
Performance and Power Analysis of Time-multiplexed Execution
on Dynamically Reconfigurable Processor

Yohei Hasegawa1, Shohei Abe1, Shunsuke Kurotaki1, Vu Manh Tuan1,
Naohiro Katsura1, Takuro Nakamura2, Takashi Nishimura2 and Hideharu Amano2

1 Graduate School of Science and Technology, Keio University
2 Faculty of Science and Technology, Keio University

3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522 Japan
drp@am.ics.keio.ac.jp

Abstract

Dynamically Reconfigurable Processor (DRP) devel-
oped by NEC Electronics is a coarse grain reconfigurable
processor that selects a datapath called a context from the
on-chip repository of sixteen circuit configurations at run-
time. The time-multiplexed execution based on the multi-
context functionality is expected to drastically improve area
and power efficiency. To demonstrate the impact of the time-
multiplexed execution, we have implemented several stream
applications on DRP with various context sizes. Through-
out the evaluation based on real application designs, we
analyzed the impact of the time-multiplexed execution on
performance and power dissipation quantitatively.

1. Introduction

In recent years, dynamically reconfigurable devices have
attracted much attention because of their high-speed pro-
cessing and flexible properties in embedded systems[11][3].
Recent dynamically reconfigurable processors, such as
DRP[7], DAPDNA[4], XPP[8], and D-Fabrix[1], consist
of coarse-grained processing elements (PEs) and distributed
memory modules. They can dynamically change the PE op-
eration and inter-PE connection according to the configura-
tion instruction. Array of many PEs and memory modules
provides high throughput in multimedia and network pro-
cessings. Moreover, dynamic reconfigurability is expected
to provide preferable area and power efficiency for the frac-
tion of traditional programmable devices such as Field Pro-
grammable Gate Arrays (FPGAs).

Dynamically reconfigurable processors are also believed
to be used as Intellectual Property (IP) cores for System-
on-Chips (SoCs). In recent embedded products, the reduc-

tion of power dissipation become a significant challenge
because of wide spread of battery-powered devices. The
strong growth of wireless communications and portable ap-
plications is also a remarkable factor behind this trend. So,
the power efficient architecture must be examined for future
embedded systems.

The most remarkable characteristic of dynamically re-
configurable processors is the dynamic reconfigurability
based on the multicontext functionality. The datapath re-
alized on the physical hardware is called a context. Recent
dynamically reconfigurable processors can change contexts
often in one clock by the dynamic reconfiguration. The tar-
get application is divided into multiple contexts and only
one context which is required at that point should be acti-
vated and executed. The multicontext functionality reduces
the physical die size and improves power efficiency. We call
this execution scheme based on the multicontext function-
ality the time-multiplexed execution.

However, there exist few works that clarify the impacts
of the time-multiplexed execution on the power efficiency
of the dynamically reconfigurable processor. Moreover, it’s
not apparent that how much degree of the time-multiplexing
should be selected to optimize the power efficiency for the
target application. The context size, which is defined by the
amount of available computational resources, is a key factor
that affects this issue directly. We should determine a partic-
ular context size so as to achieve required performance with
optimal area and power efficiency for the target application.

The purpose of this work is to quantitatively clarify the
impact of the time-multiplexed execution on performance
and power dissipation. Throughout this study, NEC Elec-
tronics’ Dynamically Reconfigurable Processor (DRP) is a
target device. We have implemented several practical appli-
cations on DRP with various context sizes. So, we evaluate
the power efficiency focused on real application designs.

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

HMEM HMEM HMEM HMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

HMCTR

VMCTR
VMCTR

State Transition Controller

Figure 1. DRP Tile Archi-
tecture

In
st

ru
ct

io
n

M
em

or
y

A
L

U
D

M
U

FL
IP

 F
L

O
P

D
at

a
O

ut
pu

t
8b

it

Flag Input

Data Bus

Flag Output
D

at
a

In
pu

t
8b

it
x

2

Flag Bus
Instruction Pointer

Bus Selector

R
eg

is
te

r F
ile

Figure 2. Processing Element
Architecture

CLK To SDRAM/SRAM/CAM CLK

Data

Ctrl

Test

Program

CLK PCI IF CLK

PLL MUL MUL MC MUL MUL PLL

PLLMULMULPCICMULMULPLL

Tile Tile Tile Tile

Tile Tile Tile Tile

CSTC

Figure 3. Prototype Chip:
DRP-1

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the DRP architecture which is the target
device throughout this paper. Section 3 presents the model
of the time-multiplexed execution on DRP and its impact
on performance and power dissipation. In Section 4, we
describe evaluation results and discussions about power ef-
ficiency. Finally, we conclude this paper in Section 5.

