

Handel-C Language Reference Manual

Version 3.1

Celoxica, the Celoxica logo and Handel-C are trademarks of Celoxica Limited.

Xilinx, Virtex and Spartan are trademarks of Xilinx Corp.

Altera, Apex, ApexII, FLEX, FLEX 10K, MAX+PLUS II, Mercury and Quartus, are trademarks
and/or service marks of Altera Corp.

Actel, Actel Designer Series FPGA Development Suite, eX, SX, ProASIC and VariCore are
trademarks and/or service marks of Actel Corp.

Microsoft and Windows are trademarks of Microsoft Corporation.

ModelSim is a trademark of Model Technologies Inc.

FPGAExpress is a trademark of Synopsys Inc.

Synplify is a trademark of Synplicity Inc.

LeonardoSpectrum is a trademark of Exemplar Logic Inc.
All other products or services mentioned herein may be trademarks of their respective
owners.

Neither the whole nor any part of the information contained in, or the product described in,
this document may be adapted or reproduced in any material form except with the prior
written permission of the copyright holder.

The product described in this document is subject to continuous development and
improvement. All particulars of the product and its use contained in this document are given
by Celoxica Limited in good faith. However, all warranties implied or express, including but
not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. Celoxica
Limited shall not be liable for any loss or damage arising from the use of any information in
this document, or any incorrect use of the product.

The information contained herein is subject to change without notice and is for general
guidance only.

Copyright © 2002 Celoxica Limited. All rights reserved.

Authors: RG, SB

Document number: RM-1003-3.0

Handel-C Language Reference Manual

>: Table of contents

Table of contents

TABLE OF CONTENTS ... 3

CONVENTIONS ... 10

ASSUMPTIONS ... 11
OMISSIONS... 11

>: 1 INTRODUCTION ... 12
1.1 REFERENCES ... 12

>: 2 GETTING STARTED WITH HANDEL-C ... 13
2.1 LANGUAGE CHANGES IN DK1.1 ... 13
2.2 NOTES FOR C PROGRAMMERS... 13

2.2.1 How Handel-C differs from ANSI-C .. 14
2.2.2 Statements in C and Handel-C... 15
2.2.3 C and Handel-C types, type operators and objects... 16

2.3 EXPRESSIONS IN C AND HANDEL-C STATEMENTS ... 17
2.4 NOTES FOR HARDWARE ENGINEERS ... 18
2.5 BASIC CONCEPTS ... 18

2.5.1 Handel-C programs .. 18
2.5.2 Parallel programs ... 19
2.5.3 Channel communications: overview ... 20
2.5.4 Scope and variable sharing .. 20

2.6 LANGUAGE BASICS ... 22
2.6.1 Program structure... 22
2.6.2 Comments.. 23

>: 3 LANGUAGE SUMMARY ... 24
3.1 STATEMENT SUMMARY .. 24
3.2 OPERATOR SUMMARY ... 25
3.3 TYPE SUMMARY .. 27

>: 4 DECLARATIONS .. 29
4.1 INTRODUCTION TO TYPES... 29

4.1.1 Handel-C values and widths... 29
4.1.2 String constants ... 30
4.1.3 Constants... 30

4.2 LOGIC TYPES.. 31
4.2.1 int ... 31
4.2.2 Inferring widths... 33

4.3 COMPLEX TYPES... 34
4.3.1 Arrays... 34

Handel-C Language Reference Manual

>: Table of contents

4.3.2 Array indices .. 35
4.3.3 Struct.. 35
4.3.4 enum.. 36
4.3.5 Bit field ... 37

4.4 POINTERS .. 38
4.4.1 Pointers and addresses.. 39
4.4.2 Pointers to functions... 40
4.4.3 Pointers to interfaces.. 40
4.4.4 Structure pointers... 40
4.4.5 * operator / & operator.. 42

4.5 ARCHITECTURAL TYPES .. 43
4.6 CHANNELS ... 43

4.6.1 Arrays of channels.. 43
4.7 INTERFACES: OVERVIEW ... 44

4.7.1 Interface definition .. 45
4.7.2 Interface declaration... 46
4.7.3 Example interface to external code .. 47
4.7.4 Interface specifications... 48

4.8 RAMS AND ROMS ... 49
4.8.1 Multidimensional memory arrays .. 51

4.9 MPRAM (MULTI-PORTED RAMS) ... 52
4.9.1 Initialization of mprams... 53
4.9.2 Mapping of different width mpram ports.. 54
4.9.3 mprams example.. 55
4.9.4 WOM (write-only memory).. 56

4.10 OTHER ARCHITECTURAL TYPES.. 57
4.10.1 sema .. 57
4.10.2 signal.. 57

4.11 STORAGE CLASS SPECIFIERS... 58
4.11.1 auto.. 59
4.11.2 extern (external variables) .. 59
4.11.3 extern language construct .. 60
4.11.4 register ... 62
4.11.5 inline... 62
4.11.6 static... 62
4.11.7 typedef ... 63

4.12 TYPEOF.. 64
4.12.1 const .. 65
4.12.2 volatile.. 65

4.13 COMPLEX DECLARATIONS ... 65
4.13.1 Macro expressions in widths... 65
4.13.2 <> (type clarifier) .. 66
4.13.3 Using signals to split up complex expressions.. 66

4.14 VARIABLE INITIALIZATION .. 67

>: 5 STATEMENTS ... 69

Handel-C Language Reference Manual

>: Table of contents

5.1 SEQUENTIAL AND PARALLEL EXECUTION .. 69
5.1.1 seq ... 70
5.1.2 Replicated par and seq... 70
5.1.3 Channel communication ... 72
5.1.4 prialt ... 73

5.2 ASSIGNMENTS.. 75
5.3 CONTROL STATEMENTS... 75

5.3.1 continue ... 75
5.3.2 goto.. 76
5.3.3 return [expression].. 76
5.3.4 Conditional execution (if … else) .. 77
5.3.5 while loops ... 78
5.3.6 do ... while loops... 79
5.3.7 for loops ... 79
5.3.8 switch ... 81
5.3.9 break .. 82
5.3.10 delay .. 83
5.3.11 try... reset ... 83
5.3.12 trysema() .. 84
5.3.13 releasesema() .. 85

>: 6 EXPRESSIONS .. 86
6.1 CASTING OF EXPRESSION TYPES .. 87

6.1.1 Restrictions on casting ... 88
6.2 RESTRICTIONS ON RAMS AND ROMS.. 89
6.3 ASSERT.. 90
6.4 BIT MANIPULATION OPERATORS ... 92

6.4.1 Shift operators.. 92
6.4.2 Take /drop operators .. 93
6.4.3 Concatenation operator .. 93
6.4.4 Bit selection.. 94
6.4.5 Width operator.. 94

6.5 ARITHMETIC OPERATORS... 95
6.6 RELATIONAL OPERATORS.. 96

6.6.1 Signed/unsigned compares .. 97
6.6.2 Implicit compares ... 97

6.7 LOGICAL OPERATORS ... 98
6.7.1 Bitwise logical operators... 99

6.8 CONDITIONAL OPERATOR .. 99
6.9 MEMBER OPERATORS (. / ->) ... 100

>: 7 FUNCTIONS AND MACROS.. 101
7.1 COMPARISON OF FUNCTIONS AND MACROS... 101

7.1.1 Functions and macros: language issues... 101
7.1.2 Functions and macros: sharing hardware... 103
7.1.3 Functions and macros: clock cycles ... 103

Handel-C Language Reference Manual

>: Table of contents

7.1.4 Functions and macros: examples ... 104
7.1.5 Accessing external names.. 106

7.2 FUNCTIONS .. 107
7.2.1 Function definitions, declarations and prototypes ... 107
7.2.2 Functions: scope .. 108
7.2.3 Arrays of functions.. 108
7.2.4 Using static variables in arrays of functions.. 109
7.2.5 Function pointers.. 111
7.2.6 Shared code restrictions... 115
7.2.7 Multiple functions in a statement .. 116
7.2.8 Recursion in macros and functions... 117

7.3 MACROS .. 117
7.3.1 Non-parameterized macro expressions .. 117
7.3.2 Parameterized macro expressions ... 118
7.3.3 Select operator... 118
7.3.4 ifselect.. 120
7.3.5 Recursive macro expressions... 121
7.3.6 Recursive macro expressions: a larger example .. 122
7.3.7 Shared expressions.. 123
7.3.8 Using recursion to generate shared expressions.. 124
7.3.9 Restrictions on shared expressions.. 124
7.3.10 let … in... 124
7.3.11 Macro procedures .. 126

>: 8 INTRODUCTION TO TIMING.. 129
8.1 STATEMENT TIMING... 129

8.1.1 Example timings... 129
8.1.2 Statement timing summary... 133

8.2 AVOIDING COMBINATIONAL LOOPS ... 134
8.3 PARALLEL ACCESS TO VARIABLES ... 136
8.4 DETAILED TIMING EXAMPLE ... 137
8.5 TIME EFFICIENCY OF HANDEL-C HARDWARE ... 139

8.5.1 Reducing logic depth.. 139
8.5.2 Pipelining ... 142

>: 9 CLOCKS... 144
9.1 LOCATING THE CLOCK... 144

9.1.1 External clocks ... 145
9.1.2 Internal clocks fed from expressions... 145
9.1.3 Internally generated clocks... 146

9.2 CURRENT CLOCK .. 146
9.3 CHANNELS COMMUNICATING BETWEEN CLOCK DOMAINS...................................... 147

>: 10 TARGETING HARDWARE .. 148
10.1 INTERFACING WITH THE SIMULATOR.. 148

10.1.1 Simulator input file format... 149

Handel-C Language Reference Manual

>: Table of contents

10.1.2 Block data transfers.. 149
10.2 TARGETING FPGA AND PLD DEVICES ... 150

10.2.1 Summary of supported devices .. 151
10.2.2 Targeting specific devices via source code... 152
10.2.3 Specifying a global reset .. 154

10.3 USE OF RAMS AND ROMS WITH HANDEL-C... 155
10.4 ASYNCHRONOUS RAMS.. 155

10.4.1 Fast external clock ... 156
10.4.2 Asynchronous RAMs: fast external clock example ... 157
10.4.3 Same rate external clock .. 158
10.4.4 Undivided external clock... 159
10.4.5 Asynchronous RAMs: wegate example .. 159

10.5 SYNCHRONOUS RAMS.. 161
10.5.1 SSRAM read and write cycles .. 162
10.5.2 Specifying SSRAM timing... 162
10.5.3 Flow-through SSRAM example .. 163
10.5.4 Pipelined-output SSRAM timing example ... 165

10.6 USING ON-CHIP RAMS IN SPECIFIED DEVICES ... 167
10.6.1 Using on-chip RAMs in Xilinx devices... 167
10.6.2 Using on-chip RAMs in Altera devices.. 168
10.6.3 Using on-chip RAMs in Actel devices ... 168

10.7 TARGETING EXTERNAL RAMS ... 169
10.7.1 Targeting external asynchronous RAMs... 169
10.7.2 Targeting external synchronous RAMs... 171
10.7.3 Using external ROMs ... 171
10.7.4 Connecting to RAMs in foreign code .. 172

10.8 USING OTHER RAMS .. 175

>: 11 EXTERNAL HARDWARE AND LOGIC ... 176
11.1 INTERFACING WITH EXTERNAL HARDWARE AND LOGIC 176
11.2 INTERFACE SORTS .. 176

11.2.1 Reading from external pins: bus_in .. 177
11.2.2 Registered reading from external pins: bus_latch_in .. 178
11.2.3 Clocked reading from external pins: bus_clock_in .. 179
11.2.4 Writing to external pins: bus_out .. 179
11.2.5 Bi-directional data transfer: bus_ts ... 179
11.2.6 Bi-directional data transfer with registered input ... 180
11.2.7 Bi-directional data transfer with clocked input... 181
11.2.8 Example hardware interface... 182

11.3 MERGING PINS.. 185
11.4 BUSES AND THE SIMULATOR .. 186
11.5 TIMING CONSIDERATIONS FOR BUSES ... 188

11.5.1 Example timing considerations for input buses... 188
11.5.2 Example of timing considerations for output buses... 190

11.6 METASTABILITY .. 190
11.6.1 Metastability across clock domains... 192

Handel-C Language Reference Manual

>: Table of contents

11.6.2 Metastability in separate clock domains: example .. 193
11.7 PORTS: INTERFACING WITH EXTERNAL LOGIC.. 196
11.8 SPECIFYING THE INTERFACE .. 197
11.9 TARGETING PORTS TO SPECIFIC TOOLS... 198

>: 12 OBJECT SPECIFICATIONS... 200
12.1 BASE SPECIFICATION... 205
12.2 BIND SPECIFICATION.. 205
12.3 BLOCK SPECIFICATION... 207
12.4 BUSFORMAT SPECIFICATION... 210
12.5 CLOCKPORT SPECIFICATION... 211
12.6 DATA SPECIFICATION (PIN CONSTRAINTS).. 212
12.7 DCI SPECIFICATION.. 214
12.8 EXTLIB, EXTFUNC, EXTINST SPECIFICATIONS ... 215
12.9 EXTPATH SPECIFICATION ... 216
12.10 FASTCLOCK SPECIFICATION ... 217
12.11 INFILE AND OUTFILE SPECIFICATIONS .. 218
12.12 INTIME AND OUTTIME SPECIFICATIONS... 218
12.13 OFFCHIP SPECIFICATION .. 219
12.14 PIN SPECIFICATIONS.. 219
12.15 PORTS SPECIFICATION... 220
12.16 PROPERTIES SPECIFICATION .. 221

12.16.1 Using properties: example LVDS interface ... 221
12.17 PULL SPECIFICATION ... 223
12.18 RATE SPECIFICATION ... 224
12.19 CLKPOS, WCLKPOS, CLKPULSELEN AND CLK SPECIFICATIONS (SSRAM TIMING)225
12.20 SHOW SPECIFICATION.. 225
12.21 SPEED SPECIFICATION ... 225
12.22 STANDARD SPECIFICATION... 226

12.22.1 I/O standard details .. 229
12.23 STD_LOGIC_VECTOR SPECIFICATION .. 232
12.24 STRENGTH SPECIFICATION ... 233
12.25 WARN SPECIFICATION.. 235
12.26 WEGATE SPECIFICATION .. 235
12.27 WESTART AND WELENGTH SPECIFICATIONS... 235

>: 13 DK1 PREPROCESSOR ... 237
13.1 PREPROCESSOR MACROS ... 237
13.2 FILE INCLUSION .. 239
13.3 CONDITIONAL COMPILATION .. 239
13.4 LINE SPLICING .. 241
13.5 LINE CONTROL.. 241
13.6 CONCATENATION IN MACROS... 241

Handel-C Language Reference Manual

>: Table of contents

13.7 ERROR GENERATION... 242
13.8 PREDEFINED MACRO SUBSTITUTION ... 242

>: 14 LANGUAGE SYNTAX .. 243
14.1 LANGUAGE SYNTAX CONVENTIONS... 243
14.2 KEYWORD SUMMARY... 244
14.3 CONSTANT EXPRESSIONS.. 248

14.3.1 Identifiers: syntax ... 248
14.3.2 Integer constants: syntax.. 248
14.3.3 Character constants: syntax ... 248
14.3.4 Strings: syntax.. 249
14.3.5 Floating point constants: syntax ... 249

14.4 FUNCTIONS AND DECLARATIONS .. 249
14.5 MACRO/SHARED EXPRESSIONS/PROCEDURES: SYNTAX 250
14.6 INTERFACES: SYNTAX ... 251
14.7 STRUCTURES AND UNIONS: SYNTAX ... 252
14.8 ENUMERATED TYPES: SYNTAX ... 252
14.9 SIGNAL SPECIFIERS: SYNTAX... 253
14.10 CHANNEL SYNTAX... 253
14.11 RAM SPECIFIERS: SYNTAX ... 253
14.12 DECLARATORS: SYNTAX ... 253
14.13 FUNCTION PARAMETERS: SYNTAX .. 254
14.14 TYPE NAMES AND ABSTRACT DECLARATORS: SYNTAX 254
14.15 STATEMENTS: SYNTAX .. 254

14.15.1 Compound statements with replicators... 256
14.16 REPLICATOR SYNTAX .. 256
14.17 EXPRESSIONS: SYNTAX... 257

APPENDIX: CHANGES IN HANDEL-C VERSION 3... 261
A.1 OPERATORS: CHANGES IN VERSION 3 .. 261
A.2 DECLARATIONS: CHANGES IN VERSION 3 ... 262
A.3 STATEMENTS: CHANGES IN VERSION 3... 263
A.4 MACROS: CHANGES IN VERSION 3 ... 263
A.5 CLOCKS: CHANGES IN VERSION 3 .. 264
A.6 OTHER LANGUAGE CHANGES IN VERSION 3 .. 264
A.7 LINKING MULTIPLE FILES TO A SINGLE OUTPUT MODULE....................................... 265
A.8 SYMBOL SCOPING RULES.. 266
A.9 USING MACRO EXPRESSIONS IN WIDTHS ... 267
A.10 NEW KEYWORDS CLASHING WITH VARIABLE NAMES .. 268
A.11 ADDITIONAL COMBINATIONAL LOOPS ... 268
A.12 CLOCK IS REQUIRED FOR SIMULATION.. 268
A.13 VARIABLE AND INTERFACE NAME CONFLICTS.. 268

INDEX..I

Handel-C Language Reference Manual

>: Conventions

Conventions
A number of conventions are used in this document. These conventions are detailed below.

Warning Message. These messages warn you that actions may damage your
hardware.

Handy Note. These messages draw your attention to crucial pieces of information.

Hexadecimal numbers will appear throughout this document. The convention used is that of
prefixing the number with '0x' in common with standard C syntax.

Sections of code or commands that you must type are given in typewriter font like this:
 void main();

Information about a type of object you must specify is given in italics like this:
 copy SourceFileName DestinationFileName

Optional elements are enclosed in square brackets like this:
 struct [type_Name]

Curly brackets around an element show that it is optional but it may be repeated any number
of times.
 string ::= "{character}"

Handel-C Language Reference Manual

>: Assumptions

Assumptions
This manual assumes that you:

• are familiar with common programming terms (e.g., functions)
• are familiar with MS Windows

Omissions

This manual does not include:

• instruction in VHDL
• instruction in the use of place and route tools
• tutorial example programs. These are provided in the Handel-C User Manual

Handel-C Language Reference Manual

>: 1. Introduction

>: Chapter :1 12

>: 1 Introduction

1.1 References
• The C Programming Language 2nd Edition

Kernighan, B. and Ritchie, D.
Prentice-Hall, 1988

• Xilinx Data Book
Xilinx 2000

• Altera Databook
Altera 2001
www.altera.com/literature/lit-index.html

• VHDL for logic synthesis
Author: Andrew Rushton
Publisher: John Wiley and Sons
ISBN: 0-471-98325-X
Published: May 1998

• IEEE standard 1364 -1995
IEEE Standard Hardware Description Language Based on the Verilog® Hardware
Description Language.
http://standards.ieee.org/

Handel-C Language Reference Manual

>: 2. Getting started with Handel-C

>: Chapter :2 13

>: 2 Getting started with Handel-C

2.1 Language changes in DK1.1
• You must now initialize your variables to zero explictly.
• You can now perform a global reset on your design, using set reset.
• You can make direct calls to C or C++ functions using extern " language”.
• The trysema() expression has been corrected so that you can no longer take the

semaphore twice without releasing it.

