are commercially available [1,
2, 3,4, 5, 6], and some of them are widely used in digital
appliances[7][8].

DRPs are classified into two types based on their dynamic
configuration schemes: multi-context style and configura-
tion data delivery. In the former method, components of
DRP; Processing Elements (PEs) and Switching Elements
(SEs) have their own local context memories to store multi-
ple configuration data set, and switch the configuration with
a clock cycle by reading data from them. Since the capacity
of the context memory is limited from 4 to 32 in most multi-
context DRPs, the configuration data for the next task must
be transferred from outside the chip or centralized memory.

Another method is to deliver the configuration data to
each component basically one by one from centralized con-
figuration memory module located inside the chip. Al-
though it often takes hundreds clock cycles to deliver the
configuration data, the cost for providing a context memory
in each component can be avoided.

In both methods, the configuration data transfer perfor-
mance is a critical factor. Even in multi-context DRPs, the

operation must be stalled until the configuration data for the
next task is finished to be loaded.

Various types of methods have been proposed for hid-
ing the latency or enhancing the speed of configuration data
transfer. The overlapping time for execution and config-
uration data transfer has been investigated more than 15
years[9] and the mechanism is available in some chips[8].
However, in some applications, the time for configuration
becomes much longer than that for the configuration trans-
fer, the stall is still required. High speed data transfer meth-
ods using multicasting[10] is also an efficient to increase the
speed but the efficiency is strongly depending on applica-
tions.

Here, a simple and powerful configuration transfer
method called Configuration with Self-configured Data Path
(CSDP) is proposed and evaluated. In this method, the net-
work for the execution is configured and used for transfer-
ring the configuration data. Although the execution is com-
pletely stopped in the configuration, the time for transferring
can be much reduced.

2. RELATED WORK

In order to achieve high speed dynamic reconfiguration,
high speed configuration data transfer is essential even for
multi-context DRPs which can switch their hardware con-
text in a clock cycle. Since the area for the context memo-
ries often doubles the area of PE array, the context number
that can be stored into the context memory is strictly lim-
ited. For example, DAPDNA-II and FE-GA provide four
contexts, DRP-1 has 16 and STP engine and ADRES have
32. The loading time from centralized memory outside or
inside the chip to the context memory often becomes the
bottleneck of the system, since the execution must be stalled
during the data transfer.

In order to address this problem, two approaches have
been investigated: hiding the loading time and high speed
data transfer. The former method enables the overlapping
execution and data loading, that is, while the executing ap-
plication with a part of contexts, the configuration data for



the next task is transferred and stored to unused context
memory space. If all configuration data for the next task
have been loaded before finishing the current task, the task
switching can be done without stall. This method, often
called a virtual hardware, has been proposed in the early
90s’[9], and now is available in the commercial product[8].
The problem of this method is that the DRP is needed to pro-
vide enough size of context memory to store the number of
contexts for two tasks. It is often difficult for implementing
complicated tasks even with using 32 contexts[11].

The latter method is to increase the speed of configuration
data transfer by making the best use of multicast. A mul-
ticast configuration scheme called RoMultiC[10] for DRPs
has been proposed. Similar to the configuration compression
scheme using Wildcard Registers[12] proposed for FPGAs,
RoMultiC exploits the fact that there exists identical config-
uration data of Reconfigurable Elements (REs), such as Pro-
cessing Elements (PEs) and Switching Elements (SEs), in
an application with high parallelism. It has been employed
in MuCCRA[13] and WPPA[14], and scheduling methods
to fix the order of multicasting configuration bit-map has
been also proposed[15]. The size of configuration data for
multicasting is also analyzed[16]. These methods are effi-
cient only when there are a lot of the same patterns to be
transferred, and highly dependent to the characteristics of
applications.

3. CONFIGURATION WITH SELF-CONFIGURED
DATA PATH (CSDP)

3.1. Concept

Most of DRPs provide a network, which can be used for
broadcasting or multicasting data to all PEs and SEs during
the execution. Such networks for forming execution datap-
ath can be also used to transfer the configuration data. Con-
figuration with Self-configured Data Path (CSDP) config-
ures and uses such a network to load the configuration data.
The following two operations are required for implementing
the CSDP.

e A prepared configuration data must be set for SEs to
form the broadcast network from the centralized con-
figuration memory to context memory modules in each
PE.

o The data selector which enables to select the configura-
tion data from multiple configuration paths is required
for each context memory.