2. Target Device: DRP

DRP is a coarse grain dynamically reconfigurable pro-
cessor that was released by NEC Electronics in 2002 [7]. It
carries an on-chip configuration data corresponding to mul-
tiple contexts, and it dynamically reschedules them to real-
ize multiple functions with one chip.

Sixty-four of the most primitive 8-bit processing ele-
ments (PEs) are combined to form what is called a Tile, and
the DRP Core consists of an arbitrary number of these Tiles.
Figure 1 is a sketch of a Tile in DRP. The DRP architec-
ture was designed with a focus on coupling with other cores
on a SoC, and it has peripheral connections for such pur-
poses. In each Tile, there are 64 PEs, one State Transition
Controller (STC), eight 2-ported memories (VMEMs: Ver-
tical MEMories), two VMEM Controllers (VMCTR), four
1-ported memories (HMEMs: Horizontal MEMories), and
one HMEM Controller (HMCTR). The number of Tiles is
expandable, horizontally and vertically.

The structure of a PE is shown in Figure 2. It has an
8-bit ALU, an 8-bit DMU (for shifts/masks), an 8-bit×16-
word register file (RFU), and an 8-bit flip-flop (FFU). These
units are connected with each other by programmable wires
specified by instruction data (configuration data), and their
bit-widths range from 8 Bytes to 18 Bytes depending on the
location. The PE has 16-depth instruction memories (e.g.

16 contexts) and supports multiple context operations. Its
instruction pointer is delivered from the STC.

The STC is a simple sequencer in which any finite state
machine (FSM) can be stored. The STC has 64 states, and
each state is associated with the instruction pointer. The
FSM of the STC operates synchronized with the internal
clock, and generates the instruction pointer for each clock
cycle according to the state. Also, the STC can receive event
signals from PEs to branch conditionally. The maximum
number of branches that can be specified from the PE is
four.

As for the memory units, a Tile has eight 2-ported
VMEMs and four 1-ported HMEMs on its vertical and hor-
izontal sides respectively. The capacity of a VMEM is 8-
bit×256-word, and four VMEMs can be handled as a FIFO,
using a VMCTR. HMEM is a single-ported memory and it
has a larger capacity than the VMEM. It has 8-bit×8K-word
entries. Contents of these memories, flip-flops, and regis-
ter files of the PE are shared with the datapath of all the
contexts. The DRP Core, consisting of several Tiles, can
change its contexts every cycle with the instruction pointer
distributed from STCs. Also, each STC can run indepen-
dently by programming different FSMs.

DRP-1, shown in Figure 3, is the prototype chip using
the DRP Core with 4×2 Tiles. It is fabricated with 0.15-µm
CMOS processes. It consists of 8 Tiles, eight 32-bit mul-
tipliers, an external SRAM controller, a PCI interface, and
256-bit I/Os. The maximum operation frequency is 100-
MHz. Although the DRP-1 is used as a stand-alone recon-
figurable device, Tiles of DRP can be used as an IP core on
SoCs with an embedded processor. In this case, the number
of Tiles can be chosen so as to achieve the required perfor-
mance with minimum area.

An integrated design environment, called Musketeer, is
provided for the DRP-1. It includes a high level synthe-

sis tool, a design mapper for DRP, simulators, and a lay-
out/viewer tool. Applications can be written in a C-based
high level hardware description language, synthesized, and
mapped directly onto the DRP-1.

3. Time-multiplexed Execution on DRP

3.1. The Basic Model

Dynamically reconfigurable processors are aimed at
stream applications such as JPEG and MPEG for embed-
ded systems. The target application or task is divided into
multiple contexts and executed switching them at run-time.
While the context switching is performed sequentially, a lot
of PEs and distributed memory modules in a certain context
are operated in parallel. So, the performance depends on
the way of context scheduling.