New specifications
• fastclock: allows you to specify that an external clock should use a fast clock

buffer
• properties: allows you to specify parameterize interfaces when compiling to an

EDIF netlist
• std_logic_vector: allows you to specify that a port is a VHDL

std_logic_vector port

Extensions to existing specifications
• busformat: now allows you to specify a single port for the whole bus
• clockport: can now be applied to external clocks
• dci: can now have split termination or single termination

2.2 Notes for C programmers
If you are an experienced C user, you may be caught unawares by some of the differences
between C and Handel-C.

auto variables cannot be initialized, as that means that hidden clock cycles are required.
Instead, they must be explicitly assigned to in a separate statement.

Strong typing
Handel-C has variables which can be defined to be of any width.

Casting can't change width.

There are no automatic conversions between signed and unsigned values. Instead, values
must be 'cast' between types to ensure that the programmer is aware that a conversion is
occurring that may alter the meaning of a value.

Handel-C Language Reference Manual

>: 2. Getting started with Handel-C

>: Chapter :2 14

Pointers can only be cast to void and back, between signed and unsigned and
between similar structs. You cannot cast pointers to any other type.

True parallelism
You can have multiple main functions in a project. Each Handel-C main function must be
associated with a clock.

Although implicitly sequential, Handel-C has parallel constructs which allow you to speed up
your code.

Width of variables
Handel-C has variables which can be defined to be of any width.

You may not change the width of a variable by casting.

In ANSI-C, bit fields are made up of words, and only the specified bits are accessed, the rest
are padded. Since there are no words in Handel-C, no form of packing can be assumed.

If you have an array[4] and you use its index as a counter, the index width will be
assumed by the Handel-C compiler to be two bits wide (to hold the values 0 – 3). It will not
be able to hold the value 4.

No side-effects allowed
You cannot perform two assignments in one statement.

This means:

• Shortcut assignments (e.g. +=) must appear as standalone statements.
• The initialization and iteration phases of for loops must be statements, not

expressions
• You cannot have empty loops in Handel-C.

Instead of writing complex single statements, it is more efficient in Handel-C to write multiple
single statements and run them in parallel.

Constrained functions
Functions may not be called recursively.

Variable length parameter lists are not supported.

Old-style function declarations are not supported.

2.2.1 How Handel-C differs from ANSI-C
Handel-C differs from ANSI-C in the following ways:

Handel-C Language Reference Manual

>: 2. Getting started with Handel-C

>: Chapter :2 15

• Functions may not be called recursively.
• Old-style function declarations are not supported.
• Variable length parameter lists are not supported.
• You may not change the width of a variable by casting.
• You cannot convert pointer types except to and from void, between signed and

unsigned and between similar structs.
• Floating point is not supported.
• Expressions in Handel-C may not cause side-effects. This has the following

consequences:
• The initialization and iteration phases of for loops must be statements, not

expressions.
• Shortcut assignments (e.g. +=) must appear as standalone statements.

2.2.2 Statements in C and Handel-C

In both Handel-C only
{;} par
switch delay

do … while ?

while !

if … else prialt

for (;;) seq
break ifselect
continue
return
goto
assert assert is an expression in Handel-C and

not the same as in ISO-C

Handel-C Language Reference Manual

>: 2. Getting started with Handel-C

>: Chapter :2 16

2.2.3 C and Handel-C types, type operators and objects

In both Conventional C only Handel-C only
int double chan
unsigned float ram
char union rom
long wom
short mpram
enum signal
register chanin
static chanout
extern undefined
struct interface
volatile <>

void inline
const typeof
auto
signed
typedef

Handel-C Language Reference Manual

>: 2. Getting started with Handel-C

>: Chapter :2 17

2.3 Expressions in C and Handel-C
statements

In both Conventional C only Handel-C only

* (pointer indirection) sizeof select(…)
& (address of) width(…)
- @
+ \\
* (multiplication) <-
/ [:]
 let…in
%
<<
>>
>
<
>=
<=
==
!=
& (bitwise and)
^
|
? :
[]
!
&&
~
||
->

The following constructs are available as expressions in conventional C and as statements
in Handel-C. This means that in Handel-C, they must appear as standalone statements and
not in the middle of more complex expressions.

Handel-C Language Reference Manual

>: 2. Getting started with Handel-C

>: Chapter :2 18

= += -= *= /= %=
<<= >>= &= |= ^=
++ --

2.4 Notes for hardware engineers
If you are approaching Handel-C from a hardware background, you should be aware of
these points:

• Handel-C is halfway between RTL and a behavioural HDL. It is a high-level
language that requires you to think in algorithms rather than circuits.

• Handel-C uses a zero-delay model and a synchronous design style.
• Handel-C is implicitly sequential. Parallel processes must be specified.
• All code in Handel-C (apart from the simulator chanin and chanout

commands) can be synthesized. Therefore you must ensure that you disable
debug code when you compile to target real hardware.

• Signals in Handel-C are different from signals in VHDL; they are assigned to
immediately, and only hold their value for one clock cycle.

• Handel-C has abstract high-level concepts such as pointers.

2.5 Basic concepts
Handel-C uses much of the syntax of conventional C with the addition of inherent
parallelism. You can write sequential programs in Handel-C, but to gain maximum benefit in
performance from the target hardware you must use its parallel constructs. These may be
new to some users. If you are familiar with conventional C you will recognize nearly all the
other features.

• Handel-C programs
• Parallel programs
• Channel communications
• Scope and variable sharing

2.5.1 Handel-C programs
Since Handel-C is based on the syntax of conventional C, programs written in Handel-C are
implicitly sequential. Writing one command after another indicates that those instructions
should be executed in that exact order. To execute instructions in parallel, you must use the
par keyword.

Handel-C Language Reference Manual

>: 2. Getting started with Handel-C

>: Chapter :2 19

Handel-C provides constructs to control the flow of a program. For example, code can be
executed conditionally depending on the value of some expression, or a block of code can
be repeated a number of times using a loop construct.

You can express your algorithm in Handel-C without worrying about how the underlying
computation engine works. This philosophy makes Handel-C a programming language
rather than a hardware description language. In some senses, Handel-C is to hardware what
a conventional high-level language is to microprocessor assembly language.

The hardware design that DK1 produces is generated directly from the Handel-C source
program. There is no intermediate 'interpreting' layer as exists in assembly language when
targeting general purpose microprocessors. The logic gates that make up the final Handel-C
circuit are the assembly instructions of the Handel-C system.

2.5.2 Parallel programs
The target of the Handel-C compiler is low-level hardware. This means that you get massive
performance benefits by using parallelism. It is essential for writing efficient programs to
instruct the compiler to build hardware to execute statements in parallel. Handel-C
parallelism is true parallelism, not the time-sliced parallelism familiar from general purpose
computers. When instructed to execute two instructions in parallel, those two instructions will
be executed at exactly the same instant in time by two separate pieces of hardware.

When a parallel block is encountered, execution flow splits at the start of the parallel block
and each branch of the block executes simultaneously. Execution flow then re-joins at the
end of the block when all branches have completed. Any branches that complete early are
forced to wait for the slowest branch before continuing.

Handel-C Language Reference Manual

>: 2. Getting started with Handel-C

>: Chapter :2 20

This diagram illustrates the branching and re-joining of the execution flow. The left hand
and middle branches must wait to ensure that all branches have completed before the
instruction following the parallel construct can be executed.

2.5.3 Channel communications: overview
Channels provide a link between parallel branches. One parallel branch outputs data onto
the channel and the other branch reads data from the channel. Channels also provide
synchronization between parallel branches because the data transfer can only complete
when both parties are ready for it. If the transmitter is not ready for the communication then
the receiver must wait for it to become ready and vice versa.

Here, the channel is shown transferring data from the left branch to the right branch. If the
left branch reaches point a before the right branch reaches point b, the left branch waits at
point a until the right branch reaches point b.

2.5.4 Scope and variable sharing
The scope of declarations is based around code blocks. A code block is denoted with {...}
brackets. This means that:

• Global variables must be declared outside all code blocks
• An identifier is in scope within a code block and any sub-blocks of that block.

The scope of variables is illustrated below:

Handel-C Language Reference Manual

>: 2. Getting started with Handel-C

>: Chapter :2 21

Since parallel constructs are simply code blocks, variables can be in scope in two parallel
branches of code. This can lead to resource conflicts if the variable is written to
simultaneously by more than one of the branches. Handel-C states that a single variable
must not be written to by more than one parallel branch but may be read from by several
parallel branches.

If you wish to write to the same variable from several processes, the correct way to do so is
by using channels which are read from in a single process. This process can use a prialt
statement to select which channel is ready to be read from first, and that channel is the only
one which will be allowed to write to the variable.

while(1)
prialt

{
case chan1 ? y:

break;
case chan2 ? y:

break;
case chan3 ? y:

break;
}

In this case, three separate processes can attempt to change the value of y by sending
data down the channels, chan1, chan2 and chan3. y will be changed by whichever
process sends the data first.

 A single variable should not be written to by more than one parallel branch.

Handel-C Language Reference Manual

>: 2. Getting started with Handel-C

>: Chapter :2 22

2.6 Language basics

Macros and the pre-processor
As with conventional C, the Handel-C source code is passed through a C preprocessor
before compilation. Therefore, the usual #include and #define constructs may be used
to perform textual manipulation on the source code before compilation.

Handel-C also supports macros that are more powerful than those handled by the
preprocessor.

2.6.1 Program structure

Sequential structure
As in a conventional C program, a Handel-C program consists of a series of statements
which execute sequentially. These statements are contained within a main() function that
tells the compiler where the program begins. The body of the main function may be split into
a number of blocks using {...} brackets to break the program into readable chunks and
restrict the scope of variables and identifiers.

Handel-C also has functions, variables and expressions similar to conventional C. There are
restrictions where operations are not appropriate to hardware implementation and
extensions where hardware implementation allows additional functionality.

Parallel structure
Unlike conventional C, Handel-C programs can also have statements or functions that
execute in parallel. This feature is crucial when targeting hardware because parallelism is
the main way to increase performance by using hardware. Parallel processes can
communicate using channels. A channel is a point-to-point link between two processes.

Overall structure
The overall program structure consists of one or more main functions, each associated with
a clock. This is unlike conventional C, where only one main function is permitted. You
would only use more than one main function if you needed parts of your program to run at
different speeds (and so use different clocks). A main function is defined as follows:

Handel-C Language Reference Manual

>: 2. Getting started with Handel-C

>: Chapter :2 23

Global Declarations

Clock Definition
void main(void)
{

Local Declarations

Body Code
}

The main() function takes no arguments and returns no value. This is in line with a
hardware implementation where there are no command line arguments and no environment
to return values to. The argc, argv and envp parameters and the return value familiar from
conventional C can be replaced with explicit communications with an external system (e.g. a
host microprocessor) within the body of the program.

2.6.2 Comments
Handel-C uses the standard /* ... */ delimiters for comments. These comments may not
be nested. For example:

/* Valid comment */

/* This is /* NOT */ valid */

Handel-C also provides the C++ style // comment marker which tells the compiler to ignore
everything up to the next newline. For example

x = x + 1; // This is a comment

Handel-C Language Reference Manual

>: 3. Language summary

>: Chapter :3 24

>: 3 Language summary

3.1 Statement summary

Statement Meaning

par {...} Parallel execution
seq {...} Sequential execution
par (Init ; Test ; Iter){...} Parallel replication
seq (Init ; Test ; Iter){...} Sequential replication
Variable = Expression; Assignment
Variable ++; Increment
Variable --; Decrement
++ Variable; Increment
-- Variable; Decrement
Variable += Expression; Add and assign
Variable -= Expression; Subtract and assign
Variable *= Expression; Multiply and assign
Variable /= Expression; Divide and assign
Variable %= Expression; Modulo and assign
Variable <<= Expression; Shift left and assign
Variable >>= Expression; Shift right and assign
Variable &= Expression; Bitwise AND and assign
Variable |= Expression; Bitwise OR and assign
Variable ^= Expression; Bitwise XOR and assign
Channel ? Variable; Channel input
Channel ! Expression; Channel output
if (Expression) {statement} [else
{statement}]

Conditional execution

ifselect (Expression) {statement}
[else {statement}]

Conditional compilation

while (Expression) {statement} Iteration
do {...} while (Expression); Iteration
for (Init ; Test ; Iter) {...} Iteration

Handel-C Language Reference Manual

>: 3. Language summary

>: Chapter :3 25

Statement Meaning

break; Loop, switch and prialt termination
continue; Resume execution
return[([Expression])]; Return from function
goto label; Jump to label
switch (Expression) {statement} Selection
prialt {statement} Channel alternation
releasesema() Make semaphore available after use of

trysema expression
try{...} reset(Condition){statement} Perform statements on reset condition
delay; Single cycle delay

Note: RAM and ROM elements, signals and array elements are included in the set of
variables above. However,

ram x [3];
x[0]++;

is invalid.

 The assignment group of operations and the increment and decrement operations
are included as statements to reflect the fact that Handel-C expressions cannot
contain side effects.

3.2 Operator summary
The following table lists all operators. Entries at the top have the highest precedence and
entries at the bottom have the lowest precedence. Entries within the same group have the
same precedence. Precedence of operators is as expected from conventional C. For
example:

x = x + y * z;

This performs the multiplication before the addition. Brackets may be used to ensure the
correct calculation order as in conventional C.

Note that assignments are not true operators in Handel-C.

Operator Meaning

Handel-C Language Reference Manual

>: 3. Language summary

>: Chapter :3 26

Operator Meaning

trysema Test if semaphore owned. Take if not
select(Constant, Expr, Expr) Compile-time selection

Expression [Expression] Array or memory subscripting
Expression [Constant] Bit selection
Expression [Constant: Constant] Bit range extraction. One of the two

constants may be omitted (but not
both).

functionName (Arguments) Function call
pointertostructure->member Structure reference
structureName.member Structure reference

! Expression Logical NOT
~ Expression Bitwise NOT
- Expression Unary minus
+ Expression Unary plus
& object Yields pointer to operand
* pointer Yields object or function that the

operand points to
width(Expression) Width of expression

(Type) Expression Type casting

Expression <- Constant Take LSBs
Expression \\ Constant Drop LSBs

Expression * Expression Multiplication
Expression / Expression Division
Expression % Expression Modulo arithmetic

Expression + Expression Addition
Expression - Expression Subtraction

Expression << Expression Shift left
Expression >> Expression Shift right

Handel-C Language Reference Manual

>: 3. Language summary

>: Chapter :3 27

Operator Meaning

Expression @ Expression Concatenation

Expression < Expression Less than
Expression > Expression Greater than
Expression <= Expression Less than or equal
Expression >= Expression Greater than or equal

Expression == Expression Equal
Expression != Expression Not equal

Expression & Expression Bitwise AND

Expression ^ Expression Bitwise XOR

Expression | Expression Bitwise OR

Expression && Expression Logical AND

Expression || Expression Logical OR

Expression ? Expr : Expr Conditional selection

assert diagnostic macro to print to stderr

3.3 Type summary
The most common types that may be associated with a variable, and the prefixes for
architectural and compound types are listed below:

Common logic types

Type Width

[signed | unsigned] char 8 bits
[signed | unsigned] short 16 bits
[signed | unsigned] long 32 bits
[signed | unsigned] int See *Note 1

Handel-C Language Reference Manual

>: 3. Language summary

>: Chapter :3 28

Type Width

[signed | unsigned] int n n bits
[signed | unsigned] int undefined Compiler infers width
typeof (Expression) Yields type of object

*Note 1: Width will be inferred by compiler unless the 'set intwidth = n' command appears
before the declaration.

Architectural types
Prefixes to the above types for different architectural object types are:

Prefix Object

chan Channel
chanin Simulator channel
chanout Simulator channel
ram Internal or external RAM
rom Internal or external ROM
signal Wire
wom WOM within multi-port memory

Compound types
The compound types are:

Prefix Object

struct Structure
mpram Multi-port memory

Special types

Type Object

interface interface to external logic or device
sema Semaphore. Has no width or logic type

interfaces connect to logic beyond the Handel-C design, whether on the same or a
different device.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 29

>: 4 Declarations

4.1 Introduction to types
Handel-C uses two kinds of objects: logic types and architecture types. The logic types
specify variables. The architecture types specify variables that require a particular sort of
hardware architecture (e.g., ROMs, RAMs and channels).

Both kinds are specified by their scope (static or extern), their size and their type.
Architectural types are also specified by the logic type that uses them.

Both types can be used in derived types (such as structures, arrays or functions) but there
may be some restrictions on the use of architectural types.

Specifiers
The type specifiers signed, unsigned and undefined define whether the variable is
signed and whether it takes a default defined width.

You can use the storage class specifiers extern and static to define the scope of any
variable.

Functions can have the storage class inline to show that they are expanded in line, rather
than being shared.

Type qualifiers
Handel-C supports the type qualifiers const and volatile to increase compatibility with
ANSI-C. These can be used to further qualify logic types.

Disambiguator
Handel-C supports the extension <>. This can be used to clarify complex declarations of
architectural types.

4.1.1 Handel-C values and widths
A crucial difference between Handel-C and conventional C is Handel-C’s ability to handle
values of arbitrary width. Since conventional C is targeted at general purpose
microprocessors it handles 8, 16 and 32 bit values well but cannot easily handle other
widths. When targeting hardware, there is no reason to be tied to these data widths and so
Handel-C has been extended to allow types of any number of bits.

Handel-C has also been extended to cope with extracting bits from values and joining values
together to form wider values. These operations require no hardware and can provide great
performance improvements over software.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 30

When writing programs in Handel-C, care should be taken that data paths are no wider than
necessary to minimize hardware usage. While it may be valid to use 32-bit values for all
items, a large amount of unnecessary hardware is produced if none of these values exceed
4 bits.

Care must also be taken that values do not overflow their width. This is more of an issue
with Handel-C than with conventional C because variables should be just wide enough to
contain the largest value required (and no wider).

4.1.2 String constants
String constants are allowed in Handel-C. A string constant consists of a string of characters
delimited by double quotes ("). They will be stored as a null-terminated array of characters
(as in ANSI-C). String constants can contain any of the special characters listed below.
Arrays and pointers can be initialized with string constants, and string constants can be
assigned to pointers. If a string constant is assigned to a pointer, the storage for the string
will be created implicitly.

Special characters:
\a alert
\b backspace
\f formfeed
\n newline
\r carriage return
\t tab
\v vertical tab
\\ backslash
\? question mark
\' single quote
\" double quote
\onumber octal number e.g. \o77
\xnumber hexadecimal number e.g. \xf3

4.1.3 Constants
Constants may be used in expressions. Decimal constants are written as simply the number
while hexadecimal constants must be prefixed with 0x or 0X, octal constants must be
prefixed with a zero and binary constants must be prefixed with 0b or 0B. For example:

w = 1234; /* Decimal */

x = 0x1234; /* Hexadecimal */

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 31

y = 01234; /* Octal */

z = 0b00100110; /* Binary */

The width of a constant may be explicitly given by 'casting'. For example:

x = (unsigned int 3) 1;

Casting may be necessary where the compiler is unable to infer the width of the constant
from its usage.