By using the inter-PE network for transfering configura-
tion data, application cannot be executed at the same time.
Howeyver, in most cases, the stall is caused when the number
of context is not enough to hold configuration data for two
continuous tasks. In such cases, the overlapping mechanism

MEMO MEM1 MEM2 MEM3

TOP TOP TOP TOP
— o — [ —
f’-—- —] f’... —]
PE3\ PE3\
L}
I e | g ”’\‘ e
PE20 PE21
pE13 ”),ar ”/u,ar
PELO \ PE11 \
L Y L Y
PE03 _,\-' _,\ar
PE33 \ \
PE0O PEOL
PE0O
# Tuftt T it Tu
MEMO [® A vev1 [€ A veme [€ A vevz (€
BOTTOM BOTTOM BOTTOM| BOTTOM|

Fig. 1. PE Array Structure of MuCCRA-3.32b

is useless. The CSDP can be implemented so that the mech-
anism only works in the above cases. That is, the CSDP can
be used complementarily with the overlapping mechanism.

3.2. Target Architecture: MuCCRA-3.32b

Although the CSDP can be implemented for various types
of DRPs, we must fix the target architecture to evaluate
its performance and hardware overhead. Here, MuCCRA-
3.32b is adopted as the target architecture. It is based on a
low power DRP called MuCCRA-3, the third prototype in
MuCCRA project[13] and a real chip using Fujitsu’s 65nm
CMOS process is working. Only the bit-width of MuCCRA-
3 is stretched from 16bits to 32bits in MuCCRA-3.32b.

3.3. PE Array Structure

Although the design of MuCCRA-3.32b is based on previ-
ous prototypes MuCCRA-1 and 2 , the structure is optimized
so as to reduce the power consumption.

MuCCRA-3.32b has 4x4 PE array as shown in Fig.1. The
distributed memory (MEM) modules for storing data are
provided at the both edges of the array in order to relax the
access conflicts frequently occurred in MuCCRA-1 and 2.
Dual-bank method is introduced in order to overlap the time
for computation and data transfer from external[17]. For
easy debugging, both banks can be directly accessed from
outside the memory.

Some programs for MuCCRA-1 or 2 used a certain num-
ber of PEs just for generating addresses for accessing MEM
modules. To save such PEs, a dedicated address counter is
provided to each MEM module. If the address computation
is simple, the access of MEM can be done without using
PEs. The reset, counting up and down of address counters



are defined by the configuration data attached to MEM mod-
ules.

The interconnection for connecting PEs is a hybrid style
consisting of the island-style network used in MuCCRA-
1 and 2, and the direct interconnection network used in
MuCCRA-D[18]. In Fig. 1, bold lines represent direct links,
while thin lines show the island style network using switch-
ing elements (SEs). From the evaluation of MuCCRA-1 and
2, the island style network is advantageous for flexible in-
terconnections, but tends to introduce too long delay. On
the other hand, the direct network utilized in MuCCRA-D
tends to increase the number of context switching because
of its strict limitation in the data transfer. By using the hy-
brid network in MuCCRA-3.32b, direct links can be used
for local communication without using SEs while the data
for the distant PEs are transferred through the island style
network.

MuCCAR-3 has two channels which can exchange data
freely in the SE. Although the structure slightly increases
the SE hardware, the flexibility of channel usage would re-
duce the number of context switching. For keeping the mod-
ularity especially convenient in the layout design, each SE
is treated as a unit in a PE.

3.4. PE Structure

In the target architecture MuCCRA-3.32b, the data width is
stretched to 32bits in order to implement various types of
media applications.

The PE structure of MuCCRA-3.32b is consisting of ALU
(Arithmetic Logic Unit) and RF (Register File) as shown
in Fig. 2. At both input ports of ALU, selection mod-
ules (ALU_SELs) are provided to select input data. Simple
shift, mask and constant generation functions are also pro-
vided in them. The operations in ALU are simplified; addi-
tion, subtract, logic operations, shift operation, comparison
and data selection. Only 13 operations are provided, while
MuCCRA-1 or 2 have 30 instructions. The RF modules is 8-
depth 2 reads/1 write register file; the same as MuCCAR-1
or 2.