Normally, to execute the target application, it takes a cer-
tain clock cycles because of the inherent sequentiality and
parallelism. In particular, when a stream application is ex-
ecuted by DRP, we have the following typical processing
flow.

1. Data is read out from distributed memory modules
and/or registers,

2. required processing is performed with multiple PEs,
then

3. the results are written back to distributed memory
modules and/or registers.

Here, these contiguous processes are considered as a serial
step in the algorithm. Usually the step is iteratively exe-
cuted and every step requires at least a clock cycle, since
results must be written into distributed memory modules
and/or registers. After finishing all processes, the output
data stream is flushed out from the chip.

The target application has a restriction of serial exe-
cution, and parallelism is defined in every serially exe-
cuted steps. Throughout this work, we consider the num-
ber of required PEs as the parallelism for each step. Fig-
ure 4 shows the number of required PEs in each serial step
when Discrete Cosine Transform (DCT) in JPEG encoder
is executed on the DRP Core. In this diagram, PEs and
VMEMs/HMEMs are assumed to be available without any
restrictions. Note that, each step may be iteratively executed
several times according to the algorithm.

The DCT algorithm mainly performs product-sum oper-
ations in row and column directions on an 8×8 image data.
The behaviors of each step are as follows.

• Initialize distributed memory modules and registers
and input data is stored (Step 0 - 6)

• Operate in the row direction (8-times loop of Step 7
-10)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

R
eq

ui
re

d
N

um
be

r o
f P

E
s

Steps

Figure 4. The Number of Required PEs for
each step (DCT)

• Operate in the column direction (4-times loop of Step
11 - 18 and then Step 19 - 26)

• Output results (Step 27 - 30)

In this implementation, the 8×8 image data is stored into
eight independent vectors so that they can be accessed in the
row direction simultaneously. Once the data is ready, row-
directional operations can be executed fully using nearly
800 PEs. In the DCT design, the multiplier factor is con-
stant, and in such a case, the multiplication is transformed
into shifts and additions automatically by the DRP com-
piler. Although the column direction access must be per-
formed in the sequential manner, the pipelined accessing
by multiple vectors can enhance the parallelism. Therefore,
the sequential memory accesses in a column direction won’t
degrade the parallelism so much except the last iteration to
store final results.

Formally, let S∞ be the minimum number of required
steps considering interations for executing a certain applica-
tion with infinite PEs and VMEMs/HMEMs. In the case of
the DCT shown in Figure 4, we have S∞ = 72 (4× 8 = 32
for each direction and 8 for epilogue of column direction).
Since S∞ depends on the algorithm itself and the data struc-
ture, the DCT requires 72 clocks even with the infinite num-
ber of available PEs and VMEMs/HMEMs. Therefore, S∞
also means the minimum number of execution clock cycles
required for the target application on DRP.

Then, we consider the case that all steps are real-
ized on a single context assuming that available PEs and
VMEMs/HMEMs are boundless. This corresponds to the
case without the time-multiplexed execution. Even in this
case, the target application requires S∞ steps, and then the
execution time is represented as

T∞ = C∞S∞

where the C∞ is the maximum delay time in this case.

R
eq

ui
re

d
P

E
s

Context
Size

2 X
Context
Size

Steps

R
eq

ui
re

d
P

E
s

Steps
Context
Division

Figure 5. Context Division

In the time-multiplexed execution, it is a straightforward
interpretation that a step operation is mapped to a con-
text (PE array) and step transitions correspond to context
switchings of DRP. However, since the number of available
PEs in a context and the number of contexts are finite, the
following techniques are actually needed to improve the re-
source utilization.

3.2. Context Scheduling Techniques

3.2.1 Context Division

In the time-multiplexed execution, each step is assigned to a
context under the constraint of the number of available PEs
per context (i.e. context size). If the number of required PEs
per step exceeds this constraint, the step must be divided to
multiple child steps as shown in Figure 5. In this paper, we
call this technique the context division.

Formally, let PEsize be the number of available PEs per
context and PEi be the number of required PEs in step i
(i = 0, · · · , S∞ − 1). Given a certain context size, by the
context division, the minimum number of required steps,
Ssize, is increased as shown in

Ssize =
S∞−1∑

i=0

⌈
PEi

PEsize

⌉
.