4.2 Logic types
The basic logic type is an int. It may be qualified as signed or unsigned. Integers can be
manually assigned a width by the programmer or the compiler will attempt to infer a width
from use.

Enumeration types (enums) allow you to define a specified set of values that a variable of
this type may hold.

There are derived types (types that are derived from the basic types). These are arrays,
pointers, structs bit fields, and functions. The non-type void enables you to declare
empty parameter lists or functions that do not return a value. The typeof type operator
allows you to reference the type of a variable.

4.2.1 int
There is only one fundamental type for variables: int. By default, integers are signed. The
int type may be qualified with the unsigned keyword to indicate that the variable only
contains positive integers or 0. For example:

int 5 x;
unsigned int 13 y;

These two lines declare two variables: a 5-bit signed integer x and a 13-bit non-negative
integer y. In the second example here, the int keyword is optional. Thus, the following two
declarations are equivalent.

unsigned int 6 x;
unsigned 6 x;

You may use the signed keyword to make it clear that the default type is used. The
following declarations are equivalent.

int 5 x;
signed int 5 x;
signed 5 x;

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 32

The range of an 8-bit signed integer is -128 to 127 while the range of an 8-bit unsigned
integer is 0 to 255 inclusive. This is because signed integers use 2's complement
representation.

You may declare a number of variables of the same type and width simultaneously. For
example:

int 17 x, y, z;

This declares three 17-bit wide signed integers x, y and z.

Signed | unsigned syntax
Signed | unsigned is declared in the same way as in ANSI-C except that Handel-C allows
the width to be declared. The width may be undefined, an expression, or nothing.

For example:

• int a;
• long b;
• unsigned int 7 c;
• signed undefined d;
• long signed int e;

Supported types for porting
Handel-C provides support for porting from conventional C by allowing the types char,
short and long. For example:

unsigned char w;
short y;
unsigned long z;

Note that these are fixed-widths in Handel-C, and implementation dependent in ANSI-C. The
widths used for each of these types in Handel-C is as follows:

Type Width

char 8 bits (signed)
short 16 bits
long 32 bits

Smaller and more efficient hardware will be produced by only using variables of the
smallest possible width.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 33

4.2.2 Inferring widths
The Handel-C compiler can infer the width of variables from their usage. It is therefore not
always necessary to explicitly define the width of all variables and the undefined keyword
can be used to tell the compiler to try to infer the width of a variable. For example:

int 6 x;
int undefined y;

x = y;

In this example the variable x has been declared to be 6 bits wide and the variable y has
been declared with no explicit width. The compiler can infer that y must be 6 bits wide from
the assignment operation later in the program and sets the width of y to this value.

If the compiler cannot infer all the undefined widths, it will generate errors detailing which
widths it could not infer.

The undefined keyword is optional, so the two definitions below are equivalent:

int x;
int undefined x;

Handel-C provides an extension to allow you to override this behaviour to ease porting from
conventional C. This allows you to set a width for all variables that have not been assigned a
specific width or declared as undefined.

This is done as follows:

set intwidth = 16;

int x;
unsigned int y;

This declares a 16-bit wide signed integer x and a 16-bit wide unsigned integer y. Any width
may be used in the set intwidth instruction, including undefined.

You can still declare variables that must have their width inferred by using the undefined
keyword. For example:

set clock = external "p1";
set intwidth = 27;

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 34

void main(void)
{

unsigned x;
unsigned undefined y;

}

This example declares a variable x with a width of 27 bits and a variable y that has its width
inferred by the compiler. This example also illustrates that the int keyword may be omitted
when declaring unsigned integers.

You may also set the default width to be undefined:

set intwidth = undefined;

4.3 Complex types

4.3.1 Arrays
You can declare arrays of variables in the same way that arrays are declared in conventional
C. For example:

int 6 x[7];

This declares 7 registers each of which is 6 bits wide. Accessing the variables is exactly as
in conventional C. For example, to access the fifth variable in the array:

x[4] = 1;

Note that as in conventional C, the first variable has an index of 0 and the last has an index
of n-1 where n is the total number of variables in the array.

When a variable is used as an array index, as is often done when using a for loop, the
variable must be declared unsigned.

Multidimensional arrays
You can declare multi-dimensional arrays of variables. For example:

unsigned int 6 x[4][5][6];

This declares 4 * 5 * 6 = 120 variables each of which is 6 bits wide. Accessing the variables
is as expected from conventional C. For example:

y = x[2][3][1];

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 35

Example
This loop initializes all the elements in array ax to the value of index

unsigned int 6 ax[7];
unsigned index;

index=0;
do
{

ax[index] = (0 @ index);
index++;

}
while(index <= 6);

Note that the width of index has to be adjusted in the assignment. This is because its width
will be inferred to be 3, from the array dimension (the array has 7 elements, so "index" will
only ever need to count as far as 6).

4.3.2 Array indices
When an array is declared, the index has the smallest width possible. For instance, in
array[8], the index need only go up to seven and will therefore be a three bit number. If a
variable is declared to represent the index, it too will be three bits.

4.3.3 Struct
struct defines a data structure; a grouping together of variables under a single name. The
format of the structure can be identified by a type name. The variable members of the
structure may be of the same or different types. Once a structure has been declared, its type
name can be used to define other structures of the same type. Structure members may be
accessed individually using the construct

struct_Name.member_Name

Syntax
A structure type is declared using the format

struct [type_Name]
{

 member-list
} [instance_Name {,instance_Name}];

member-list is a list of variable definitions terminated by semi-colons.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 36

The use of instance_Names declares variables of that structure type. Alternatively, you may
declare variables as follows:

struct type_Name instance_Name;

Storage
• Structures may be passed through channels and signals.
• Structures may be stored in internal memory elements.
• Structures cannot be stored in off-chip RAMs.

If a structure contains a memory element, a channel, or a signal, it cannot be stored in
another memory element, it cannot be passed to a function "by value", it cannot be assigned
to and it cannot be passed through a channel or a signal.

If a structure contains a memory element, it cannot be assigned (or assigned to) another
structure as the assignment cannot be performed in a single clock cycle.

Whole structures may not be sent directly to interfaces.

Example
struct human // Declare human struct type
{
unsigned int 8 age; // Declare member types
int 1 sex;
char name[25];

}; // Define human type

struct human sister;
sister.age = 25;

4.3.4 enum
enum specifies a list of constant integer values, e.g.

enum weekdays {MON, TUES, WED, THURS, FRI};

The first name (in this case MON) has a value of 0, the next 1, and so on, unless explicit
values are specified. If not all values are specified, values increment from the last specified
value.

You can declare variables of a specified enum type. They are effectively equivalent to int
undefined or unsigned undefined. The signedness is inferred from use.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 37

To specify enum values

enum weekdays {MON = 9, TUES, WED, THURS, FRI};

To declare a variable of type enum

enum weekdays x;

(The compiler must be able to infer width of x from its use.)

To assign enum values to a variable

static int x = MON;

Example:
The example below illustrates how to infer the width of an enum. The cast ensures the
enumerated variable has a width associated with it.

set clock = external "P1";
typedef enum
{

A,
B,
C = 43,
D

} En;

void main(void)
{

En num;
int undefined result;

num = (int 7)D;

result = num;
}

4.3.5 Bit field
A bit field is a type of structure member consisting of a specified number of bits. The length
of each field is separated from the field name by a colon (:). Each element can be accessed
independently. Since Handel-C allows you to specify the width of integers in bits, a bit field is
merely another way of specifying a standard structure. In ANSI-C, bit fields are made up of

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 38

words, and only the specified bits are accessed, the rest are padded. Padding in ANSI-C is
implementation dependent. There is no padding in Handel-C, so nothing can be assumed
about it.

Syntax
struct [tag_name]
{

field_Type field_Name: field_Width
...

} [instance_names] ;

Example
This example defines an identical array of flags as a structure and as a bit field

struct structure
{

unsigned int 1 LED;
unsigned int 1 value;
unsigned int 1 state;

}outputs;

struct bitfield
{

unsigned int LED : 1;
unsigned int value : 1;
unsigned int state : 1;

}signals;

4.4 Pointers
A pointer declaration consists of *, the name of the pointer and the type of the variable that it
points to.

type *Name

They are used to point to variables in conjunction with the unary operator &, which gives the
address of an object. To set a pointer to point to a variable, you assign the address of the
variable to the pointer. For example

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 39

int 8 *ptr; //declare a pointer to an int 8
int 8 object, x;
object = 6;
x = 10;

ptr = &object; //assigns the address of
// object to pointer

x = *ptr; // x is now 6
*ptr = 12; //object is now 12

In Handel-C, you may only cast void pointers (void * pointerName) to a different type. All
other pointers may only be cast to change the sign of an object pointed to, and whether it is
const or volatile. These restrictions are the standard casting restrictions in Handel-C.

You can change a void pointer's type by casting, assignment or comparison. Void * must
have a consistent type so:

void *p;
int 6 *s;
int 7 *t;

p = s;
p = t; //invalid

Valid pointer operations are:

• Assign a pointer to another pointer of the same type
• Add or subtract a pointer and an integer
• Subtract or compare a pointer to an array member with another pointer to a

member of the same array
• Assign or compare a pointer to NULL

4.4.1 Pointers and addresses
Pointers in Handel-C are similar to those in conventional C. They provide the address of a
variable or a piece of code. This enables you to access variables by reference rather than by
value.

The indirection operator (*) is the same as it is in ANSI-C. It is used to de-reference
pointers (i.e. to access objects pointed to by pointers).

The "address of" operator (&) works as it does in ANSI-C.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 40

4.4.2 Pointers to functions
If you point to code (a function), the address operator is optional. The syntax is

returnType (*pointerName)(parameter list);

The parentheses at the end of the declaration declare the pointer to be a pointer to a
function. The * before the pointerName declares it to be a pointer declaration.

There is the standard C type ambiguity between the declaration of a function returning a
pointer and a pointer to a function. To ensure that * is associated with the pointer name
rather than the return type, you need to use parentheses

int 8 * functionName(); //function returning pointer

and

int 8 (* pointerName)(); //pointer to function

4.4.3 Pointers to interfaces
When declaring pointers to interfaces, you must ensure that you declare a pointer to an
interface sort and then assign a defined interface to it (much as when you declare a pointer
to a function). You cannot combine the definition of an object with the declaration of a pointer
to it.

The members of the interface must have the same name in the declaration of the pointer
type as in the definition of the interface object which you assign the pointer to.

Example
//declaration of pointer to interface of sort bus_out

interface bus_out() *p(int 2 x);
interface bus_out() b(int 2 x=y); //interface definition
p=&b; // p now points to b

4.4.4 Structure pointers
The structure pointer operator (->) can be used, as in ANSI-C. It is used to access the
members of a structure, when the structure is referenced through a pointer.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 41

struct S
{

int 18 a, b;
} s, *sp;

sp = &s;
s.a = 26;
sp->b = sp->a;

The last line accesses the member variables of structure s through pointer sp. Because the
pointer is being used to access the structure, the -> operator is used to refer to the member
variables.

sp->a = (*sp).q

You can cast structure pointers between structures with the same member types and
names. For example:

struct S1
{
int 6 x;

} st1;

struct S2
{
int 6 x;

} st2;

set clock = external;

void main (void)
{

int r;

struct S1 *structPtr1;
struct S2 *structPtr2;

structPtr1 = &st1;
structPtr2 = (struct S2 *)structPtr1;

structPtr2->x = 7;

r = st1.x; //r = 7
}

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 42

4.4.5 * operator / & operator
The indirection operator * is the same as it is in ANSI C. It is used to de-reference pointers
(i.e. to access objects pointed to by pointers).

The address operator (&) works as it does in ANSI-C.

The following can also be used: pointers to arrays, pointers to channels, pointers to signals,
pointers to memory elements, pointers to structures and unions, pointers to pointers, arrays
of pointers.

Example: pointer assignment
unsigned char cha, chb, *chp;

chp = &cha;
cha = 90;

chb = *chp;
chp = &chb;

The first line declares two unsigned variables (cha and chb), and a pointer to an
unsigned (chp). The second line assigns the address of cha to pointer chp. In other
words, pointer chp now points to variable cha. The third line simply assigns a value to cha.
The fourth line dereferences pointer chp, to access what it's pointing to, which is cha. In
other words, chb is assigned the value of the object pointed to by chp. The last line assigns
the address of chb to pointer chp. In other words, pointer chp now points to variable chb.

Example: pointer to pointer assignment
struct S
{

int 6 a, b;
} s1, s2, *sp, **spp;

sp = &s1;
spp = &sp;
s2 = **spp;

This declares two variables of type struct S (s1 and s2), a pointer to a variable of this
type (sp), and a pointer to a pointer to a variable of this type (spp). The next line assigns
the address of structure s1 to pointer sp (pointer sp to point to structure s1). The following
line assigns the address of pointer sp to pointer spp (pointer spp to point to pointer sp). The
last line dereferences pointer spp twice, and it assigns the dereferenced value, which is s1,
to structure s2 (i.e. s2 now equals s1).

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 43

4.5 Architectural types
The architectural types are:

• channels (used to communicate between parallel processes)
• interfaces (used to connect to pins or provide signals to communicate with

external code)
• memories (rom, ram, wom and mpram)
• signal (declares a wire).

The disambiguator < > has been provided to help clarify the definitions of memories,
channels and signals.

4.6 Channels
Handel-C provides channels for communicating between parallel branches of code. One
branch writes to a channel and a second branch reads from it. The communication only
occurs when both tasks are ready for the transfer at which point one item of data is
transferred between the two branches.

Channels are declared with the chan keyword. For example:

chan int 7 link;

As with variables, the Handel-C compiler can infer the width of a channel from its usage if it
is declared with the undefined keyword or if the width is omitted. Channels can also be
declared with no explicit type. The compiler infers the type and width of the channel from its
usage. For example:

set intwidth = undefined;

chan int Link1;
chan unsigned undefined Link2;
chan Link3;

Syntax
chan [logicType] Name;

4.6.1 Arrays of channels
Handel-C allows arrays of channels to be declared. For example:

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 44

chan unsigned int 5 x[6];

This is equivalent to declaring 6 channels each of which is 5 bits wide. A channel can be
accessed by specifying its index. As with variable arrays, the index for the nth element is n-
1. For example:

x[4] ! 3; // Output 3 on channel x[4]
x[3] ? y; // Input to y from channel x[3]

It is also possible to declare multi-dimensional arrays of channels. For example:

chan unsigned int 6 x[4][5][6];

This declares 4 * 5 * 6 = 120 channels each of which is 6 bits wide. Accessing the channels
is similar to accessing arrays in conventional C. For example:

x[2][3][1] ! 4; // Output 4 on channel

4.7 Interfaces: overview
All interfaces, except for external (foreign code or off-chip) RAMs are declared with the
interface keyword in Handel-C. Interfaces are used to communicate with:

• external devices
• external logic, such as other Handel-C programs, programs written in VHDL etc.

You can communicate between blocks of internal logic using channels

The interface definition is in two parts:

• an interface sort: the name of the black box or primitive that the interface
connects to

• an instance name: the name of the instance of the interface sort in Handel-C

Interface definitions may be split into declarations and definitions. You must use a
declaration if you want to define multiple instances of the same interface sort, or to use
forward references.

The declaration gives the sort name and port names and types associated with that
interface sort.

The definition gives the instance name, object specifications and the data transmitted for a
single instance of the interface sort.

 Only signed and unsigned types may be passed over interfaces.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 45

4.7.1 Interface definition
A Handel-C interface definition consists of an interface sort, an instance name and data
ports, together with information about each port.

The definition defines a single instance of an interface sort. If you want to define multiple
instances, or use forward references to the interface, declare the interface, and then make
multiple definitions of that interface sort. (You do not need to declare interfaces of predefined
sorts.)

The general format of an interface definition is:
interface Sort (ports_in_to_Handel-C)

 InstanceName (ports_out_from_Handel-C)
with {GeneralSpecs};

Sort Pre-defined interface sort, or used-defined sort. (This should
match the sort in the interface declaration, if you are using
one.)

ports_in_to_Handel-C Definitions of one or more ports bringing data into the
Handel-C code. (Port definitions are described below.)

InstanceName User-defined identifier for that instance of the interface. (You
can define any number of instances of an interface sort, if
you make a declaration of the interface sort.)

ports_out_from_Handel-C Definitions of one or more ports sending data from the
Handel-C code.
Each output port should be assigned an expression. The
value of the expression will be connected to that port.

GeneralSpecs Handel-C interface specifications.
These specify hardware details of the interface, such as chip
pin numbers or are used to specify an external simulator
using the extlib directive.
Interface specifications apply to all ports in the interface. You
can also assign specifications to individual ports.

 Port definitions
If the interface has been previously declared, the port definitions must be prototyped in their
interface declaration, and must have the same types as those in the prototype. The
declaration must have at least one port into Handel-C or from Handel-C. Port definitions are
delimited by commas. Each port definition consists of:

• the data type that uses it (either defined or inferred from its first use). Only
signed and unsigned types may be passed over interfaces.

• a port name

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 46

• port specifications (optional). The port specifications are enclosed in a set of
braces {...} and delimited by commas.

Example
interface Sort_A (int 4 inPort1, int 4 inPort2)

interfaceName (unsigned outPort = x)

4.7.2 Interface declaration
You need to use an interface declaration if you want to define multiple instances of an
interface sort, or to use forward references. If you only want a single instance of an interface
sort, you only need to use an interface definition.

Interfaces of pre-defined sorts do not need to be declared.

The general format of the interface declaration is:

interface Sort (ports_in_to_Handel-C)
(ports_out_from_Handel-C);

Sort user-defined name or predefined interface sort
ports_in_to_Handel-C Optional. One or more prototypes of ports bringing data into

the Handel-C code.
ports_out_from_Handel-C Optional. One or more prototypes of ports sending data from

the Handel-C code.

A port prototype consists of the port type, and the port name. At least one port (whether to
Handel-C or from Handel-C) must be declared. Port declarations are delimited by commas.
For example:

interface MyInterface (int 5 InPort)
(int 4 OutPort1, int 4 OutPort2);

The name of each port in a port_in or port_out interface must be different, as
they will all be built to the top level of the design.

Once you have declared an interface sort, you can define multiple instances of that sort. The
interface definition creates a named instance of the interface sort, assigns data to be
transmitted to the output ports, and may also specify properties for individual ports.

You can declare pointers to an interface declaration and then assign a defined interface to
the pointer.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 47

Old-style declaration-definitions
The style of interface declaration used in Handel-C Version 2 (which omitted port prototypes)
is deprecated, but remains for backward compatibility.