Another important feature of MuCCRA-3.32b is output
registers, which store output of the ALU in each clock cy-
cle. In previous prototypes MuCCAR-1 and 2, the output of
PE can be directly forwarded to the other PEs with multiple
SEs. Although this FPGA-like data transfer is flexible, the
operational frequency often is degraded by the long critical
paths through multiple PEs and SEs, and changes drastically
depending on the application programs. In MuCCRA-3.32b,
only one computation can be done in a clock cycle, although
the data can be transferred to distant PEs through multiple
SEs. By using this structure, the operational frequency is al-
most the same independent from the application programs,
and pipelined execution is easy to be implemented. This

NORTH_CH_A_IN

SOUTH_REG

SOUTH_WEST_REG

J_LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLIL

CONTEXT_POINTER I ROMULTIC_ROW
~J Liir“* PE30 PE31 PE32 PE33 [:]
CONF_DATA_IN 3 N
F)cscl] 4 L)
. L 3 PE20 PE21
3 conF E =3
3 MEMORY [ 2h7ccm
E E‘ = PELO PELL
CONF_ADDR 4
3 PEO0O PEOL PEO2 PEO3 [:]
CONFIGURATION I
DATA_BUS —3
I

T T
][]

ROMULTIC_COL

MUCCRA-3

Fig. 3. Configuration Data Flow

structure also suppresses the propagation of the data switch-
ing to multiple PEs, thus saves the energy.

3.5. Context Switching and Configuration

Like MuCCRA-1 and 2 and other DRPs, MuCCRA-3.32b
is a multi-context style DRP which switches multiple sets of
configuration called contexts. All PEs and MEMs provide
their context memory modules (CONTEXT_MEMORY),
and read out the configuration data according to the context
pointer in every clock cycle.

The configuration data in each context memory must be
transferred before computation from the memory module
outside the chip. Task Configuration Controller (TCC) man-
ages it. Fig.3 shows the configuration and context control
mechanism in MuCCRA-3.32b.

First, TCC gives addresses (CONF_ADDR) of required
configuration data in the external memory, and reads out the
configuration data (CONF_DATA_IN). TCC, PE and MEM
modules are connected with a shared bus called CONFIGU-



Fig. 4. Configuration Code (ALU Operation)

RATION_DATA BUS, and TCC transfers the configuration
data through the bus with identifiers that indicate receivers.

Each PE or MEM module receives the data if needed,
and stores it in its CONTEXT_-MEMORY. Like previ-
ous prototypes, we adopted multicasting mechanism called
RoMultiC[10]. In this mechanism, the configuration data is
stored in the CONTEXT_MEMORY if both the multicast
bits for row (ROMULTIC_ROW) and column (ROMUL-
TIC_.COLUMN) are set to be active high signal. In the
example shown in Fig.3, the same configuration data are
multicasted to PE12 and PE22. Since the same configura-
tion data often used in multiple modules, this method can
reduce the configuration time and total required storage ef-
ficiently. The configuration data of MuCCRA-3.32b is de-
signed with the concept of fine-grained RoMultiC[16], and
divided into 16bits for each module. Seven format types are
used for ALU, ALU_SEL, SE_A, SE_B, RF, MEM and con-
trol. Fig. 4 shows a format for ALU. Although this kind of
short format increases the clock cycles for configuration data
transfer, the opportunities of multicast are increased, and the
efficient data transfer is achieved in total. Including the mul-
ticast bitmap and configuration types, 28bits data must be
transferred.

After transferring all configuration data, Context Switch
Controller (CSC) gives CONTEXT_POINTER to all mod-
ules for reading the context memory as shown in Fig.5. In
MuCCRA-1 and 2, the configuration data is about 100bits,
and stored in a single memory. On the contrary, each PE
in MuCCRA-3.32b has fragmented CONTEXT_MEMORY
modules for ALU, ALU_SEL_A, ALU_SEL B, SE_A, SE_B
and RF. The total configuration bits are reduced into 80bits
and multicasted through a single 16bits bus. This approach
called fine-grained RoMultiC increases the possibility of
multicast and reduce the total energy for configuration data
transfer.

Although CONTEXT_POINTER is usually incremented
in a clock cycle, the conditional branch and jump according
to the computation result in PE30, PE31, PE32 and PE33
are supported.