Since additional registers are inserted at division points
for inter-step communications, the number of required PEs
may be increased. In addition, for a certain context size, the
maximum delay time Csize may be cut with the context divi-
sion. Even without this division, the operational frequency
will be increased in a small hardware context since the wire
length is reduced. Considering the reduction of the maxi-
mum delay, the total time-multiplexed execution time Tsize
is given by

Tsize = CsizeSsize.

3.2.2 Multiple-Step-Allocation

As shown in Figure 4, there exist many steps which use few
PEs because they handle the memory access only. There-

R
eq

ui
re

d
P

E
s

Steps
Multiple-set
Assignment

R
eq

ui
re

d
P

E
s

Contexts

Context
Size

Figure 6. Multiple-Step-Allocation

fore, PE utilization is quite poor in this DCT implementa-
tion. Furthermore, the number of required contexts will also
exceed the capacity of the DRP-1 (i.e. 16 contexts).

To overcome this problem, the multiple-step-allocation
method packs multiple steps which have lots of unused PEs
into one context keeping the context size fixed. Figure 6
shows the concept of the multiple-step-allocation method.
STCs of the DRP Core determine the step to be activated
according to state transitions of STCs. So, this technique
can improve the PE utilization and reduce the number of
contexts.

This technique surely contributes to improve PE utiliza-
tion and reduce the number of required contexts, but never
improve the execution time. The main reason is that Ssize re-
mains unchanged even with the multiple-step-allocation. In
addition, since the whole datapath on a single context is spa-
tially extended, the wiring delay usually grows longer. Fur-
thermore, the additional multiplexers are necessary to share
registers and distributed memory modules among multiple
steps. This results in the increase of required PEs per con-
text and the maximum delay time. Consequently, the execu-
tion time may be damaged by the multiple-step-allocation.

However, since the step including the maximum delay
path commonly requires many PEs by itself, it is never se-
lected as the target of the multiple-step-allocation. There-
fore, it has little impact on the performance in the most
cases. Note that, if all steps can be allocated into a single
context using the multiple-step-allocation, it corresponds to
the execution without time-multiplexing.

3.3. Impact of Time-multiplexing

In this section, we make qualitative discussions as to the
impact of the time-multiplexed execution on performance
and power dissipation.

The time-multiplexed execution based on the multicon-
text functionality provides high area and power efficien-
cies to embedded SoCs. This is derived from the property
that the required context can be driven only when neces-
sary. Thus, the target application can be executed consum-
ing minimum hardware cost and power for the required per-

Table 1. Target Applications
Application Name Abbr. Max PEs Ref.
Discrete Cosine Transform in JPEG encoder DCT 259 [12]
Inverse Modified Discrete Cosine Transform in MP3 decoder IMDCT 360 [12]
Fast Fourier Transform FFT 101 [5]
Active Direction Pass Filter ADPF 90 [5]
Viterbi Decoder Viterbi 320 -
Advanced Encryption Standard on ECB mode AES-ECB 448 [2]
Secure Hash Algorithm 1 SHA-1 61 [2]

formance. Here, the context size, which corresponds to the
amount of available computational resources, is a crucial
factor for the time-multiplexed execution. It is important to
determine the optimal context size for the target application
in order to optimize area and power efficiency.

If the context size is small, the physical hardware area
is also small, but the context division results in increases
of the required number of steps and contexts. Meanwhile,
the operation frequency will be improved because the max-
imum delay path is also divided by the context division. If
the number of PEs is small, the power dissipation of run-
ning PEs will be also small. Instead, the improvement of the
operation frequency will increase the clock network power
and frequent context switching will trigger the increase of
the dynamic power dissipation.

On the other hand, the large size of context helps more
parallel processings with more PEs and VMEMs/HMEMs.
This will lead to achieve high throughput and reduce the re-
quired steps and contexts. Although the low operation fre-
quency and low-frequent context switching reduces power
dissipation, running PEs including ones in which any op-
erations are not assigned will increase the power dissipa-
tion. Given an excessive context size, the inappropriate
multiple-step-allocation may cause fatal losses of delay and
resource cost because of increasing multiplexers as men-
tioned in Section 3.2.2.