4.7.3 Example interface to external code
This example shows an interface declaration used to connect to a piece of foreign code, and
the definition that uses this declaration.

set clock = external "D17";
set family = XilinxVirtex;
set part = "V1000BG560-4";

// Interface declaration
interface ttl7446(unsigned 7 segments, unsigned 1 rbon)

(unsigned 1 ltn, unsigned 1 rbin, unsigned 4 digit,
unsigned 1 bin);

unsigned 1 ltnVal;
unsigned 1 rbinVal;
unsigned 1 binVal;
unsigned 4 digitVal;

// Interface definition
interface ttl7446(unsigned 7 segments, unsigned 1 rbon)

decode(unsigned 1 ltn=ltnVal, unsigned 1 rbin=rbinVal,
unsigned 4 digit=digitVal, unsigned 1 bin=binVal)

with {extlib="PluginModelSim.dll",
extinst="decode; model=ttl7446_wrapper; delay=1"};

This declares an interface of sort tt17446. The inputs from the interface to the Handel-C
design are segments and rbon. The interface would therefore connect to a black box
named tt17746 with ports segments, rbon, ltn, rbin, digit, and bin.
The instance of the interface is decode. The instance specifies the data going into the ports
ltn, rbin, digit, and bin and connects to a plugin, PluginModelSim.dll, for
simulation.
If you did not want to use forward references to the interface, and only wanted to define a
single instance of the interface sort tt17446, you would not need to declare the interface.
(The interface definition would be exactly the same as that shown above.)

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 48

4.7.4 Interface specifications

Predefined bus interface
specs:

Meaning: Default:

data list the pins used for
transferring data, MSB to LSB

None

speed set buffer speed (output) 3: Xilinx 4000 series
2: Actel ProASIC/ProASIC+
1: others

pull set pull-up or pull-down for
bus pins

None

infile set file source for input bus
data

None

outfile set file destination for output
bus data

None

All interface specs: Meaning: Default:
base specify display base for

variables in debugger
10

bind bind component to work
library

0

busformat text format of exported wires
in EDIF netlist

"B_I"

data list the pins used for
transferring data, MSB to LSB

None

dci apply Digital Controlled
Impedance to buses (Xilinx
only)

0 (No)

extlib specify external plugin for
simulator

None

extfunc specify external simulator
function for this port

PlugInSet or PlugInGet

extpath specify any direct logic
(combinational logic)
connections to another port

None

extinst specify connection to external
code

None

intime maximum allowable time
between a port and the

None

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 49

All interface specs: Meaning: Default:
sequential elements it drives
(in ns)

outtime maximum allowable time
between a port and the
sequential elements it is
driven from (in ns)

None

properties parameterize instantiations of
external black boxes

None

standard specify I/O standard
(electrical characteristics) to
use on port(s) in question

LVCMOS33 for Actel
ProASIC/ProASIC+,
LVTTL for others

std_logic_vector specify std_logic_vector
port in port_in, port_out
or generic interface

0

strength specify drive strength (in mA)
for output buses

Standard dependent

warn disable some compiler
warnings

1 (No)

4.8 RAMs and ROMs
RAMs and ROMs may be built from the logic provided in the FPGA using the ram and rom
keywords.

For example:

ram int 6 a[43];
static rom int 16 b[4] = { 23, 46, 69, 92 };

This example constructs a RAM consisting of 43 entries each of which is 6 bits wide and a
ROM consisting of 4 entries each of which is 16 bits wide.

ROMs must be declared as static or global. RAMs can be declared as static, global or auto
(i.e. non-static).

All RAMs and ROMs must be declared as arrays, so to declare a RAM that holds one 4 bit
integer, you must declare it as an array with a dimension of 1.

ram int 4 ramname[1];

RAMs and ROMs may only have one entry accessed in any clock cycle.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 50

Initialization
Only static or global ROMs or RAMs can be initialized. For example, a global ROM could be
initialized as shown below:

rom int 16 b[4] = { 23, 46, 69, 92 } with {block = 1};

The ROM is initialized with the constants given in the following list in the same way as an
array would be initialized in C. In this example, the ROM entries are given the following
values:

ROM entry Value

b[0] 23
b[1] 46
b[2] 69
b[3] 92

Inferring size from use
The Handel-C compiler can also infer the widths, types and the number of entries in RAMs
and ROMs from their usage. Thus, it is not always necessary to explicitly declare these
attributes. For example:

ram int undefined a[123];
ram int 6 b[];
ram c[43];
ram d[];

RAMs and ROMs are accessed in the same way as arrays. For example:

ram int 6 b[56];

b[7] = 4;

This sets the eighth entry of the RAM to the value 4. Note that as in conventional C, the first
entry in the memory has an index of 0 and the last has an index of n-1 where n is the total
number of entries in the memory.

Differences between RAMs and arrays
RAMs differ from arrays in that an array is equivalent to declaring a number of variables.
Each entry in an array may be used exactly like an individual variable, with as many reads,
and as many writes to a different element in the array as required within a clock cycle.
RAMs, however, are normally more efficient to implement in terms of hardware resources
than arrays, but they only allow one location to be accessed in any one clock cycle.
Therefore, you should use an array when you wish to access the elements more than once
in parallel and you should use a RAM when you need efficiency.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 51

Devices
Creating internal RAMs can only be done if the target device supports on-chip RAMs. Most
devices currently targeted by Handel-C do so (e.g. Altera Flex 10K, APEX, APEXII and
Mercury, Xilinx 4000E, 4000EX, 4000L, 4000XL, 4000XV, Spartan, Spartan II and Virtex
series devices).

No Actel families support ROMs. Only ProASIC and ProASIC+ Actel devices support RAMs.
RAMs on Actel devices may not be initialized.

4.8.1 Multidimensional memory arrays
You can create simple multi-dimensional arrays of memory using the ram, rom and wom
keywords. The definitions can be made clearer by using the optional disambiguator <>.

Syntax
ram | rom | wom logicType entry_width Name[[const_expression]]
{[[const_expression]]}

[= {initialization}];

Possible logic types are ints, structs, pointers and arrays.

The last constant expression is the index for the RAM. The other indices give the number of
copies of that type of RAM.

Example
ram <int 6> a[15][43];
static rom <int 16> b[4][2][2] =

{ {{1, 2},
{3, 4}
},
{{5, 6},
{7, 8}
},
{{9, 10},
{11, 12}
},
{{13, 14},
{15, 16}
}

};

This example constructs 15 RAMs, each consisting of 43 entries of 6 bits wide and 4 * 2
ROMs, each consisting of 2 entries of 16 bits wide. The ROM is initialized with the constants
in the following list in the same way as a multidimensional array would be initialized in C.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 52

The last index (that of the RAM entry) changes fastest. In this example, the ROM entries are
given the following values:

ROM entry Value ROM entry Value

b[0][0][0] 1 b[0][0][1] 2
b[0][1][0] 3 b[0][1][1] 4
b[1][0][0] 5 b[1][0][1] 6
b[1][1][0] 7 b[1][1][1] 8
b[2][0][0] 9 b[2][0][1] 10
b[2][1][0] 11 b[2][1][1] 12
b[3][0][0] 13 b[3][0][1] 14
b[3][1][0] 15 b[3][1][1] 16

Because of their architecture, RAMs and ROMs are restricted to performing operations
sequentially. Only one element of a RAM or ROM may be addressed in any given clock
cycle and, as a result, familiar looking statements are often disallowed. For example:

ram <unsigned int 8> x[4];
x[1] = x[3] + 1;

This code is inadvisable because the assignment attempts to read from the third element of
x in the same cycle as it writes to the first element.

In a multi-dimensional array, you can access separate elements of the arrays, so long as
you are not accessing the same RAM. For example:

x[2][1]=x[3][0] is valid

x[2][1]=x[2][0] is invalid

Note that arrays of variables do not have these restrictions but may require substantially
more hardware to implement than RAMs depending on the target architecture.

4.9 mpram (multi-ported RAMs)
You can create multiple-ported RAMs (MPRAMs) by constructing something similar to an
ANSI-C union. You must use the mpram keyword.

mprams can be used to connect two independent code blocks. The clock of the mpram port
is taken from the function in which it is used.

The normal declaration of a MPRAM would be to create a dual-ported RAM by declaring two
ports of equal width:

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 53

• for Altera ApexII or Mercury, both ports can be bi-directional. For other Altera
families, one port would be read-only and one write-only

• for Xilinx 4000, one port would be read/write and one read-only
• for Virtex, both ports would be read/write for block RAM, and for LUT RAM, one

port would be read/write and one read-only.
• Altera Mercury devices can have up to four ports. You can have (one or two write

ports AND one or two read ports) OR two read/write ports. Depending on how
you have configured the port, you can have up to four simultaneous accesses of
the same block of memory.

• for Actel devices, one port must be read-only, and one write-only.
The mpram construct allows the declaration of any number of ports. Your only restriction is
the target hardware.

Syntax
mpram MPRAM_name
{

ram_Type variable_Type RAM_Name[size];
ram_Type variable_Type RAM_Name[size];

};

4.9.1 Initialization of mprams
The first member of the mpram can be initialized.

static mpram Fred
{

ram <unsigned 8> ReadWrite[256]; // Read/write port
rom <unsigned 8> Read[256]; // Read only port

} Mary ={10,11,12,13};

This would have the same effect as

Mary.ReadWrite[0]=10;
Mary.ReadWrite[1]=11;
Mary.ReadWrite[2]=12;
Mary.ReadWrite[3]=13;

The other elements of Fred.ReadWrite will be initialized as zero (since Mary is static).
In this case, since Fred.Read is the same size as Fred.ReadWrite, elements 0 – 3 of
Fred.Read would be initialized with the same values.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 54

4.9.2 Mapping of different width mpram ports
If the ports of the mpram are of different widths, they will be mapped onto each other
according to the specifications of the chip you are using. If the ports used are of different
widths, the widths should have values of 2n.

Different width ports are available for Xilinx Virtex and SpartanII devices and Altera Apex II
devices. They are not available with other Altera devices, Xilinx 4000 series devices or Actel
devices.

Xilinx bit mapping
To find the bits that an array element occupies in a Xilinx Virtex or SpartanII RAM, you can
use the formula
RAM array ram y Name[a] will have a start bit of (y * (a+1)) - 1 and an end bit of y * a .

Xilinx mapping is little-endian. This means that the address points to the LSB.

The bits between the declarations of RAM are mapped directly across, so that bit 27 in one
declaration will have the same value as bit 27 in another declaration, even though the bits
may be in different array elements in the different declarations.

mpram Joan
{

ram <unsigned 4> ReadWrite[256]; // Read/write port
rom <unsigned 8> Read[256]; // Read only port

};

Joan.ReadWrite[100] will run from 400 to 403.

Joan.Read[100] will run from 800 to 807.

Joan.Read[50] will run from 400 to 407.

Joan.ReadWrite[100] is equivalent to Joan.Read[50][0:3].

ApexII bit mapping
To find the bits that an array element occupies in an ApexII RAM, you can use the formula
RAM array ram y Name[a] will have a start bit of (y * (a+1)) - 1 and an end bit of y * a .

ApexII mapping is little-endian. This means that the address points to the LSB.

The bits between the declarations of RAM are mapped directly across, so that bit 27 in one
declaration will have the same value as bit 27 in another declaration, even though the bits
may be in different array elements in the different declarations.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 55

mpram Joan
{

ram <unsigned 4> ReadWrite[256]; // Read/write port
rom <unsigned 8> Read[256]; // Read only port

};

Joan.ReadWrite[100] will run from 400 to 403.

Joan.Read[100] will run from 800 to 807.

Joan.Read[50] will run from 400 to 407.

Joan.ReadWrite[100] is equivalent to Joan.Read[50][0:3].

4.9.3 mprams example
Using an mpram to communicate between two independent logic blocks:

File 1:
mpram Fred
{

ram <unsigned 8> ReadWrite[256]; // Read/write port
rom <unsigned 8> Read[256]; // Read only port

};

mpram Fred Joan ; /*Declare Joan as an mpram like Fred */

set clock = internal "F8M";

void main(void)
{
unsigned 8 data;

Joan.ReadWrite[7] = data;
}

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 56

File 2:
mpram Fred
{

ram <unsigned 8> ReadWrite[256]; // Read/write port
rom <unsigned 8> Read[256]; // Read only port

};

extern mpram Fred Joan;
set clock = external "P2";

void main(void)
{
unsigned 8 data;

data= Joan.Read[7];
}

4.9.4 WOM (write-only memory)
You can declare a write-only memory using the keyword wom. The only use of a write-only
memory would be to declare an element within a multi-ported RAM. Since woms only exist
inside multi-port rams, it is illegal to declare one outside a mpram declaration.

Syntax
wom variable_Type variable_Size WOM_Name[dimension] = initialize_Values
 [with {specs}]

Example
mpram connect
{

wom <unsigned 8> Writeonly[256]; // Write only port
rom <unsigned 8> Read[256]; // Read only port

}

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 57

4.10 Other architectural types

4.10.1 sema
Handel-C provides semaphores for protecting critical areas of code. Semaphores are
declared with the sema keyword. For example:

sema RAMguard;

Semaphores have no type or width associated with them. They cannot be assigned to or
have their value assigned to anything else. You can only access semaphores through the
trysema(semaphore) expression and releasesema(semaphore) statement.
trysema tests to see if the semaphore is currently taken. If it is not, it takes the semaphore
and returns one. If it is taken, it returns zero. releasesema releases the semaphore. After
you have taken a semaphore, you should ensure that you release it cleanly once you have
left the critical area.

Semaphores may be included in structures. They cannot be passed to directly to functions,
over channels or interfaces. They may be passed to functions or channels by reference.

Syntax
sema Name

Example
inline void critRAMaccess(sema *RAMsema, ram int 8 (*danger)[4],

unsigned count)
{
int 8 x;
while(trysema(*RAMsema)==0) delay; // wait till you've got the

// RAM
x= (*danger)[count];
releasesema(*RAMsema);

}

4.10.2 signal
A signal is an object that takes on the value assigned to it but only for that clock cycle. The
value assigned to it can be read back during the same clock cycle. At all other times it takes
on its initialization value. The optional disambiguator <> can be used to clarify complex
signal definitions.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 58

Syntax
signal [<type data-width>] signal_Name;

Example
int 15 a, b;
signal <int> sig;

a = 7;
par
{

sig = a;
b = sig;

}

sig is assigned to and read from in the same clock cycle, so b is assigned the value of a.

Since the signal only holds the value assigned to it for a single clock cycle, if it is read from
just before or just after it is assigned to, you get its initial value. For example:

int 15 a, b;
static signal <int> sig = 690;

a = 7;
par
{

sig = a;
b = sig;

}
a = sig;

Here, b is assigned the value of a through the signal, as before. Since there is a clock cycle
before the last line, a is finally assigned the signal's initial value of 690.

4.11 Storage class specifiers
Storage class specifiers define how variables are accessed.

extern and static are used within functions to allocate storage. static gives the
declared objects static storage class, and extern specifies that the variable is defined
elsewhere. For compatibility with ANSI-C, the specifiers auto and register can be used
but have no effect.

The expansion of a function is defined by the specifier inline.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 59

The typedef specifier does not reserve storage, but allows you to declare new names for
existing types.

4.11.1 auto
auto defines a local automatic variable. In Handel-C, all local variables default to auto.
You cannot initialize an auto variable, but must assign it a value. The initialization status of
auto variables is undefined.

Example
set clock = external "P1";

void main (void)
{

auto 8 pig;
pig = 15;

}

4.11.2 extern (external variables)
extern declares a variable that is external to all functions; the variable may be accessed by
name from any function.

External variables must be defined exactly once outside any function, and declared in each
function that wants to access them. The declaration may be an explicit extern , or else be
implicit from the context (if the variable has been defined outside a function without
static).

If the variable is used in multiple source files, it is good practice to collect all the extern
declarations in a header file, included at the top of each source file using the #include
headerFileName directive.

You may use extern "language" to access variables in C or C++ files.

 You cannot access the same variable from different clock domains.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 60

Example
extern int 16 global_fish;
int global_frog = 1234;

main()
{
global_fish = global_frog;
…

}

Syntax
extern variable declaration;

4.11.3 extern language construct
The extern "language" construct allows you to declare that names used in Handel-C code
have ANSI-C or C++ linkage.

• For ANSI-C functions, use extern "C"
• For C++ functions, use extern "C++"

These functions can only be compiled for simulation. They may not be used in targeting
devices.

Examples
extern “C” int printf(const char *format, ...);

declares printf() with C linkage.
extern “C++”
{

int 14 x;
}

declares a variable, x, with C++ linkage.

extern "C"
{

#include <stdio.h>
}

causes everything in stdio.h to have C linkage.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 61

Mapping of types to C/C++
Handel-C types will be mapped to C/C++ types in the following way when inside an extern
"language" construct:

Handel-C type C/C++ type

char char
short short
long long
int int (only valid within an

extern "language"
construct)

int width Int<width> (C++ only)
unsigned int width UInt<width> (C++ only)
struct struct
type ram[n] convertedType[n]
type rom[n] convertedType[n]
Others Generates an error

Mapping of types outside extern
Mapping of types outside the extern "language" construct is the same, except signed and
unsigned ints must have a specified width.

 When outside an extern "language" construct, an int without a specified width
will generate an error.

For example, the following Handel-C:

extern “C” int printf(const char *format, ...);
extern “C++”
{

int 14 x;
long y;

}
char f(long y); //outside extern construct

will map to this C++:

int printf(const char *format, ...);
Int<14> x;
long y;
char f(long y);

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 62

4.11.4 register
register has been implemented for reasons of compatibility with ANSI-C. register
defines a variable that has local scope. Its initial value is undefined.

Example
register int 16 fish;
fish = f(plop);

4.11.5 inline
inline causes a function to be expanded where it is called. The logic will be generated
every time it is invoked. This ensures that the function is not accessed at the same time by
parallel branches of code.

 If you have a local static variable in an inline function there is one copy of the
variable per function instantiation.

By default, functions are assumed to be shared (not inline).

Example
inline int 4 knit(int needle, int stitch)
{
needle = needle + stitch;
return(needle);

}

int 4 jumper[100];
par(needle = 1; needle < 100; needle = needle+2)
{
jumper[needle] = knit(needle, 1);
}

Syntax
inline function_Declaration

4.11.6 static
static gives a variable static storage (its values are kept at all times). This ensures that the
value of a variable is preserved across function calls. It also affects the scope of a variable
or a function. static functions and static variables declared outside functions can only

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 63

be used in the file in which they appear. static variables declared within an inline
function or an array of functions can only be used in the copy of the function in which they
appear. Handel-C uses static in a different way to C++. In C++, if you have an inline
function and a local static variable, one copy of the variable is shared across each function
instantiation. In Handel-C, there is one copy of the variable per function instantiation.
static variables are the only local variables (excluding consts) that can be initialized. To
get a default value, initialize the variable.

Example
static int 16 local_function (int water, int weed);
static int 16 local_fish = 1234;

void main(void)
{
int fresh, pondweed;
local_fish = local_function(fresh, pondweed);
...
}

Syntax
static variable_declaration;
static functionName(parameter-type-list);

Static variables in arrays of functions
If a static variable is declared in an arrayed function, each instance of the function will have
its own independent copy of the variable.

4.11.7 typedef
typedef defines another name for a variable type. This allows you to clarify your code. The
new name is a synonym for the variable type.

typedef int 4 SMALL_FISH;

If the typedef is used in multiple source files, it is good practice to collect all the type
definitions in a header file, included at the top of each source file using the #include
headerFileName directive. It is conventional to differentiate typedef names from standard
variable names, so that they are easily recognizable.