CONTEXT MEMORY
CONTEXT POIONTER //

PE
/
14
ALU_CONF p
ALU
RF_CONF L RE
ALU_SEL_CONF | ALU_SEL

SE_A_CONF

SE_B_CONF

="
|

CONFIGURATION DATA

Fig. 5. MuCCRA-3.32b Context Management

DUAL

"EAST_CH_B_OUT

= WEST_CH_B_IN"

CONTEXT_MEMORY
SE_B_CONF

CONFIGURATION_DATA

CONFIGURATION_DATAZ—

CONTEXT_MEMORY
SE_A_CONF
"EAST_CH_A_OUT
= WEST_CH_A_IN"

DUAL

Fig. 6. CSDP Mechanism

3.6. The CSDP in MuCCRA-3.32b

In MuCCRA-3.32b, the configuration data is transferred by
using a dedicated CONFIGURATION_DATA _BUS, and the
CSDP is implemented for increasing its bandwidth by using
network for computation as the second configuration bus.
Fig. 6 shows the CSDP implementation in MuCCRA-3.32b.
When the computation is stalled and the TCC requires the
next configuration, the TCC sends "DUAL” signal to all
PEs. When a PE receives "DUAL” signal, the PE changes
the configuration data of SE_B into the prepared configura-
tion data for transferring the data from WEST to EAST. By
using this configuration, the datapath using SE_B changes
into the broadcasting bus CONFIGURATION_DATA _BUS2
for transferring configuration data as shown in Fig. 7. Since
the bit-width of links in MuCCRA-3.32b is 32bits, it can
carry the whole 28bits data for configuration with a lane.
The outside CONF_MEMORY reads two configuration
data (CONF_DATA_IN and CONF_DATA_IN2) in parallel,



CONEIGURATION NIRRT NRIR IR NI NA TN NIRRT NN IR RN NRNANTNNINTNET]

DATA_BUS2 \: L
:\ PE30 PE31 PE32 PE33 |[E

CONF_DATA_IN2 > =
CONF_DATA_IN 3 L] L) L) L) E
_ 3 PE20 PE21 PE22 pE23 |F
3 conF 1 E
= MEMORY £
= PEL0 PEL1 PE12 PEL3 |E
CONF_ADDR E
CONF_ADDR2 PE0O PEO1 PE02 PEO3 |F
CONFIGURATION E
DATA_BUS F

Fig. 7. CSDP in MuCCRA-3.32b

Table 1. Tools Used for Evaluation

Steps Tools
Simulation Cadence NC-Verilog 8.1
Synthesis Synopsys Design Compiler 2007.12-SP3
Power Analysis Synopsys Prime Time 2007.12-SP3

and transfers by using both configuration buses. Each con-
text memory selects the data from two configuration buses
based on the bitmap as shown in Fig. 6. Here, two configu-
ration data must be transferred to different components. The
assignment that satisfies this limitation can be found easily
in the common configuration codes.

4. EVALUATION

4.1. Hardware Overhead

MuCCRA-3.32b with and without the CSDP is designed by
using the same process as MuCCRA-3(Fujitsu 65nm 12-
layer CMOS process) with the design tools shown in Table
1. The target frequency in the synthesis was set to be SOMHz
and satisfied.

Table 2 shows the hardware overhead represented with the
gate numbers.

Table 2. Evaluation Results of Hardware Cost

Gate Number | Overhead|[%]
MuCCRA-3.32b 1,258,963 -
With CSDP 1,275,559 +1.3

The overhead comes from the data selectors, prepared

RTL Design
Verilog-HDL Application
Description
RTL Verification like-C
NC-Verilog

[

Synthesize
Design Compiler Config

File [ <+—
Gate-Level Design
Verilog-HDL

Compiler/Mapper
BlackDiamond

Power-Analysis
Prime Time

Fig. 8. Evaluation Environment

configuration setting mechanism and extra paths for chip I/O
and TCC, but it is quite small.

4.2. Execution Time vs. Configuration Data Transfer
Time

Discrete Cosine Transform for JPEG coder (2D-DCT) and
simple filters for image processing (@-Blender and Sepia)
are executed, and configuration data loading time and exe-
cution time are evaluated respectively.

The flow of evaluation is shown in Fig.8. Verilog design
for MuCCRA-3.32b was modified to provide the CSDP is
synthesized by Synopsys’s Design Compiler, and gate level
design is generated. The design of applications was done
by using a re-targetable compiler called BlackDiamond[19].
The application data is described in C-like front-end lan-
guage, and the mapping, routing and configuration data gen-
eration are automatically done. The result of mapping is
shown in the GUI (Fig.9), and optimization by designers can
be applied.

The generated configuration data is used with the synthe-
sized Verilog netlist, and SAIF file is obtained. The config-
uration data loading time, and power consumption are eval-
uated using the gate level simulation and Synopsys’s Prime
Time.