When we select the context size for the target applica-
tions, we must consider above architecture trade-offs for the
area and power efficiency. The following section describes
quantitative evaluation results of power efficiency based on
real application designs on the DRP-1.

4. Evaluation

In this section, we present quantitative evaluation results
based on real application designs. We have implemented
multiple stream applications on the DRP-1 with various
context sizes and evaluated power efficiency for each de-
sign.

4.1. Target Applications

Many stream applications have been implemented on the
DRP-1. We evaluate performance and power dissipation
based on real application designs.

The target applications are listed in Table 1. The al-
gorithms of these applications are described in Behavioral
Design Language (BDL) which is the modified C-like lan-
guage and compiled by the DRP compiler. Besides, “Max
PEs”, which is the maximum number of required PEs for
each application at 8-Tile case, is also shown in Table 1. As
mentioned in Section 3.1, since the parallelism is defined
by the number of required PEs in our model, the value of
“Max PEs” can be viewed as the maximum parallelism of
the target application. From Table 1, it can be said that DCT,
IMDCT, Viterbi, and AES-ECB have relatively higher de-
gree of parallelism than FFT, ADPF, and SHA-1.

Here, in order to evaluate performance and power dissi-
pation of the time-multiplexed execution, we designed and
compiled each application with various context sizes. In
this paper, the context size means the number of available
PEs in one context physically. Since the basic building unit
of DRP is the Tile, we can determine the context size of the
DRP Core by the Tile. Each Tile has 64 PEs and a certain
number of VMEMs/HMEMs.

The context scheduling including the context division
and the multiple-step-allocation can be performed automat-
ically or manually. In this evaluation, we optimized the
context division for each context size manually because it
largely affects to performance and power dissipation. In
contrast, we leave the multiple-step-allocation to the DRP
compiler unless the high-level optimization is required.

4.2. Evaluation Points

4.2.1 Performance

Performance of each application is measured by the exe-
cution time. In order to analyze the effect of the time-
multiplexed execution to performance, we evaluate the rela-
tive execution time Rsize. Rsize shows the ratio of the execu-
tion time to T∞ which is one without the time-multiplexed

execution. In the case without the time-multiplexed ex-
ecution, we make an assumption that infinite PEs and
VMEMs/HMEMs are available. So, Rsize can be expressed
as

Rsize =
Tsize

T∞
=

CsizeSsize

C∞S∞
.

Since the number of required PEs in the case without
the time-multiplexed execution is often over the number of
available PEs on the DRP-1 (i.e. 512), it is impossible to
layout the context on the DRP-1. So, there is no way to
measure the real maximum delay C∞. In this case, we use
C8 which is the maximum delay in 8-Tile case alternatively.
Note that, since C∞ ≥ C8 generally, Rsize may be smaller
than the case of using real C∞.

4.2.2 Power and Energy Consumption

Power dissipation for each application is measured by the
power profiler of the DRP-1. Since the profiler estimates
the power dissipation for the DRP-1, some errors may be
observed in this estimation compared with real power dis-
sipation. Also, the profiler cannot include the power of pe-
ripheral circuits such as I/O because the power of the 8-Tile
DRP Core of the DRP-1 chip is estimated. Moreover, since
the profiler supports only 8-Tile case, we correct the esti-
mated power for each context size.

Finally, we evaluate the required energy consumption
Esize for each application with the context size. Esize is de-
fined by the product of the power and the execution time.
Let Psize be the power dissipation for each context size, so
we have

Esize = PsizeTsize = PsizeCsizeSsize.

Just like Tsize, Psize and Esize are relatively evaluated by
comparing to P∞ and E∞ which are power and energy
consumption without time-multiplexing. However, P∞ and
E∞ cannot be actually measured for the same reason of
Csize. Therefore, we substitute them as P8 and E8 alter-
natively.

4.3. Results

In this section, we study how the context size affects per-
formance and power dissipation. Figure 7 shows the relative
execution time, power dissipation, and required energy con-
sumption for each application with different context sizes.
Note that each value is normalized to the case that the con-
text size is 8-Tile.