Example
typedef int 4 SMALL_FISH;

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 64

extern SMALL_FISH stickleback;

4.12 typeof
The typeof type operator allows the type of an object to be determined at compile time.
The argument to typeof must be an expression. Using typeof ensures that related
variables maintain their relationship. It makes it easy to modify code by simplifying the
process of sorting out type and width conflicts.

A typeof-construct can be used anywhere a type name could be used. For example, you
can use it in a declaration, in casts.

Syntax
typeof (expression)

Example
unsigned 9 ch;
typeof(ch @ ch) q;
struct
{

typeof(ch) cha, chb;
} s1;

typeof(s1) s2;

ch = s1.cha + s2.chb;
q = s1.chb @ s2.cha;

If the width of variable ch were changed in this example, there would be no need to modify
any other code.

This is also useful for passing parameters to macro procedures. The code below shows how
to use a typeof definition to deal with multiple parameter types.

macro proc swap (a, b)
{

typeof(a) t;
t=a;
a=b;
b=t;

}

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 65

4.12.1 const
const defines a variable or pointer or an array of variables or pointers that cannot be
assigned to. This means that they keep the initialization value throughout. They may be
initialized in the declaration statement. The const keyword can be used instead of
#define to declare constant values. It can also be used to define function parameters
which are never modified. The compiler will perform type-checking on const variables and
prevent the programmer from modifying it.

Example 1
const int i = 5;

i = 10; // Error
i++; // Error

Example 2
const int *const p;

p = p + 1; // Error
*p = 3; // Error

4.12.2 volatile
In ANSI-C, volatile is used to declare a variable that can be modified by something other
than the program.

It is mostly used for hard-wired registers. volatile controls optimization by forcing a re-
read of the variable. It is only a guide, and may be ignored. The initial value of volatile
variables is undefined.

Handel-C does nothing with volatile. It is accepted for compatibility purposes.

4.13 Complex declarations
It is possible to have extremely complex declarations in Handel-C. You can combine arrays
of functions, structs, arrays, and pointers with architectural types. To clarify such
expressions, it is wise to use typedef.

4.13.1 Macro expressions in widths
If you use a macro expression to provide the width in a type declaration, you must enclose it
in parentheses. This ensures that it will be correctly parsed as a macro.

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 66

int (mac(x)) y;

To declare a pointer to a function returning that type, you get

int (mac(x)) (*f)();

4.13.2 <> (type clarifier)
< > is a Handel-C extension used to disambiguate complex declarations of architectural
types. You cannot use it on logic types. It is good practice to use it whenever you declare
channels, memories or signals, to clarify the format of data passed or stored in these
variables.

It is required to disambiguate a declaration such as:

chan int *x; //pointer to channel or
//channel of pointers?

This should be declared as

chan <int *> x; //channel of pointers

or

chan <int> *x; //pointer to channel

Example
struct fishtank
{
int 4 koi;
int 8 carp;
int 2 guppy;

} bowl;

signal <struct fishtank> drip;
chan <int 8 (*runwater)()> tap;

4.13.3 Using signals to split up complex expressions
You can use signals to split up complex expressions. E.g.,

b = (((a * 2) - 55) << 2) + 100;

could also be written

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 67

int 17 a, b;
signal s1, s2, s3, s4;

par
{

s1 = a;
s2 = s1 * 2;
s3 = s2 - 55;
s4 = s3 << 2;
b = s4 + 100;

}

Breaking up expressions also enables you to re-use sub-expressions:

unsigned 15 a, b;
signal sig1;

par
{

sig1 = x + 2;
a = sig1 * 3;
b = sig1 / 2;

}

4.14 Variable initialization

Global, static and const variables
Global variables (i.e. those declared outside all code blocks) may be initialized with their
declaration. For example:

static int 15 x = 1234;

static int 7 y = 45 with {outfile = "out.dat"};

Variables declared within functions can only be initialized if they have static storage or
are consts.

Global and static variables may only be initialized with constants. If you do not initialize
them, they will have a default value of zero.

Global and static variables are constructed from registers in the FPGA or PLD and are
initialized with values from the configuration file when the device is programmed. If you use

Handel-C Language Reference Manual

>: 4. Declarations

>: Chapter :4 68

the set reset construct, variables will be reset to their initial values. If you use the
try...reset construct, variables will not be re-initialized.

All other variables
You cannot initialize non-static local variables. Instead, you must use an explicit sequential
or parallel list of assignments following your declarations to achieve the same effect. For
example:

{
int 4 x;
unsigned 5 y;

x = 5;
y = 4;

}

Local non-static variables have no default initial value; you must explicitly assign them to
zero or another value.

Simulation
In simulation, variables (including static variables inside functions) are initialized before the
simulation run begins (i.e. before the first clock cycle is simulated).

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 69

>: 5 Statements

5.1 Sequential and parallel execution
Handel-C implicitly executes instructions sequentially. When targeting hardware it is
extremely important to use parallelism. For this reason, Handel-C has a parallel composition
keyword par to allow statements in a block to be executed in parallel.

Three assignments that execute in parallel and in the same clock cycle:

par
{

x = 1;
y = 2;
z = 3;

}

Three assignments that execute sequentially, requiring three clock cycles:

x = 1;
y = 2;
z = 3;

The par example executes all assignments literally in parallel. Three specific pieces of
hardware are built to perform these three assignments. This is about the same amount as is
needed to execute the assignments sequentially.

Sequential branches
Within parallel blocks of code, sequential branches can be added by using a code block
denoted with the {...} brackets instead of a single statement. For example:

par
{

x = 1;
{

y = 2;
z = 3;

}
}

In this example, the first branch of the parallel statement executes the assignment to x while
the second branch sequentially executes the assignments to y and z. The assignments to x
and y occur in the same clock cycle, the assignment to z occurs in the next clock cycle.

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 70

The instruction following the par {...} will not be executed until all branches of the
parallel block complete.

5.1.1 seq
To allow replication, the seq keyword exists. Sequential statements can be written with or
without the keyword.

The following example executes three assignments sequentially:

x = 1;
y = 2;
z = 3;

as does this:

seq
{

x = 1;
y = 2;
z = 3;

}

5.1.2 Replicated par and seq
You can replicate par and seq blocks by using a counted loop (a similar construct to a for
loop). The count is defined with a start point (index_Base below), an end point (index_Limit)
and a step size (index_Count). The body of the loop is replicated as many times as there are
steps between the start and end points. If it is a par loop, the replicated processes will run in
parallel, if a seq, they will run sequentially.

Syntax
par | seq (index_Base; index_Limit; index_Count)
{

Body
}

The apparent variables used in index_Base, index_Limit and index_Count are macro
exprs that are implicitly declared. index_Base, index_Limit and index_Count do not need to
be single expressions, for example, you could declare par (i=0, j=23; i != 76;
i++, j--). In this case i and j are implicit macro exprs

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 71

Example
par (i=0; i<3; i++)

{
a[i] = b[i];

}

 expands to:

par
{

a[0] = b[0];
a[1] = b[1];
a[2] = b[2];

}

Replicated pipeline example
unsigned init;
unsigned q[149];
unsigned 31 out;

init = 57;
par (r = 0; r < 16; r++)
{

ifselect(r == 0)
q[r] = init;

else ifselect(r == 15)
out = q[r-1];

else
q[r] = q[r-1];

}

ifselect checks for the start of the pipeline, the replicator rules create the middle sections
and ifselect checks the end. The replicated code expands to:

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 72

par
{

q[0] = init;
q[1] = q[0];
q[2] = q[1];
etc...

q[14] = q[13];
out = q[14];

}

5.1.3 Channel communication
Channels are a way of communicating between processes. When you write to a channel, a
copy of the data you write is sent to the receiving process. This allows information to be
shared between processes. Since a variable cannot be written to by multiple processes, you
can write to the variable in a single process by reading channels that send data from other
processes.

Each channel must be written to at one end, and read from at the other. The width and type
of data sent down the channel must be of the same width and type of the channel. The
channel can be an entry in an array of channels, or be pointed to by a channel pointer.

As with other variables, if no width or type is given to a channel, (or if it is set as
undefined), the compiler can infer the channel width and type from its use.

Reading from a channel
Channel ? Variable;

This assigns the value read from the channel to the variable. The variable may also be a
signal, an array element, RAM element or WOM element.

Writing to a channel
Channel ! Expression;

This writes the value of the expression to the channel. Expression may be any expression.

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 73

Example
set clock = external;
void main(void)
{

unsigned 8 Res;
chan Bill;

par
{

Bill ! 23;
Bill ? Res;

}
}

Restrictions
No two statements may simultaneously write to or simultaneously read from a single
channel.

par
{

out ! 3 // Parallel write to a channel
out ! 4

}

This code is illegal as it attempts to write simultaneously to a single channel. Similarly, the
following code is illegal because an attempt is made to read simultaneously from the same
channel:

par
{

in ? x; // Parallel read from a channel
in ? y;

}

5.1.4 prialt
The prialt statement selects the first channel ready to communicate from a list of channel
cases. The syntax is similar to a conventional C switch statement.

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 74

prialt
{

case CommsStatement:
 Statement

break;
......

case CommsStatement:
 Statement

break;
......
[default:

 Statement

break;]
}

prialt selects between the communications on several channels depending on the
readiness of the other end of the channel. CommsStatement must be one of the following:

Channel ? Variable

Channel ! Expression

The case whose communication statement is the first to be ready to transfer data will
execute and data will be transferred over the channel. The statements up to the next break
statement will then be executed.

Restrictions
The prialt construct does not allow the same channel to be listed twice in its cases and
fall through of cases is prohibited. This means that each case must have its own break
statement.

Priority
If two channels are ready simultaneously, then the first one listed in the code takes priority.

Default
prialt with no default case:
execution halts until one of the channels becomes ready to communicate.

prialt statement with default case:
if none of the channels is ready to communicate immediately then the default branch
statements executes and the prialt statement terminates.

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 75

5.2 Assignments
Handel-C assignments are of the form:

Variable = Expression;

For example:

x = 3;
y = a + b;

The expression on the right hand side must be of the same width and type (signed or
unsigned) as the variable on the left hand side. The compiler generates an error if this is not
the case.

The left hand side of the assignment may be any variable, array element or RAM element.
The right hand side of the assignment may be any expression.

Short cuts
The following short cut assignment statements cannot be used in expressions as they can in
conventional C but only in stand-alone statements. See Introduction: Expressions for more
information.

Shortcuts cannot be used with RAM variables, as they contravene the RAM access
restrictions

5.3 Control statements

5.3.1 continue
continue moves straight to the next iteration of a for, while or do loop. For do or while,
this means that the test is executed immediately. In a for statement, the increment step is
executed. This allows you to avoid deeply nested if … else statements within loops.

Example
for (i = 100; i > 0; i--)
{

x = f(i);
if (x == 1)

continue;
y += x * x;

}

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 76

 You cannot use continue to jump out of or into par blocks.

5.3.2 goto
goto label moves straight to the statement specified by label. label has the same format as
a variable name, and must be in the same function as the goto. Labels are local to the
whole function, even if placed within an inner block. Formally, goto is never necessary. It
may be useful for extracting yourself from deeply nested levels of code in case of error.

Example
for(…)
{

for(…)
{

if(disaster)
goto Error;

}
}

Error:
output ! error_code;

 You cannot use goto to jump out of or into par blocks.

5.3.3 return [expression]
The return statement is used to return from a function to its caller. return terminates the
function and returns control to the calling function. Execution resumes at the line
immediately following the function call. return can return a value to the calling function.
The value returned is of the type declared in the function declaration. Functions that do not
return a value should be declared to be of type void.

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 77

Example
int power(int base, int n)
{

int i, p;

p = 1;
for (i = 1; i <= n; ++i)
p = p * base;

return(p);
}

 You cannot use return to jump out of par blocks.

Statement Expansion

Variable ++; Variable = Variable + 1;
Variable --; Variable = Variable - 1;
++ Variable; Variable = Variable + 1;
-- Variable; Variable = Variable - 1;
Variable += Expression; Variable = Variable + Expression;
Variable -= Expression; Variable = Variable – Expression;
Variable *= Expression; Variable = Variable * Expression;
Variable /= Expression; Variable = Variable / Expression;
Variable %= Expression; Variable = Variable % Expression;
Variable <<= Expression; Variable = Variable << Expression;
Variable >>= Expression; Variable = Variable >> Expression;
Variable &= Expression; Variable = Variable & Expression;
Variable |= Expression; Variable = Variable | Expression;
Variable ^= Expression; Variable = Variable ^ Expression;

5.3.4 Conditional execution (if … else)
Handel-C provides the standard C conditional execution construct as follows:

if (Expression)
Statement

else

Statement

As in conventional C, the else portion may be omitted if not required. For example:

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 78

if (x == 1)
x = x + 1;

Statement may be replaced with a block of statements by enclosing the block in {...}
brackets. For example:

if (x>y)
{

a = b;
c = d;

}
else
{

a = d;
c = b;

}

The first branch of the conditional is executed if the expression is true and the second
branch is executed if the expression is false. Handel-C treats zero values as false and non-
zero values as true. Relational and logical operators return values to match this meaning
but it is also possible to use variables as conditions. For example:

if (x)
a = b;

else
c = d;

This is expanded by the compiler to:

if (x!=0)
a = b;

else
c = d;

When executed, if x is not equal to 0 then b is assigned to a. If x is 0 then d is assigned to
c.

5.3.5 while loops
Handel-C provides while loops exactly as in conventional C:

while (Expression)
Statement

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 79

The contents of the while loop may be executed zero or more times depending on the
value of Expression. While Expression is true then Statement is executed repeatedly.
Statement may be replaced with a block of statements. For example:

x = 0;
while (x != 45)
{

y = y + 5;
x = x + 1;

}

This code adds 5 to y 45 times (equivalent to adding 225 to y).

5.3.6 do ... while loops
Handel-C provides do ... while loops exactly as in conventional C:

do

Statement
while (Expression);

The contents of the do ... while loop is executed at least once because the conditional
expression is evaluated at the end of the loop rather than at the beginning as is the case
with while loops. Statement may be replaced with a block of statements. For example:

do
{

a = a + b;
x = x - 1;

} while (x>y);

5.3.7 for loops
Handel-C provides for loops similar to those in conventional C.

for (Initialization ; Test ; Iteration)
Statement

The body of the for loop may be executed zero or more times according to the results of
the condition test. There is a direct correspondence between for loops and while loops.
Because of the benefits of parallelism, it is nearly always preferable to implement a while
loop instead.

for (Init; Test; Inc)
Body;

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 80

is directly equivalent to:

{
Init;
while (Test)
{

Body;
Inc;

}
}

unless the Body includes a continue statement. In a for loop continue jumps to before
the increment, in a while loop continue jumps to after the increment.

Unless a specific continue statement is needed, it is always faster to implement the for
loop as a while loop with the Body and Inc steps in parallel rather than in sequence when
this is possible.

Each of the initialization, test and iteration statements is optional and may be omitted if not
required. Note that for loops with no iteration step can cause combinational loops. As with
all other Handel-C constructs, Statement may be replaced with a block of statements. For
example:

for (; x>y ; x++)
{

a = b;
c = d;

}

The difference between a conventional C for loop and the Handel-C version is in the
initialization and iteration phases. In conventional C, these two fields contain expressions
and by using expression side effects (such as ++ and --) and the sequential operator ','
conventional C allows complex operations to be performed. Since Handel-C does not allow
side effects in expressions the initialization and iteration expressions have been replaced
with statements. For example:

for (x = 0; x < 20; x = x+1)
{

y = y + 2;
}

Here, the assignment of 0 to x and adding one to x are both statements and not
expressions. These initialization and iteration statements can be replaced with blocks of
statements by enclosing the block in {...} brackets. For example:

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 81

for ({ x=0; y=23;} ; x < 20; {x+=1; x*=2;})
{

y = y + 2;
}

5.3.8 switch
Handel-C provides switch statements similar to those in conventional C.

switch (Expression)
{

case Constant:
Statement
break;

......
default:

Statement
break;

}

The switch expression is evaluated and checked against each of the case compile time
constants. The statement(s) guarded by the matching constant is executed until a break
statement is encountered.

If no matches are found, the default statement is executed. If no default option is
provided, no statements are executed.

Each of the Statement lines above may be replaced with a block of statements by enclosing
the block in {...} brackets.

As with conventional C, it is possible to make execution drop through case branches by
omitting a break statement. For example:

switch (x)
{
case 10:

a = b;
case 11:

c = d;
break;

case 12:
e = f;
break;

}

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 82

Here, if x is 10, b is assigned to a and d is assigned to c, if x is 11, d is assigned to c and if
x is 12, f is assigned to e.

 The values following each case branch must be compile time constants.

5.3.9 break
Handel-C provides the normal C break statement for:

• terminating loops
• separation of case branches in switch and prialt statements.

break cannot be used to jump into or out of par blocks.

Loops
When used within a while, do...while or for loop, the loop is terminated and execution
continues from the statement following the loop. For example:

for (x=0; x<32; x++)
{

if (a[x]==0)
break;

b[x]=a[x];
}
// Execution continues here

switch
When used within a switch statement, execution of the case branch terminates and the
statement following the switch is executed. For example:

switch (x)
{

case 1:
case 2:

y++;
break;

case 3:
z++;
break;

}
// Execution continues here

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 83

prialt
When used within a prialt statement, execution of the case branch terminates and the
statement following the prialt is executed. For example:

prialt
{

case a ? x:
x++;
break;

case b ! y:
y++;
break;

}
// Execution continues here

5.3.10 delay
Handel-C provides a delay statement, not found in conventional C, which does nothing but
takes one clock cycle to do it. This may be useful to avoid resource conflicts (for example to
prevent two accesses to one RAM in a single clock cycle) or to adjust execution timing.

delay can also be used to break combinational logic cycles

5.3.11 try... reset
try...reset allows you to perform actions on receipt of a reset signal within a specified
section of code.

Syntax
try
{
statements

}
reset(condition)
{
statements

}

During the execution of statements within the try block, if condition is true, the reset
statement block will be executed immediately, else it will not. The condition expression is
continually checked. If it occurs in the middle of a function, execution will immediately go to
the reset thread. Static variables within the function will remain in the state they were in
when the reset condition occurred. Variables and RAMs will not be re-initialized.

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 84

Example
void main(void)
{

interface bus_in(int 1 input) resetbus();
try
{

someFunction();
}
reset(resetbus.input == 1)
{

cleanUpSomeFunction();
}

}

5.3.12 trysema()
trysema(semaphore) tests to see if the semaphore is owned. If not, it returns one and
takes ownership of the semaphore. If it is, it returns zero. A semaphore may be freed by
using the statement releasesema(semaphore).

Example
inline void critRAMaccess(sema *RAMsema, ram int 8 (*danger)[4],

unsigned count)
{

int 8 x;
while(trysema(*RAMsema)==0) delay; // wait till you've got the

RAM
x= (*danger)[count];releasesema(*RAMsema);

}

Note that in 1.1 you can no longer take the semaphore twice without releasing it.

while(1)
{

if (trysema(s)) {...} // always succeeds because its the same
//'trysema' expression

}

In version 1, this worked. In version 1.1 and subsequent versions, the second and
subsequent trysema() will always fail. Instead, use

Handel-C Language Reference Manual

>: 5. Statements

>: Chapter :5 85

while(1)
{

if (trysema(s))
{

...
releasesema(s)

}
}

5.3.13 releasesema()
releasesema(semaphore) releases a semaphore that was previously taken by
trysema(semaphore).