Fig.10 shows the configuration data loading time. The
configuration time is reduced to be almost a half as those
without the CSDP in DCT and a-Blender. In Sepia, since a
part of configuration data cannot be transferred in parallel,
the loading time becomes more than the half.

4.3. Power/Energy Consumption

Power consumption for transferring the configuration data
is shown in Fig.11. Since the network for execution is used
for configuration data transfer, the power with the CSDP is
increased. However, as shown in Fig.12, from the viewpoint



Fig. 9. GUI of BlackDiamond

Without CSDP s
L With CSDPCONF ez

%!
o2

5%
SRR
2%
eSotoes
55
%
XX

f'
9%
s
% %%

2%
ool
o
0ete%e ettt

%5
SO 00,0090,
KK

QK

LRI

awgmw.
%
5
%e% %%

Yote%

QIR
QIR
ettt

X
5%

0002000900900 %

Lot tetetetetetetets
QI
QGRS
tete%%

KR IERIKLKY

XX
XX KX
K
S
e%e%

XX
0%

b
XX

Transfer Time [usec]
<

o%

X2

KKK
8K

O = N W H» O O N 00 ©
T

Application

Fig. 10. Configuration Data Loading Time

of the energy consumption, the CSDP is better than the orig-
inal configuration method since the time for configuration is
much improved. This evaluation results demonstrate that
the CSDP can improve the energy consumption as well as
the time for configuration data loading.

The effect of introducing the CSDP is not depending on
the process technology except the increasing leakage power
which cannot be saved in the technique.

5. CONCLUSION

In CSDP, a network for computation in DRPs is self-
configured so that it can be used as a configuration data path
when the computation is stalled and the controller requires
the configuration data transfer.

Design and implementation of a DRP called MuCCRA-
3.32b with CSDP demonstrates that the time for computa-
tion can be reduced to a half with only 1.3% hardware over-
head. Energy consumption for configuration data loading

12

Without CSDP =<
With CSDP &

S
g
2

10

9
X

<
o0

00000000000000000‘.

0002000202020 20 %0 %%

19.9.

oS
<5
XK

29,9

Transfer Power [mW]
»
.

0000000000 0,0 0 00 00 0 0. 9:%
X KIS ICRK KKK K
RIS
XSGR IR XX
S

4 r | <
!
i
5 %
4 00
5 %%
2t seassd o
S 9
A i % Qp
e et
53 X XK K
5 s
O QS X XL

2D-DCT

Sepia  Alpha Blender
Application

Fig. 11. Power for Configuration Data Loading

60 [ Without CSDP s ]
With CSDP s
50 | |

20 r

Transfer Energy [nJ]
w
o

10 +

Sepia  Alpha Blender 2D-DCT
Application

Fig. 12. Energy for Configuration Data Loading

can be also reduced. The CSDP is a simple technique and
so useful with various other methods for high speed config-
uration data loading including the overlapping.

If there are more number of pins and the configuration
memory bandwidth allows, another lane consisting of SE_A
can be used as the third configuration bus by using the
CSDP. This style of implementation is only realistic when
the configuration memory can be embedded inside the chip.

Acknowledgments: This research was performed by the
author for STARC as part of the Japanese Ministry of Econ-
omy, Trade and Industry sponsored “Next-Generation Cir-
cuit Architecture Technical Development” program. The au-
thors thank to VLSI Design and Education Center(VDEC)
and Japan Science and Technology Agency(JST) CREST
for their support.

6. REFERENCES

[1] F. Veredas and M. Scheppler and W. Moffat and B. Mei,



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

[14]

“Custom Implementation of the Coarse-Grained Reconfig-
urable ADRES Architecture for Multimedia Purposes,” in
Proc. of FPL, Aug. 2005, pp. 106-111.

M. Motomura, “A Dynamically Reconfigurable Processor
Architecture,” Microprocessor Forum, Oct. 2002.

Y.Sugawara, K.de, T.Sato, “Dynamically Reconfigurable
Processor Implemented with IPFlex’s DAPDNA Technol-
ogy,” in IEICE Trans. on Inf.&Syst. Vol.E§7-D, No.8.
Springer, Berlin, Nov. 2003, pp. 1997-2003.

M. Petrov, et al., “The XPP Architecture and Its Co-
simulation within the Simulink Environment,” in Proc. of
FPL, Aug. 2004, pp. 761-770.