Evaluation results of performance show that the execu-
tion time can be reduced by a larger context size. In particu-
lar, larger size of context can provide more performance im-
provement to highly parallel applications such as DCT and

Viterbi. In contrast, for applications which have low paral-
lelism and require small number of PEs such as FFT, ADPF,
and SHA-1, it isn’t expected to reduce execution clock cy-
cles even with the larger context size. For example, in the
case of SHA-1 and ADPF, there exists a limitation of per-
formance improvement on 2 Tiles. This result also shows
that the larger context size may cause performance degra-
dation such as the case of IMDCT. This is because the in-
appropriate multiple-step-allocation causes a damage to the
maximum delay.

In contrast, the power dissipation increases if the context
size becomes larger. This is because the larger size of con-
text has a number of running PEs including ones in which
any instructions are not assigned. Evaluation results show
that when the context size keeps increasing, the power dis-
sipation of the highly parallel application also increases. In
the estimation of the power profiler, the power dissipation
of DCT design with 2 Tiles is 113mW, and one with 8 Tiles
is 345mW.

In the dynamically reconfigurable processor, it is afraid
that the context switching facilities increase the additional
dynamic power dissipation. In our evaluations, the context
switching power of the DRP-1 turns out to be about 5% of
the total power from statistical observations. Moreover, the
power of fundamental parts such as clock network is domi-
nant. So, the frequency of context switching isn’t so influ-
ential for power dissipation. Therefore, when the context
size keeps increasing, it is disadvantageous in terms of the
power dissipation. And, the additional resources as costs
of the context division and the multiple-step-allocation in-
crease the power dissipation.

Although power dissipation increases with the larger
context size, the reduction of the execution time can reduce
the total energy consumption. In the case of DCT with 4
Tiles, since the execution time is substantially reduced com-
pared with the 2-Tile design case, it is required the least
energy. However, in most cases, larger context size is dis-
advantageous to the energy consumption. This is because
the larger size of context could not bring out the sufficient
parallelism of the target applications.

In particular, in the case of low-parallel applications such
as FFT, ADPF, and SHA-1, the execution time cannot be
improved even if the context size increases over the limita-
tion of often 1 or 2 Tiles. For this reason, the power dis-
sipation increases with enlarging the context size and the
energy consumption also increases because of poor perfor-
mance improvement. Hence, the small context size of about
2 Tiles is preferable for these applications with respect to
the energy consumption.

Consequently, the remarkable insight is obtained from
evaluation results. We summarizes that selecting the context
size in which the cost-performance ratio is best results in the
optical energy consumption for most applications.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8

R
at

io

Context Size (Number of Tiles)

Exectime
Power

Energy

(a) DCT

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 4 6 8

R
at

io

Context Size (Number of Tiles)

Exectime
Power

Energy

(b) IMDCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 4 8

R
at

io

Context Size (Number of Tiles)

Exectime
Power

Energy

(c) FFT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 4 8

R
at

io

Context Size (Number of Tiles)

Exectime
Power

Energy

(d) ADPF

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 4 6 8

R
at

io

Context Size (Number of Tiles)

Exectime
Power

Energy

(e) Viterbi Decoder

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 4 6 8

R
at

io

Context Size (Number of Tiles)

Exectime
Power

Energy

(f) AES-ECB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 4 6 8

R
at

io

Context Size (Number of Tiles)

Exectime
Power

Energy

(g) SHA-1

Figure 7. Performance, Power, and Energy Consumption v.s. Context Size

5. Conclusion and Future Work

This paper reports the real impact of the time-
multiplexed execution with the dynamically reconfigurable
processor focused on performance and power dissipation.
We implemented multiple stream applications on the NEC
Electronics’ DRP-1. Each application is designed with var-
ious context sizes and evaluated for each context size.

At first, we measured the execution time of the target ap-
plication for each context size. The applications with high-
degree of parallelism have a possibility of performance im-
provements when the context size keeps increasing. In con-
trast, in the case of low-parallel applications, the execu-
tion clock cycles cannot be eliminated even if larger size
of context is available. Instead, the multiple-step-allocation
stretched the maximum delay and finally damaged the exe-
cution time.