Example
inline void critRAMaccess(sema *RAMsema, ram int 8 (*danger)[4],

unsigned count)
{

int 8 x;
while(trysema(*RAMsema)==0) delay; // wait till you've got the

RAM
x= (*danger)[count];
releasesema(*RAMsema);

}

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 86

>: 6 Expressions

Clock cycles required
Expressions in Handel-C take no clock cycles to be evaluated, and so have no bearing on
the number of clock cycles a given program takes to execute.

They affect the maximum possible clock rate for a program: the more complex an
expression, the more hardware is involved in its evaluation and the longer it is likely to take
because of combinational delays in the hardware. The clock period for the entire hardware
program is limited by the longest such evaluation in the whole program.

Because expressions are not allowed to take any clock cycles, expressions with side effects
are not permitted in Handel-C. For example;

if (a<b++) /* NOT PERMITTED */

This is not permitted because the ++ operator has the side effect of assigning b+1 to b
which requires one clock cycle.

Breaking down complex expressions
The longest and most complex C statement with many side effects can be written in terms of
a larger number of simpler expressions and assignments. The resulting code is normally
easier to read. For example:

a = (b++) + (((c-- ? d++ : e--)) , f);

can be rewritten as:

a = b + f;
b = b + 1;
if (c)

d = d + 1;
else

e = e - 1;
c = c - 1;

Pre-fix and postfix operators
Handel-C provides the prefix and postfix ++ and -- operations as statements rather than
expressions. For example:

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 87

a++;
b--;
++c;
--d;

is directly equivalent to:

a = a + 1;
b = b - 1;
c = c + 1;
d = d - 1;

6.1 Casting of expression types
Automatic conversions between signed and unsigned values are not allowed. Values must
be cast between types to ensure that the programmer is aware that a conversion is occurring
that may alter the meaning of a value.

You can cast to a type of undefined width. For example:

int 4 x;
unsigned int undefined y;

x = (int undefined)y;

The compiler will infer that y must be 4 bits wide.

Explanation of signed/unsigned casting
The following piece of Handel-C is invalid:

int 4 x; // Range of x: -8...7
unsigned int 4 y; // Range of y: 0...15

x = y; // Not allowed

This is because x is a signed integer while y is an unsigned integer. When generating
hardware, it is not clear what the compiler should do here. It could simply assign the 4 bits
of y to the 4 bits of x or it could extend y with an extra zero as its most significant bit to
preserve its value and then assign these 5 bits to x assuming x was declared to be 5 bits
wide.

To see the difference, consider the case when y is 10. By simply assigning these 4 bits to a
signed integer, a result of -6 would be placed in x. A better solution might be to extend y to
a five bit value by adding a 0 bit as its MSB to preserve the value of 10.

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 88

A programmer must explicitly cast the variables to the same type. Assuming that they wish
to use the 4-bit value as a signed integer, the above example then becomes:

int 4 x;
unsigned int 4 y;

x = (int 4)y;

It is now clear that the value of x is the result of treating the 4 bits extracted from y as a
signed integer.

6.1.1 Restrictions on casting
Casting cannot be used to change the width of values. For example, this is not allowed:

unsigned int 7 x;
int 12 y;

y = (int 12)x; // Not allowed

The conversion should be done explicitly:

y = (int 12)(0 @ x);

Here, the concatenation operation produces a 12-bit unsigned value. The casting then
changes this to a 12-bit signed integer for assignment to y.

This is to ensure that the programmer is aware of such conversions.

Explanation
int 7 x;
unsigned int 12 y;

x = -5;
y = (unsigned int 12)x;

The Handel-C compiler could take two routes. One would be to sign extend the value of x
and produce the result 4091. The second would be to zero pad the value of x and produce
the value of 123. Since neither method can preserve the value of x in y Handel-C performs
neither automatically. Rather, it is left up to the programmer to decide which approach is
correct in a particular situation and to write the expression accordingly. You may sign extend
using the adjs macro and zero-pad using the adju macro.

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 89

6.2 Restrictions on RAMs and ROMs
Because of their architecture, RAMs and ROMs are restricted to performing operations
sequentially. Only one element of a RAM or ROM may be addressed in any given clock
cycle. As a result, familiar looking statements are often disallowed.

Ports within a multi-port RAM are in the same elements of memory so you can only make a
single access to any one mpram port in a single clock cycle.

Example of disallowed assignment
Only one element of a RAM or ROM may be addressed in any given clock cycle and, as a
result, familiar looking statements will often produce unexpected results. For example:

ram <unsigned int 8> x[4];
x[1] = x[3] + 1;

This code should not be used because the assignment attempts to read from the third
element of x in the same cycle as it writes to the first element, and the memory may produce
undefined results.

Example of disallowed condition evaluation
ram unsigned int 8 x[4];

if (x[0]==0)
x[1] = 1; //double access, disallowed

This code is illegal because the condition evaluation must read from element 0 of the RAM in
the same clock cycle as the assignment writes to element 1. Similar restrictions apply to
while loops, do ... while loops, for loops and switch statements.

Incorrect execution of conditional operator
This code will not execute correctly because of the double access.

x = y>z ? RamA[1] : RamA[2];

The solution is to re-write the code as follows:

x = RamA[y>z ? 1 : 2];

Here, there is only a single access to the RAM so the problem does not occur.

Arrays of variables do not have these restrictions but may require substantially more
hardware to implement than RAMs (depending on the target architecture).

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 90

6.3 assert
assert allows you to generate messages at compile-time if a condition is met. The
messages can be used to check compile-time constants and help guard against possible
problematic code alterations. The user uses an expression to check the value of a compile-
time constant, and if the expression evaluates to false, an error message is sent to the
standard error channel in the format

filename:line number, start column - end column::Assertion failed: user-defined
error string

The default error message is:

"Error : User assertion failed"

If the expression evaluates to true, the whole assert expression is replaced by a constant
expression.

assert can be used as a statement by passing 0 as the trueValue. If the condition is true,
the whole assert statement is replaced by 0 (a null statement). This is shown in the example
below. If the width of x is 3 (the condition is true), the whole statement is replaced by the
trueValue of 0, so nothing happens.

assert (width(x)==3, 0, "Width of x is not 3 (it is %d)", width(x));

A more detailed example is given below. assert can also be used as an expression, where
its return value is assigned to something. This is illustrated in the second example below,
where the return value is assigned to ReturnVal.

Syntax
assert(condition,trueValue [string with format specification(s) {,argument(s)}]);

If condition is true, the whole expression reduces to trueValue. If condition is false, string will
be sent to the standard error channel, with each format specification replaced by an
argument. When assert encounters the first format specification (if any), it converts the
value of the first argument into that format and outputs it. The second argument is formatted
according to the second format specification and so on. If there are more expressions than
format specifications, the extra expressions are ignored. The results are undefined if there
are not enough arguments for all the format specifications.

The format specification is one of:

%c Display as a character %s Display as a string
%d Display as a decimal %f Display as a floating point
%o Display as an octal %x Display as a hexadecimal

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 91

Using assert as a statement
In the example below assert is used as a statement.

set clock = external "C1";
int f(int x)
{

assert(width(x)==3, 0, "Width of x is not 3 (it is %d)",
width(x));

return x+1;
}

void main(void)
{

int 4 y;
y = f(y);

}

x will be inferred to have a width of 4, so the following message will be displayed.

F:\proj\test.hcc(4)(2) : Assertion failed : Width of x is not 3 (it
is 4)

Using assert as an expression
In the example below, assert is used as an expression.

set clock = external "C1";
unsigned func(unsigned p, unsigned q)
{

macro expr WidthSum(a, b) = width(a) + width(b);
macro expr CheckWidths(a, b) = assert((WidthSum(a, b)==32

|| WidthSum(a, b)==16), WidthSum(a, b),
"Sum of widths of function parameters is not 16 or 32 (it is

%d)",
WidthSum(a, b));

unsigned 16 ReturnVal;

ReturnVal = CheckWidths(p, q);

return ReturnVal;
}

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 92

void main(void)
{

static unsigned 9 x;
static unsigned 7 y;
unsigned result;

result = func(x, y);
}

6.4 Bit manipulation operators
The following bit manipulation operators are provided in Handel-C:

<< Shift left
>> Shift right
<- Take least significant bits
\\ Drop least significant bits
@ Concatenate bits
[] Bit selection
width(Expression) Width of expression

6.4.1 Shift operators
The shift operators shift a value left or right by a variable number of bits resulting in a value
of the same width as the value being shifted. Any bits shifted outside this width are lost.

When shifting unsigned values, the right shift pads the upper bits with zeros. When right
shifting signed values, the upper bits are copies of the top bit of the original value. Thus, a
shift right by 1 divides the value by 2 and preserves the sign. For example:

static unsigned 4 a = 0b1101;
static unsigned (log2ceil(width(a)+1)) b = 2;

a = a >> b; //a becomes 0b0011
b--;
a = a >> b; //a becomes 0b0001

The width of b needs to have a width equal to log2(width(a)+1) rounded up to the
nearest whole number. This can be calculated using the log2ceil macro.

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 93

6.4.2 Take /drop operators
The take operator, <-, returns the n least significant bits of a value. The drop operator, \\,
returns all but the n least significant bits of a value. n must be a compile-time constant. For
example:

macro expr four = 8 / 2;
unsigned int 8 x;
unsigned int 4 y;
unsigned int 4 z;

x = 0xC7;
y = x <- four;
z = x \\ 4;

This results in y being set to 7 and z being set to 12 (or 0xC in hexadecimal).

6.4.3 Concatenation operator
The concatenation operator, @, joins two sets of bits together into a result whose width is the
sum of the widths of the two operands. For example:

unsigned int 8 x;
unsigned int 4 y;
unsigned int 4 z;

y = 0xC;
z = 0x7;
x = y @ z;

This results in x being set to 0xC7. The left operand of the concatenation operator forms the
most significant bits of the result.

You may also use the concatenation operator to zero pad a variable to a given width.

unsigned int 8 x;
unsigned int 8 y;
unsigned int 16 z;

z = (0 @ x) * (0 @ y); //width of zero constant inferred to be 8
bits

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 94

6.4.4 Bit selection
Individual bits or a range of bits may be selected from a value by using the [] operator. Bit
0 is the least significant bit and bit n-1 is the most significant bit where n is the width of the
value. For example:

unsigned int 8 x;
unsigned int 1 y;
unsigned int 5 z;

x = 0b01001001;
y = x[4];
z = x[7:3];

This results in y being set to 0 and z being set to 9. Note that the range of bits is of the form
MSB:LSB and is inclusive. Thus, the range 7:3 is 5 bits wide.

The bit selection values must be fixed at compile time.

Bit selection is allowed in RAM, ROM and array elements. For example:

ram int 7 w[23];
int 5 x[4];
int 3 y;
unsigned int 1 z;

y = w[10][4:2];
z = (unsigned 1)x[2][0];

The 10 specifies the RAM entry and the 4:2 selects three bits from the middle of the value
in the RAM w is set to the value of the selected bits.

Similarly, z is set to the least significant bit in the x[2] variable.

You cannot assign to bit ranges, only read from them.

6.4.5 Width operator
The width() operator returns the width of an expression. It is a compile time constant. For
example:

x = y <- width(x);

This takes the least significant bits of y and assigns them to x. The width() operator
ensures that the correct number of bits is taken from y to match the width of x.

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 95

6.5 Arithmetic operators
The following arithmetic operators are provided in Handel-C:

Operator Meaning

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo arithmetic

Any attempt to perform one of these operations on two expressions of differing widths or
types results in a compiler error. For example:

int 4 w;
int 3 x;
int 4 y;
unsigned 4 z;

y = w + x; // ILLEGAL
z = w + y; // ILLEGAL

The first statement is illegal because w and x have different widths. The second statement
is illegal because w and y are signed integers and z is an unsigned integer.

Width of results
All operators return results of the same width as their operands. Thus, all overflow bits are
lost. For example:

unsigned int 8 x;
unsigned int 8 y;
unsigned int 8 z;

x = 128;
y = 192;
z = 2;

x = x + y;
z = z * y;

This example results in x being set to 64 and z being set to 128.

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 96

By using the bit manipulation operators to expand the operands, it is possible to obtain extra
information from the arithmetic operations. For instance, the carry bit of an addition or the
overflow bits of a multiplication may be obtained by first expanding the operands to the
maximum width required to contain this extra information. For example:

unsigned int 8 u;
unsigned int 8 v;
unsigned int 9 w;
unsigned int 8 x;
unsigned int 8 y;
unsigned int 16 z;

w = (0 @ u) + (0 @ v);
z = (0 @ x) * (0 @ y);

In this example, w and z contain all the information obtainable from the addition and
multiplication operations. Note that the constant zeros do not require a width specification
because the compiler can infer their widths from the usage. The zeros in the first
assignment must be 1 bit wide because the destination is 9 bits wide while the source
operands are only 8 bits wide. In the second assignment, the zero constants must be 8 bits
wide because the destination is 16 bits wide while the source operands are only 8 bits wide.

6.6 Relational operators

Operator Meaning

== Equal to
!= Not equal to
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal

These operators compare values of the same width and return a single bit wide unsigned
int value of 0 for false or 1 for true. This means that this conventional C code is invalid:

unsigned 8 w, x, y, z;

w = x + (y >z); // NOT ALLOWED

Instead, you should write:

w = x + (0 @ (y > z));

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 97

6.6.1 Signed/unsigned compares
Signed/signed compares and unsigned/unsigned compares are handled automatically.
Mixed signed and unsigned compares are not handled automatically. For example:

unsigned 8 x;
int 8 y;

if (x>y) // Not allowed
...

To compare signed and unsigned values you must sign extend each of the parameters. The
above code can be rewritten as:

unsigned 8 x;
int 8 y;

if ((int)(0@x) > (y[7]@y))
...

6.6.2 Implicit compares
The Handel-C compiler inserts implicit compares with zero if a value is used as a condition
on its own. For example:

while (1)
{

...
}

Is directly expanded to:

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 98

while (1 != 0)
{

...
}

6.7 Logical operators

Operator Meaning

&& Logical and

|| Logical or

! Logical not
These operators are provided to combine conditions as in conventional C. Each operator
takes 1-bit unsigned operands and returns a 1-bit unsigned result.

Note that the operands of these operators need not be the results of relational operators.
This feature allows some familiar looking conventional C constructs.

Example:
if (x || y > z)

w = 0;

In this example, the variable x need not be 1 bit wide. If it is wider, the Handel-C compiler
inserts a compare with 0.
if (x != 0 || y > z)

w = 0;

The condition of the if statement is true if x is not equal to 0 or y is greater than z.

C-like example
while (x || y)
{

...
}

Again, if the variables are wider than 1-bit, the Handel-C compiler inserts compares with 0.

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 99

6.7.1 Bitwise logical operators

Operator Meaning

& Bitwise and

| Bitwise or

^ Bitwise exclusive or

~ Bitwise not
These operators perform bitwise logical operations on values. Both operands must be of the
same type and width: the resulting value will also be this type and width. For example:

unsigned int 6 w;
unsigned int 6 x;
unsigned int 6 y;
unsigned int 6 z;

w = 0b101010;
x = 0b011100;
y = w & x;
z = w | x;
w = w ^ ~x;

This example results in y having the value 0b001000, z having the value 0b111110 and w
having the value 0b001001.

6.8 Conditional operator

Handel-C provides the conditional expression construct familiar from conventional C. Its
format is:

Expression ? Expression : Expression

The first expression is evaluated and if true, the whole expression evaluates to the result of
the second expression. If the first expression is false, the whole expression evaluates to the
result of the third expression. For example:
x = (y > z) ? y : z;

This sets x to the maximum of y and z. This code is directly equivalent to:

Handel-C Language Reference Manual

>: 6. Expressions

>: Chapter :6 100

if (y > z)
x = y;

else
x = z;

The advantage of using this construct is that the result is an expression so it can be
embedded in a more complex expression. For example:
x = ((w==0) ? y : z) + 4;

In this case, the signedness and widths of x, y and z must match (as the value of y or z may
be assigned to x), but those of w need not.

6.9 Member operators (. / ->)
The structure member operator (.) is used to access members of a structure or mpram, or to
access a port within an interface.

The structure pointer operator (->) can be used, as in ANSI-C. It is used to access the
members of a structure or mpram, when the structure/mpram is referenced through a
pointer.

mpram Fred
{
ram <unsigned 8> ReadWrite[256]; // Read/write port
rom <unsigned 8> Read[256]; // Read only port

} Joan;

mpram Fred *mpramPtr;

mpramPtr = &Joan;

x = mpramPtr->Read[56];

If a memory is made up of structures, the structure member operator can be used to
reference structure members within the memory

ram struct S compRAM[100];
ram struct S (*ramStructPtr)[];
ramStructPtr = &compRAM;
x = (*ramStructPtr)[10].a;

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 101

>: 7 Functions and macros

7.1 Comparison of functions and macros
Handel-C includes and extends the range of functions and macros offered by ANSI-C.

 Return
value?

Typed return
values and
parameters?

Called by
reference?

Shared
hardware?

Functions Can have Yes No Yes
Arrays of functions Can have Yes No Yes
Inline functions Can have Yes No No
Preprocessor macros Can have No Yes No
Macro expressions Must have No Yes No
Shared expressions Must have No Yes Yes
Macro procedures None No Yes No

7.1.1 Functions and macros: language issues

Called by reference or value
Functions employ call-by-value on their parameters, whereas macros effectively employ call-
by-reference. Consider the code:

void inline f_pseudoswap (int 12 x, int 12 y)
{

par
{

x = y;
y = x;

}
}

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 102

macro proc mp_swap (x, y)
{

par
{

x = y;
y = x;

}
}

If you call mp_swap(a,b) the values of a and b will be swapped.

If you call call f_pseudoswap(a,b) the values a and b are copied to the formal
parameters x and y of f_pseudoswap. x and y are swapped, but a and b are
unaffected. The swap function with the same behaviour as the macro procedure is therefore

void inline f_swap (int 12 * x, int 12 * y)
{

par
{

* x = * y;
* y = * x;

}
}

with a call of the form f_swap(&a,&b).

Typed or untyped parameters
Function parameters must have a type, although the width can sometimes be inferred by the
compiler.

Macro expressions and procedures are un-typed in the sense that their formal parameters
can’t be given types. The type of macro parameters is inferred from the type in the call
statement.

This means that it is better to use macros for parameterizable code. For example, macro
procedures can be used in libraries if you want to create multiple instances of hardware, but
leave them untyped to make the code more generic.

Recursion
In Handel-C, functions may not be recursive. Macro procedure and macro expressions can
be used to capture compile-time recursion.
If you use recursive macro procedures you need to use ifselect to guard the base case
(the condition where the recursion terminates). If you use recursive macro expressions, you
need to use select to guard the base case.