B.Levine, “Kilocore: Scalable, High Performance and Power
Efficient Coarse Grained Reconfigurable Fabrics,” in Proc. of
International Symposium on Advanced Reconfigurable Sys-
tems, 2005, pp. 129-158.

Tony Stansfield, “Using Multiplexers for Control and Data
in D-Fabrix,” in Proc. of Int’l Conf. on Field Programmable
Logic and Application (FPL), Sept. 2003, pp. 416—425.

Y.Kurose, I.Kumata, M.Okabe, H.Hanaki, K.Seno,
K.Hasegawa, H.Ozawa, S.Horiike, T.Wada, S.Arima,
K.Taniguchi, K.Ono, H.Hokazono, T.Hiroi, T.Hirano,

S.Takashima, “A 90nm embedded DRAM single chip LSI
with a 3D graphics, H.264 codec engine, and a reconfigurable
processor ,” in Hot Chips 16, 2004.

Masato Motomura , “C-based Programmable-HW Core ”STP
Engine”: Current Status and Future ,” in IECE Technical Re-
port, RECONF2008-48, 2008.

X.-P. Ling, H. Amano, “WASMII: A Data Driven Computer
on a Virtual Hardware,” in Proc. of the IEEE Symposium
on FPGAs for Custom Computing Machines(FCCM’93).
Springer, Berlin, 1993, pp. 33—42.

V.Tunbunheng, M.Suzuki, H.Amano, “RoMultiC: Fast and
Simple Configuration Data Multicasting Scheme for Coarse
Grain Reconfigurable Devices,” in Proc. of IEEE FPT.
Springer, Berlin, 2005, pp. 129-136.

H.Amano, T.Inuo, H.Kami, T.Fujii, M.Suzuki, “Techniques
for Virtual Hardware on a Dynamically Reconfigurable Pro-
cessor - An approach to Tough Cases,” in Proc. of the FPL
2004. Springer, Berlin, 2004, pp. 464-473.

S.Hauck and Z.Li and E.Schwabe, “Configuration Compres-
sion for the Xilinx XC6200 FPGA,” in IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
Vol.18, No.8, Aug 1999, pp. 1107-1113.

H.Amano, Y.Hasegawa, S.Tsutsumi, T.Nakamura,
T.Nishimura, V.Tanbunheng, A.Parimala, T.Sano, M.Kato,
“MuCCRA chips: Configurable dynamically-reconfigurable
processors,” in Proc. of the ASSCC *07. IEEE Asian, Nov.
2007.

D. Kissler and F. Hannig and A. Kupriyanov and J. Teich, “A
highly parameterizable parallel processor array architecture,”
in IEEE International Conference on Field Programmable
Technology 2006 (FPT 2006), December 2006, pp. 105-112.

[15]

[16]

[17]

(18]

[19]

S. V.Tunbunheng, Y.Hasegawa, A.Parimala, T.Nakamura,
T.Nishimura, and H.Amano, “Overwrite Configuration Tech-
nique in Multicast Configuration Scheme for Dynamically
Reconfigurable Processor Arrays,” in Proc. of FPT, Dec.
2007, pp. 273-276.

T. Nakamura and T. Sano and Y. Hasegawa and S. Tsut-
susmi and V. Tunbunheng and H. Amano, “ Exploring the
optimal size for multicasting configuration data of Dynami-
cally Reconfigurable Processors ,” in Proc. of Int’l Conf. on
International Conference of Field Programmable Technology
(ICFPT), Dec. 2008, pp. 137-144.

Hideharu Amano and Shohei Abe and Katsuaki Deguchi and
Yohei Hasegawa, “An I/O mechanism on a Dynamically Re-
configurable Processor - Which should be moved: Data or
Configuration,” in Proceedings of International Conference
on Field Programmable Logic and Applications (FPL2005),
2005, pp. 347-352.

M.Kato, Y.Hasegawa, H.Amano, “Evaluation of MuCCRA-
D: A Dynamically Reconfigurable Processor with Directly
Interconnected PEs,” in Proc. of The 2008 International Con-
ference on Engineering of Reconfigurable Systems and Al-
gorithms (ERSA’08), Aug. 2008.

Vautan Tanbunheng and Hideharu Amano, *“ DisCounT: Dis-
able Configuration Technique for Representing Register and
Reducing Configuration Bits in Dynamically Reconfigurable
Architecture,” in Proc. of SASIMI 2007, Oct. 2007.