From the point of view of power and energy consump-
tion, we have the following fact. Although the context size
keeps increasing and the power dissipation also increases,
we can expect that the required energy consumption can de-
crease because of the significant reduction of the execution
time. However, because of the poor performance improve-
ment, our evaluation results show that the larger context size
isn’t preferable for most applications in terms of required
energy consumption. In low-parallel applications, there ex-
ists no room of performance improvement even with the ex-
cessive size of context. Accordingly, the required energy is
turned out to increase.

The parallelism and sequentiality of the target applica-
tion must be observed preliminarily to optimize area and
power efficiency. This observation will help us to deter-
mine the optimal context size of DRP Core as an IP core.
In the case of DRP, we guess that this process can be easily
performed by using the integrated design environment with
general C-programming skills.

For more power-efficient architecture, we must investi-
gate the power of dynamically reconfigurable processors in
more detail. In particular, future work includes studying
relations between power dissipation and frequency of the
context switching. In addition, since many FPGA archi-
tecture evaluations for power efficiency have been already
performed and future architectures are examined[10][9][6],
the comparison of power efficiency with power-aware FP-
GAs such as Xilinx’s Spartan devices[13] is required. Fur-
thermore, we shall develop low-power application design
techniques for dynamically reconfigurable processors.

Acknowledgment

Throughout this work, the DRP-1 Device and its design
and synthesis tools were provided from NEC/NEC Elec-
tronics. The authors would like to show our gratitude to all

members of the DRP development group at NEC Electron-
ics and NEC Laboratories for their design tool support and
considerable amount of technical advice. The part of simu-
lations used in this project is supported by Mentor Graphics
university program.

References

[1] Elixent. http://www.elixent.com/.
[2] Y. Hasegawa, S. Abe, H. Matsutani, K. Anjo, T. Awashima,

and H. Amano. An Adaptive Cryptographic Accelerator for
IPsec on Dynamically Reconfigurable Processor. In Pro-
ceedings of IEEE International Conference on Field Pro-
grammable technology (FPT2005), pages 163–170, Dec.
2005.

[3] P. Heysters, G. Smit, and E. Molenkamp. A Flexible
and Energy-Efficient Coarse-Grained Reconfigurable Archi-
tecture for Mobile Systems. Journal of Supercomputing,
26(3):283–308, Nov. 2003.

[4] IPFlex. http://www.ipflex.com/.
[5] S. Kurotaki, N. Suzuki, K. Nakadai, H. G. Okuno, and

H. Amano. Implementation of Active Direction-Pass Filter
on Dynamically Reconfigurable Processor. In Proceedings
of IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS-2005), pages 215–220, Aug. 2005.

[6] F. Li, D. Chen, L. He, and J. Cong. Architecture Evalu-
ation for Power-Efficient FPGAs. In Proceedings of ACM
International Symposium on Field-Programmable Gate Ar-
rays (FPGA2003), pages 175–184, Feb. 2003.

[7] M. Motomura. A Dynamically Reconfigurable Processor
Architecture. Microprocessor Forum, Oct. 2002.

[8] PACT. http://www.pactcorp.com/.
[9] K. Poon, A. Yan, and S. Wilton. A Flexible Power Model

for FPGAs. In Proceedings of the International Conference
on Field-Programmable Logic and Applications (FPL2002),
pages 312–321, Sept. 2002.

[10] L. Shang, A. Kaviani, and K. Bathala. Dynamic Power Con-
sumption in Virtex-II FPGA Family. In Proceedings of ACM
International Symposium on Field-Programmable Gate Ar-
rays (FPGA2002), pages 157–164, Feb. 2002.

[11] G. J. M. Smit, P. J. M. Havinga, L. T. Smit, and P. M.
Heysters. Dynamic Reconfiguration in Mobile Systems.
In Proceedings of International Conference on Field Pro-
grammable Logic and Application (FPL2002), pages 162–
170, Aug. 2002.

[12] M. Suzuki, Y. Hasegawa, Y. Yamada, N. Kaneko,
K. Deguchi, H. Amano, K. Anjo, M. Motomura, K. Wak-
abayashi, T. Toi, and T. Awashima. Stream Applications on
the Dynamically Reconfigurable Processor. In Proceedings
of International Conference on Field Programmable Tech-
nology (FPT2004), pages 137–144, Dec. 2004.

[13] Xilinx. http://www.xilinx.com/.