Macro procedure example:

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 103

unsigned 4 g;
macro proc p(x)
{

ifselect(width(x) != 0)
{

g = 0@x;
p(x\\1);

}
else
delay;

}

set clock = external;
void main()
{

unsigned 4 i;
p(i);

}

Macro expression example:

macro expr copycat (copies, bits) =
select (copies <= 0, (unsigned 0) 0,

 bits @ copycat (copies - 1, bits));

7.1.2 Functions and macros: sharing hardware
Calls to functions and shared expressions result in a single shared piece of hardware. This is
equivalent to an ANSI-C function resulting in a single shared section of machine code.

Shared hardware will reduce the size of your design, but care is needed if you have parallel
code where multiple branches access the shared hardware. Shared hardware may also
compromise the speed of your design as it tends to lead to an increase in logic depth.

Each call to an inline function, macro procedure or macro expression results in a separate
piece of hardware.

Arrays of functions allow a specified number of copies to be created.

7.1.3 Functions and macros: clock cycles
Macro expressions and shared expressions are evaluated in a single clock cycle, where the
expression is assigned to a variable. Functions and macro procedures may involve control
logic, and may take many cycles.

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 104

7.1.4 Functions and macros: examples
There are many ways in which a much-used code fragment can be expressed. The
examples below all multiply a value by 1.5.

Preprocessor macro
#define de_sesqui(s) ((s) + ((s) >> 1))
#define dp_sesqui(d,s) ((d) = (s) + ((s) >> 1))

Macro expression
macro expr me_sesqui (s) = s + (s >> 1);

Shared expression
shared expr se_sesqui (s) = s + (s >> 1);

Macro procedure
macro proc mp_sesqui (d, s)
{

d = s;
d += (d >> 1);

}

Function
void f_sesqui (int * d, int s) //"shared" function without return
{

* d = s;
* d += ((* d) >> 1);

}

int rf_sesqui (int s) //"shared" function with return
{

int ret;
ret = s;
ret += (ret >> 1);
return ret;

}

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 105

Array of functions
void af_sesqui [5] (int * d, int s) //function array without return
{

* d = s;
* d += ((* d) >> 1);

}

int arf_sesqui [5] (int s) // function array with return
{

int ret;
ret = s;
ret += (ret >> 1);
return ret;

}

Inline function
void inline if_sesqui (int * d, int s) // inline
function without return
{

* d = s;
* d += ((* d) >> 1);

}

int inline irf_sesqui (int s) // inline function with return
{

int ret;
ret = s;
ret += (ret >> 1);
return ret;

}

How to call the example macros and functions
 The example macros and functions above can be called using code such as:

{
int 5 x, y;
x = 10;

y = de_sesqui (x);
dp_sesqui (y, x);

y = me_sesqui (x);

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 106

y = se_sesqui (x);

mp_sesqui (y, x);

f_sesqui (& y, x);
y = rf_sesqui (x);

af_sesqui[2] (& y, x);
y = arf_sesqui[2] (x);

if_sesqui (& y, x);
y = irf_sesqui (x);

}

7.1.5 Accessing external names
You can refer to functions, macros and shared expressions that have been defined in
another file by prototyping them. You prototype by declaring an object at the top of the file in
which it is used.

Function prototypes are in the following format:

returnType functionName(parameterTypeList);

Macro prototypes are of the form:

macro expr Name(parameterList);

macro proc Name(parameterList);

Functions and macros may be static or extern. static functions and macros may only
be used in the file where they are defined.

You can collect all the prototypes into a single header file and then #include it within your
code files.

You can access variables declared in other files by using the extern keyword.

 You cannot use variables to communicate between clock domains. Variables are
restricted to a single clock domain. The only items that can connect across separate
clock domains are channels and mprams.

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 107

7.2 Functions
Functions are similar to functions in ANSI-C. A function is compiled to be a single shared
piece of hardware, much as a C compiler generates a single shared block of machine code.

Handel-C has been extended to provide arrays of functions and inline functions.

Arrays of functions provide multiple copies of a function. You can select which copy is used
at any time.

Inline functions are similar to macros in that they are expanded wherever they are used.

You may also use a macro proc (a parameterized macro procedure).

Functions take arguments and return values. A function that does not return a value is of
type void. The default return type is int undefined. Functions that do not take
arguments have void as their parameter list, for example:

void main(void)

As in ANSI-C, function arguments are passed by value. This means that a local copy is
created that is only in scope within the function. Changes take place on this copy.

To access a variable outside the function, you must pass the function a pointer to that
variable. A local copy will be made of the pointer, but it will still point to the same variable.
This is known as passing by reference.

Architectural types (hardware constructs) must be passed by reference (a pointer to or
address of the construct). The only architectural type that can be passed to or returned by a
function by value is a signal. All others (and structures containing them) must be passed by
reference. Arrays and functions can also only be passed by reference.

7.2.1 Function definitions, declarations and prototypes
Function definitions, declarations and prototypes are defined as in ANSI-C. Functions must
be declared in every file that they are used in, though they should only be defined once. It is
common to put function prototypes into a header file and #include that in every file where
they are used.

Function definition
The definition of a function consists of its name and parameters plus the code body that it
performs when it is called.

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 108

returnType Name(parameterList)
{

declarations
statements

}

Function prototype
A function prototype lists the function name, return type and the types of the parameters.

returnType Name(parameterType parameter_1, parameterType parameter_n);

The parameter names in a function prototype are only in scope in the prototype. You can
use different names in the definition of the function. The parameter types are used by the
compiler to check that the correct types are used for the function arguments within the rest of
the file.

Function declaration
A function declaration lists the function name and return type.

returnType Name();

7.2.2 Functions: scope
Functions cannot be defined within other functions. By default, functions are extern (they
can be used anywhere). Functions can also be defined as static (they can only be used in
the file in which they are defined).

7.2.3 Arrays of functions
An array of functions is a collection of identical functions. It is not the same as an array of
function pointers (each of whose elements can point to a different function). A function array
allows you to run different copies of the same function in parallel. Without this construct, the
only safe way to run a function in parallel with itself would be to explicitly declare two
functions with different names.

Function arrays allow functions to be copied and shared neatly. For example:

unsigned func[2](unsigned x, unsigned y)
{

return (x + y);
}

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 109

Syntax
The syntax is a normal function declaration, with square brackets added to specify that this
is an array declaration as well as a function declaration. The general form of a function array
declaration is:

returnType Name[Size](parameterList);

7.2.4 Using static variables in arrays of functions
In the example below each function in the array has its own copy of the static variable ‘t’.
Thus, if func[0]’s copy of t is modified, func[1]’s copy remains unaffected.

set clock = external "C1";

unsigned func[2](unsigned a, unsigned b)
{
static unsigned t = 0;
t++;
return a + b + t;

}

void main(void)
{
unsigned 7 p, q, r, s, t, u, v, w, x, y, z;

par
{
p = 1;
q = 1;
r = 1;
s = 1;
t = 1;
u = 1;

}
par
{
v = func[0](p, q); // v = 3 (t in func[0] is 1)
w = func[1](r, s); // w = 3 (t in func[1] is 1)

}
x = func[0](t, u); // x = 4 (t in func[0] is 2)
y = func[0](v, w); // y = 9 (t in func[0] is 3)

z = func[1](x, y); // z = 15 (t in func[1] is 2)
}

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 110

Function arrays: Example
set clock = external "P1";

// Function array prototype

unsigned func[2](unsigned x, unsigned y);

// Main program

void main(void)
{

unsigned a, b, c, d, e, f;
unsigned short r1, r2, r3, r4;
unsigned result;

par
{

a = 12;
b = 22;
c = 32;
d = 42;
e = 52;
f = 62;

}

par
{

r1 = func[0](a, b);
r2 = func[1](c, d);

}

par
{

r3 = func[0](e, f);
r4 = func[1](r1, r2);

}

result = func[0](r3, r4);
}

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 111

// Function array definition

unsigned func[2](unsigned x, unsigned y)
{

return (x + y);
}

7.2.5 Function pointers
These are a very powerful, yet potentially confusing feature. In situations where any one of a
number of functions can be called at a particular point, it is neater and more concise to use a
function pointer, where the alternative might be a long if-else chain, or a long switch
statement (see example).

Function pointers can be assigned with or without the address operator & (similar to
assigning array addresses). Functions pointed to can be called with or without the indirection
operator.

A function name can be assigned to a pointer without the &

p = addeven;

although the & format is clearer:

p = &addeven;

A function pointed to can be called by writing

(*chk)(a, b);

This can also be written in the shorthand form:

chk(a, b);

The first form is preferable, as it tips off anyone reading the code that a function pointer is
being used.

Function pointers: example
Consider the following program:

set clock = external "P1";

unsigned 1 check(short int *a, short int *b,
unsigned 1 (*chk)(const short int *, const short int *));

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 112

unsigned 1 addeven(const short int *x, const short int *y);
unsigned 1 minuseven(const short int *x, const short int *y);
unsigned 1 diveven(const short int *x, const short int *y);
unsigned 1 modeven(const short int *x, const short int *y);

void main(void)
{

short int m, n;
unsigned 2 choice;
unsigned 1 result;
unsigned 1 (*p)(const short *, const short *);

par
{

m = 19;
n = 47;

}

do
{
switch (choice)
{
case 0:

p = addeven;
break;

case 1:
p = minuseven;
break;

case 2:
p = diveven;
break;

case 3:
p = modeven;
break;

default:
delay;
break;

}

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 113

par
{

result = check(&m, &n, p);
choice++;

}
}
while(choice);

}

unsigned 1 check(short int *a, short int *b,
unsigned 1 (*chk)(const short int *, const short int *))

{
return (*chk)(a, b);

}

unsigned 1 addeven(const short int *x, const short int *y)
{

return (unsigned)(*x + *y)[0];
}

unsigned 1 minuseven(const short int *x, const short int *y)
{

return (unsigned) (*x - *y)[0];
}

unsigned 1 diveven(const short int *x, const short int *y)
{

return (unsigned) (*x / *y)[0];
}

unsigned 1 modeven(const short int *x, const short int *y)
{

return (unsigned) (*x % *y)[0];
}

The function addeven checks whether the sum of two numbers is even. Similar checks are
carried out by minuseven (difference of two numbers), diveven (division) and modeven
(modulus). The function check simply calls the function whose pointer it receives, with the
arguments it receives. This gives a consistent interface to the xxxeven functions. Pay close
attention to the declaration of check, and of function pointer p. The parentheses around *p
(and *chk in the declaration of check) are necessary for the compiler to make the correct
interpretation.

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 114

Possible code optimization
Inside the main program body, check was called like this:
check(&m, &n, p);

It could have been written like this:
check(&m, &n, xxxeven);

eliminating the need for an additional pointer variable.

Here is the main section written using this form of expression:

void main(void)
{

short int m, n;
unsigned 2 choice;
unsigned 1 result;

par
{

m = 19;
n = 47;

}
do
{

switch (choice)
case 0:

result = check(&m, &n, &addeven);
break;

case 1:
result = check(&m, &n, &multeven);
break;

case 2:
result = check(&m, &n, &diveven);
break;

case 3:
result = check(&m, &n, &modeven);
break;

default:
break;

choice++;
}

while(choice);
}

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 115

7.2.6 Shared code restrictions
Functions must not be shared by two different parts of the program on the same clock cycle.
For example:

int func(int x, int y);

void main(void)
{

int a, b, c, d, e, f, foo;
// etc ...

par
{

a = func(b, c);
{

b = foo;
d = func(e, f); // NOT ALLOWED

}
}
// etc ...

}

int func(int x, int y);
{

if (x ==y)
delay;

else
{

x = x % y;
}
x *= 10;

return(x);
}

This is not allowed because part of the single function is used twice in the same clock cycle.

This overlapping usage is not detected by the compiler, as it is a run-time error. It is
therefore the programmer's responsibility to ensure that code usage does not overlap. This
may be done by declaring functions to be inline (are expanded whenever they are used) or
declaring an array of functions, one to be used in each parallel branch.

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 116

inline int func(x, y);

par
{

a = func(b, c);
{
b = foo;
d = func(e, f);
}

}

or

int func[3](x, y);

par
{

a = func[0](b, c);
{
b = foo;
d = func[1](e, f);
}

}

7.2.7 Multiple functions in a statement
Because each statement in Handel-C must take a single clock cycle, you cannot have
multiple functions in a single statement.

Instead of

y = f(g(x));//illegal

you can write

z=g(x);
y=f(z);

Instead of

y = f(x) + g(z); //illegal

you can write:

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 117

par
{

a = f(x);
b = g(z);

}
y = a+b;

7.2.8 Recursion in macros and functions.
Macros can be recursive in Handel-C, but due to the absence of a stack in Handel-C,
functions cannot be recursive.

The depth of recursion, though unbounded, must be determinable at compile-time.

7.3 Macros
The Handel-C compiler passes source code through a standard C preprocessor before
compilation allowing the use of #define to define constants and macros in the usual
manner. Since the preprocessor can only perform textual substitution, some useful macro
constructs cannot be expressed. For example, there is no way to create recursive macros
using the preprocessor.

Handel-C provides additional macro support to allow more powerful macros to be defined
(for example, recursive macro expressions). In addition, Handel-C supports shared macro
expressions to generate one piece of hardware which is shared by a number of parts of the
overall program similar to the way that procedures allow conventional C to share one piece
of code between many parts of a conventional program.

7.3.1 Non-parameterized macro expressions
Non-parameterized macro expressions are of two types:

• simple constant equivalent to #define
• a constant expression

Constant
This first form of the macro is a simple expression. For example:

macro expr DATA_WIDTH = 15;

int DATA_WIDTH x;

This form of the macro is similar to the #define macro. Whenever DATA_WIDTH appears
in the program, the constant 15 is inserted in its place.

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 118

Constant expression
To provide a more general solution, you can use a real expression. For example:

macro expr sum = (x + y) @ (y + z);

v = sum;
w = sum;

7.3.2 Parameterized macro expressions
Handel-C allows macros with parameters. For example:

macro expr add3(x) = x+3;

y = add3(z);

This is equivalent to the following code:

y = z + 3;

This form of the macro is similar to the #define macro in that every time the add3() macro
is referenced, it is expanded in the manner shown above. In this example, an adder is
generated in hardware every time the add3() macro is used.

7.3.3 Select operator
The select(...) operator is used to mean ‘select at compile time’. Its general usage is:

select(Expression1, Expression2, Expression3)

Expression1 must be a compile time constant. If Expression1 evaluates to true then the
Handel-C compiler replaces the whole expression with Expression2. If Expression1
evaluates to false then the Handel-C compiler replaces the whole expression with
Expression3.

Comparison with conditional operator
The difference between select and the conditional operators is seen in this example:

w = (width(x)==4 ? y : z);

The example generates hardware to compare the width of the variable x with 4 and set w to
the value of y or z depending on whether this value is equal to 4 or not.

This is probably not what was intended because both width(x) and 4 are constants. What
was probably intended was for the compiler to check whether the width of x was 4 and then

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 119

simply replace the whole expression above with y or z according to the value. This can be
written as follows:

w = select(width(x)==4 , y , z);

In this example, the compiler evaluates the first expression and replaces the whole line with
either w=y; or w=z;. No hardware for the conditional is generated.

Combining with macros
This is more useful when macros are combined with this feature.

macro expr adjust(x, n) =
select(width(x) < n, (0 @ x), (x <- n));

unsigned 4 a;
unsigned 5 b;
unsigned 6 c;

b = adjust(a, width(b));
b = adjust(c, width(b));

This example is for a macro that equalizes widths of variables in an assignment. If the right
hand side of an assignment is narrower than the left hand side then the right hand side must
be padded with zeros in its most significant bits. If the right hand side is wider than the left
hand side, the least significant bits of the right hand side must be taken and assigned to the
left hand side.

The select(...) operator is used here to tell the compiler to generate different expressions
depending on the width of one of the parameters to the macro. The last two lines of the
example could have been written by hand as follows:

b = 0 @ a;
b = c <- 5;

The macro comes into its own if the width of one of the variables changes. Suppose that
during debugging, it is discovered that the variable a is not wide enough and needs to be 8
bits wide to hold some values used during the calculation. Using the macro, the only change
required would be to alter the declaration of the variable a. The compiler would then replace
the statement b = 0 @ a; with b = a <- 5; automatically.

This form of macro also comes in useful is when variables of undefined width are used. If
the compiler is used to infer widths of variables, it may be tedious to work out by hand which
form of the assignment is required. By using the select(...) operator in this way, the
correct expression is generated without you having to know the widths of variables at any
stage.

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 120

7.3.4 ifselect
ifselect checks the result of a compile-time constant expression at compile time. If the
condition is true, the following statement or code block is compiled. If false, it is dropped and
an else condition can be compiled if it exists. Thus, whole statements can be selected or
discarded at compile time, depending on the evaluation of the expression.

The ifselect construct allows you to build recursive macros, in a similar way to select. It
is also useful inside replicated blocks of code as the replicator index is a compile-time
constant. Hence, you can use ifselect to detect the first and last items in a replicated
block of code and build pipelines.

Syntax
ifselect (condition)

statement 1
[else

statement 2]

Example
int 12 a;
int 13 b;
int undefined c;

ifselect(width(a) >= width(b))
c = a;

else
c = b;

c is assigned to by either a or b, depending on their width relationship.

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 121

Pipeline example
unsigned init;
unsigned q[15];
unsigned 31 out;

init = 57;
par (r = 0; r < 16; r++)
{

ifselect(r == 0)
q[r] = init;

else ifselect(r == 15)
out = q[r-1];

else
q[r] = q[r-1];

}

7.3.5 Recursive macro expressions
Preprocessor macros (those defined with #define) cannot generate recursive expressions.
By combining Handel-C macros (those defined with macro expr) and the select(...)
operator, recursive macros can express complex hardware simply. This type of macro is
particularly important in Handel-C where the exact form of the macro may depend on the
width of a parameter to the macro.

Variable sign extension example
When assigning a narrow signed variable to a wider variable, the most significant bits of the
wide variable should be padded with the sign bit (MSB) of the narrow variable.

Value 4-bit representation Conversion to 8-bit representation
-2 0b1110 0b11111110

6 0b0110 0b00000110

The following code suffices for a 4-bit to 8-bit conversion

int 8 x;
int 4 y;

x = y[3] @ y[3] @ y[3] @ y[3] @ y;

but it is tedious for variables that differ by a significant number of bits. It also does not deal
with the case when the exact widths of the variables are not known. What is needed is a
macro to sign extend a variable. For example:

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 122

macro expr copy(x, n) =
select(n==1, x, (x @ copy(x, n-1)));

macro expr extend(y, m) =
copy(y[width(y)-1], m-width(y)) @ y;

int a;
int b; // Where b is known to be wider than a

b = extend(a, width(b));

The copy macro generates n copies of the expression x concatenated together. The macro
is recursive and uses the select(...) operator to evaluate whether it is on its last iteration
(in which case it just evaluates to the expression) or whether it should continue to recurse by
a further level.

The extend macro concatenates the sign bit of its parameter m-k times onto the most
significant bits of the parameter. Here, m is the required width of the expression y and k is
the actual width of the expression y.

The final assignment correctly sign extends a to the width of b for any variable widths where
width(b) is greater than width(a).

7.3.6 Recursive macro expressions: a larger example
This example illustrates the generation of large quantities of hardware from simple macros.
The example is a multiplier whose width depends on the parameters of the macro.
Although Handel-C includes a multiplication operator as part of the language, this example
serves as a starting point for generating large regular hardware structures using macros.

The multiplier generates the hardware for a single cycle long multiplication operation from a
single macro. The source code is:

macro expr multiply(x, y) = select(width(x) == 0, 0,
multiply(x \\ 1, y << 1) +
(x[0] == 1 ? y : 0));

a = multiply (b , c);

At each stage of recursion, the multiplier tests whether the bottom bit of the x parameter is 1.
If it is then y is added to the ‘running total’. The multiplier then recurses by dropping the LSB
of x and multiplying y by 2 until there are no bits left in x. The overall result is an expression
that is the sum of each bit in x multiplied by y. This is the familiar long multiplication
structure. For example, if both parameters are 4 bits wide, the macro expands to:

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 123

a = ((b \\ 3)[0]==1 ? c<<3 : 0) +
((b \\ 2)[0]==1 ? c<<2 : 0) +
((b \\ 1)[0]==1 ? c<<1 : 0) +
(b[0]==1 ? c : 0);

This code is equivalent to:

a = ((b & 8)==8 ? c*8 : 0) +
((b & 4)==4 ? c*4 : 0) +
((b & 2)==2 ? c*2 : 0) +
((b & 1)==1 ? c : 0);

which is a standard long multiplication calculation.

7.3.7 Shared expressions
By default, Handel-C generates all the hardware required for every expression in the whole
program. This can mean that large parts of the hardware are idle for long periods. Shared
expressions allow hardware to be shared between different parts of the program to decrease
hardware usage.

The shared expression has the same format as a macro expression but does not allow
recursion. You can use recursive macro expressions or let...in to generate recursive
shared expressions.

Example
a = b * c;
d = e * f;
g = h * i;

This code generates three multipliers. Each one will only be used once and none of them
simultaneously. This is a massive waste of hardware. You can improve the hardware
efficiency with a shared expression:

shared expr mult(x, y) = x * y;

a = mult(b, c);
d = mult(e, f);
g = mult(h, i);

In this example, only one multiplier is built and it is used on every clock cycle. If speed is
required, you can build three multipliers executing in parallel.

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 124

Warning
It is not always the case that less hardware is generated by using shared expressions
because multiplexers may need to be built to route the data paths. Some expressions use
less hardware than the multiplexers associated with the shared expression.

7.3.8 Using recursion to generate shared expressions
Although shared expressions cannot use recursion directly, macro expressions can be used
to generate hardware which can then be shared using a shared expression. For example, to
share a recursive multiplier you could write:

macro expr multiply(x, y) = select(width(x) == 0, 0,
multiply(x \\ 1, y << 1) +
(x[0] == 1 ? y : 0));

shared expr mult(x, y) = multiply(x, y);

a = mult(b, c);
d = mult(e, f);

The macro expression builds a multiplier and the shared expression allows that hardware to
be shared between the two assignments.

7.3.9 Restrictions on shared expressions
Shared expressions must not be shared by two different parts of the program on the same
clock cycle. For example:

shared expr mult(x, y) = x * y;

par
{

a = mult(b, c);
d = mult(e, f); // NOT ALLOWED

}

This is not allowed because the single multiplier is used twice in the same clock cycle.

You need to ensure that shared expressions in parallel branches are not shared on the
same clock cycle.

7.3.10 let … in
let and in allow you to declare macro expressions within macro expressions. In this way,
complex macros may be broken down into simple ones, whilst still being grouped together in
a single block of code. They also provide easy sharing of recursive macros.

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 125

The let keyword starts the declaration of a local macro; the in keyword ends the
declaration and defines its scope.

Example
macro expr Fred(x) =
let macro expr y = x*2; in
y+3; // Returns x*2+3

The top line defines the macro name and parameters. The second line defines y within the
macro definition. The last line expresses the value of the macro in full.

Independent let …in definitions
macro expr op(a, b) =

let macro expr t2(x) = x * 2; in
let macro expr d3(x) = x / 3; in
let macro expr t4(x) = x * 4; in

t2(a) + d3(b) + t4(a - b) + t2(b - a);

is equivalent to writing

macro expr op(a, b) = (a * 2) + (b / 3) + ((a-b) * 4) + ((b-a) * 2);

Related let …in definitions
macro expr op(a, b) =

let macro expr sum(x, y) = x + y; in
let macro expr mult(x, y) = x * sum(x, y); in

mult(a, b) - (b * b);

sum is defined within the macro definition, then mult is defined using sum. This example is
equivalent to:

macro expr op(a, b) = (a * (a + b)) - (b * b);

Shared recursive macro
A recursive multiplier illustrating the way in which let…in can be used to share recursive
macros.

shared expr mult(p, q) =
let macro expr multiply(x, y) =

select(width(x) == 0, 0, multiply(x \\ 1, y << 1)
+ (x[0] == 1 ? y : 0)); in
multiply(p, q)

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 126

Scope of definitions
The inner macros are not accessible outside the outer macro

{
chanout <unsigned 16> och;
int 16 i, j, k;
{

macro expr Cube(x) =
let macro expr Sqr(x) = x*x; in

x * Sqr(x)
i = Cube(3) // Correct use
j = Sqr(3) // Error - out of scope

}
k = Cube(2); //Error - out of scope

}

7.3.11 Macro procedures
Macro procedures may be used to replace complete statements to avoid tedious repetition
while coding. A single macro procedure can be expanded into a complex block of code. It
generates the hardware for the statement each time it is referenced.

The general syntax of macro procedures is:

macro proc Name(Params) Statement

Macros may be prototyped (like functions). This allows you to declare them in one file and
use them in another. A macro prototype consists of the name of the macro plus a list of the
names of its parameters. E.g.

macro proc work(x, y);

If you have local or static declarations within the macro procedure, a copy of the variable will
be created for each copy of the macro.

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 127

Example
macro proc output(x, y)

{
out ! x;
out ! y;

}

output(a + b, c * d);
output(a + b, c * d);

This example writes the two expressions a+b and c*d twice to the channel out. This
example also illustrates that the statement may be a code block - in this case two
instructions executed sequentially.

It expands to 4 channel output statements.

Macro procedures compared to pre-processor macros
Macro procedures differ from preprocessor macros in that they are not simple text
replacements. The statement section of the definition must be a valid Handel-C statement.

The following code is valid as a #define pre-processor macro but not as a macro
procedure:

#define test(x,y) if (x!=(y<<2)) // not valid as a macro procedure
as not a complete statement

test(a,b)
{

a++;
}
else
{

b++;
}

Incomplete statements will not compile as macro procedures:

macro proc test(x,y) if (x!=(y<<2)) // Incomplete statement, will
not compile

A complete statement will not successfully replace an incomplete one:

Handel-C Language Reference Manual

>: 7. Functions and macros

>: Chapter :7 128

macro proc test(x,y) if (x!=(y<<2)); // Complete statement will
compile

test(a,b) // will expand to if (x!=(y<<2));
{

a++;
}
else // this else has no associated if
{

b++;
}

Here, the macro procedure is not defined to be a complete statement so the Handel-C
compiler generates an error. This restriction provides protection against writing code which
is generally unreadable and difficult to maintain.

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 129

>: 8 Introduction to timing
A Handel-C program executes with one clock source for each main statement. It is
important to be aware exactly which parts of the code execute on which clock cycles. This is
not only important for writing code that executes in fewer clock cycles but may mean the
difference between correct and incorrect code when using Handel-C’s parallelism.
Experienced programmers can immediately tell which instructions execute on which clock
cycles. This information becomes very important when your program contains multiple
interacting parallel processes.

Knowing about clock cycles also becomes important when considering interfaces to external
hardware. It is important to understand timing issues before moving on to implementing
such interfaces because it is likely that the external device will place constraints on when
signals should change.

Avoiding certain constructs has a dramatic influence on the maximum clock rate that your
Handel-C program can run at.

8.1 Statement timing
The basic rule for working out the number of cycles used in a Handel-C program is:

 Assignment and delay take 1 clock cycle. Everything else is free.

• One clock cycle is used every time you write an assignment statement or a
delay statement. releasesema also uses one clock cycle.
A special case statement is supported of the form:
a = f(x);
to allow function calls which take multiple clock cycles.

• Channel communications use one clock cycle if both ends are ready to
communicate in the same clock domain. This is because the data from the
channel must be assigned to a variable. If one of the branches is not ready for
the data transfer then execution of the other branch waits until both branches
become ready.

• You can write any other piece of code and not use any clock cycles to execute it.

8.1.1 Example timings

Statements
x = y;
x = (((y * z) + (w * v))<<2)<-7;

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 130

Each of these statements takes one clock cycle.

Notice that even the most complex expression can be evaluated in a single clock cycle.
Handel-C builds the combinational hardware to evaluate such expressions; they do not
need to be broken down into simpler assembly instructions as would be the case for
conventional C.

Parallel statements
par
{

x = y;
a = b * c;

}

This code executes in a single cycle because each branch of the parallel statement takes
only one clock cycle. This example illustrates the benefits of parallelism. You can have as
many non-interdependent instructions as you wish in the branches of a parallel statement.
The total time for execution is the length of time that the longest branch takes to execute.
For example:

par
{

x = y;
{

a = b;
c = d;

}
}

This code takes two clock cycles to execute. On the first cycle, x = y and a = b take
place. On the second clock cycle, c = d takes place. Since both branches of the par
statement must complete before the par block can complete, the first branch delays for one
clock cycle while the second instruction in the second branch is executed.

While loop
x = 5;
while (x>0)
{

x--;
}

This code takes a total of 6 clock cycles to execute. One cycle is taken by the assignment of
5 to x. Each iteration of the while loop takes 1 clock cycle for the assignment of x-1 to x
and the loop body is executed 5 times. The condition of the while loop takes no clock
cycles as no assignment is involved.

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 131

For loop
for (x = 0; x < 5; x ++)
{

a += b;
b *= 2;

}

This code has an almost direct equivalent:

{
x = 0;
while (x<5)
{

a += b;
b *= 2;
x ++;

}
}

This code takes 16 clock cycles to execute. One is required for the initialization of x and
three for each execution of the body. Since the body is executed 5 times, this gives a total
of 16 clock cycles.

Decision
if (a>b)
{

x = a;
}
else
{

x = b;
}

This code takes exactly one clock cycle to execute. Only one of the branches of the if
statement is executed, either x = a or x = b. Each of these assignments takes one clock
cycle. Notice again that no time is taken for the test because no assignment is made. A
slightly different example is:

if (a>b)
{

x = a;
}

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 132

Here, if a is not greater than b, there is no else branch. This code therefore takes either 1
clock cycle if a is greater than b or no clock cycles if a is not greater than b.

Channels
Channel communications are more complex. The simplest example is:

par
{

link ! x; // Transmit
link ? y; // Receive

}

This code takes a single clock cycle to execute because both the transmitting and receiving
branches are ready to transfer at the same time. All that is required is the assignment of x
to y which, like all assignments, takes 1 clock cycle. A more complex example is:

par
{

{ // Parallel branch 1
a = b;
c = d;
link ! x;

}

link ? y; // Parallel branch 2
}

Here, the first branch of the par statement takes three clock cycles to execute. However,
the second branch of the par statement also takes three clock cycles to execute because it
must wait for two cycles before the transmitting branch is ready. The usage of clock cycles
is as follows:

Cycle Branch 1 Branch 2

1 a = b; delay
2 c = d; delay
3 Channel output Channel input

This approach extends to all the other Handel-C statements. See the summary of
statement timings for more detail.

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 133

8.1.2 Statement timing summary

Statement Timing

{...} Sum of all statements in sequential block
par {...} Length of longest branch in block
Function(), break, goto, continue No clock cycles
return(Expression); 1 clock cycle if Expression is assigned on return,

otherwise none.
Variable = Expression; 1 clock cycle
Variable ++; 1 clock cycle
Variable --; 1 clock cycle
++ Variable; 1 clock cycle
-- Variable; 1 clock cycle
Variable += Expression; 1 clock cycle
Variable -= Expression; 1 clock cycle
Variable *= Expression; 1 clock cycle
Variable /= Expression; 1 clock cycle
Variable %= Expression; 1 clock cycle
Variable <<= Constant; 1 clock cycle
Variable >>= Constant; 1 clock cycle
Variable &= Expression; 1 clock cycle
Variable |= Expression; 1 clock cycle
Variable ^= Expression; 1 clock cycle
Channel ? Variable; 1 clock cycle when transmitter is ready (in same

clock domain)
Channel ! Expression; 1 clock cycle when receiver is ready (in same

clock domain)
if (Expression) {...} else {...} Length of executed branch
while (Expression) {...} Length of loop body * number of iterations
do {...} while (Expression); Length of loop body * number of iterations
for (Init; Test; Iter) {...} Length of Init + (Length of body + length of Iter) *

number of iterations
switch (Expression) {...} Length of executed case branch

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 134

Statement Timing

prialt {...} 1 clock cycle for case communication when other
party is ready plus length of executed case branch
or length of default branch if present and no
communication case is ready
or infinite if no default branch and no
communication case is ready

releasesema(); 1 clock cycle
delay; 1 clock cycle

 The Handel-C compiler may insert delay statements to break combinational loops.

8.2 Avoiding combinational loops
If you wish to wait for a variable to be modified in a parallel process before continuing, you
might write:

while (x!=3); // WARNING!!

This is bad Handel-C code because it generates a combinational loop in the logic (This is
because of the way that Handel-C expressions are built to evaluate in zero clock cycles.)

This is easier to see if it is written as

while (x!=3)
{

// wait until x == 3
}

This empty loop must be broken by changing the code to:

while (x!=3)
{

delay;
}

This code takes no longer to execute but does not contain a combinational loop because of
the clock cycle delay in the loop body.

The Handel-C compiler spots this form of error, inserts the delay statement, and generates
a warning. It is considered better practice to include the delay statement in the code to
make it explicit

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 135

Similar problems occur with do ... while loops and switch statements in similar
circumstances. for loops with no iteration step can also cause combinational loops.

Further combinational loop code example
Code may look correct but still include an empty loop. For example:

while (x!=3)
{

if (y>z)
{

a++;
}

}

This if statement may take zero clock cycles to execute if y is not greater than z so even
though this loop body does not look empty a combinational loop is still generated. This is
more obvious written as

while (x!=3)
{

if (y>z)
{

a++;
}
else
{

// do nothing
}

}

 The solution is to add the else part of the if construct as follows:

while (x!=3)
{

if (y>z)
{

a++;
}
else
{

delay;
}

}

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 136

8.3 Parallel access to variables
The rules of parallelism state that the same variable must not be accessed from two
separate parallel branches. This avoids resource conflicts on the variables.

The rule may be relaxed to state that the same variable must not be assigned to more than
once on the same clock cycle but may be read as many times as required. This gives
powerful programming techniques. For example:

par
{

a = b;
b = a;

}

This code swaps the values of a and b in a single clock cycle.

Since exact execution time may be run-time dependent, the Handel-C compiler cannot
determine when two assignments are made to the same variable on the same clock cycle.
You should therefore check your code to ensure that the relaxed rule of parallelism is still
obeyed.

Example
Using this technique, a four-place queue can be written:

while(1)
{

par
{

int x[3];

x[0] = in;
x[1] = x[0];
x[2] = x[1];
out = x[2];

}
}

The value of out is the value of in delayed by 4 clock cycles. On each clock cycle, values
will move one place through the x array. For example:

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 137

Clock in x[0] x[1] x[2] out

1 5 0 0 0 0
2 6 5 0 0 0
3 7 6 5 0 0
4 8 7 6 5 0
5 9 8 7 6 5
6 10 9 8 7 6
7 11 10 9 8 7
8 12 11 10 9 8
9 13 12 11 10 9

8.4 Detailed timing example
This is an analyzed example that generates signals tied to real-world constraints. It shows
the generation of signals for a real time clock. The signals required are for microseconds,
seconds, minutes and hours.

The hardware generated will eventually be driven from an external clock. In order to write
the program, the rate of this clock must be known. It has been assumed to be 5 MHz on pin
P1.

The loop body takes one clock cycle to execute. The Count variable is used to divide the
clock by 5 to generate microsecond increments. As each variable wraps round to zero, the
next time step up is incremented.

set clock = external "P1";
void main(void)
{

unsigned 20 MicroSeconds;
unsigned 6 Seconds;
unsigned 6 Minutes;
unsigned 16 Hours;
unsigned 3 Count;

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 138

par
{

Count = 0;
MicroSeconds = 0;
Seconds = 0;
Minutes = 0;
Hours = 0;

}
while (1)
{

if (Count!=4)
Count++;

else
par
{

Count = 0;
if (MicroSeconds!=999999)

MicroSeconds++;
else

par
{

MicroSeconds = 0;
if (Seconds!=59)

Seconds++;
else

par
{

Seconds = 0;
if (Minutes!=59)

Minutes++;
else

par
{

Minutes = 0;
Hours++;

}
}

}
}

}
}

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 139

8.5 Time efficiency of Handel-C hardware
Handel-C requires that the clock period for a program is longer than the longest path through
combinational logic in the whole program. This means that, for example, once FPGA or PLD
place and route has been completed, the maximum clock rate for the system can be
calculated from the reciprocal of the longest path delay in the circuit.

For example, suppose the FPGA place and route tools calculate that the longest path delay
between flip-flops in a design is 70ns. The maximum clock rate that that circuit should be run
at is then 1/70ns = 14.3MHz.

If this calculated rate is not fast enough for the system performance or real time constraints
you can optimize your program to reduce the longest path delay and increase the maximum
possible clock rate.

One standard technique for optimizing efficiency is to use pipelining.

8.5.1 Reducing logic depth
Certain operations in Handel-C combine to produce deep logic. Deep logic results in long
path delays in the final circuit so reducing logic depth should increase clock speed.

Guidelines for reducing logic depth
• Division and modulo operators produce the deepest logic. Multiplication also

produces deep logic. A single cycle divide, mod or multiplier produces a large
amount of hardware and long delays through deep logic so you should avoid
using them wherever possible.

• Most common division and multiplications can be done with the shift operators.
Also consider using a long multiplication with a loop, shift and add routine or a
pipelined multiplier.

• Most common modulo operations can be done with the AND operator.
• Wide adders require deep logic for the carry ripple. Consider using more clock

cycles with shorter adders.
• Avoid greater than and less than comparisons - they produce deep logic.
• Reduce complex expressions into a number of stages.
• Avoid long strings of empty statements. Empty statements result from, for

example, missing else conditions from if statements.

To reduce a single, 8-bit wide adder to 3, narrower adders:

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 140

unsigned 8 x;
unsigned 8 y;
unsigned 5 temp1;
unsigned 4 temp2;

par
{

temp1 = (0@(x<-4)) + (0@(y<-4));
temp2 = (x \\ 4) + (y \\ 4);

}
x = (temp2+(0@temp1[4])) @ temp1[3:0];

Comparison example
while (x<y)
{

......
x++;

}

can be replaced with:
while (x!=y)
{

......
x++;

}

The == and != comparisons produce much shallower logic although in some cases it is
possible to remove the comparison altogether. Consider the following code:

unsigned 8 x;

x = 0;
do
{

......
x = x + 1;

} while (x != 0);

This code iterates the loop body 256 times but it can be re-written as follows:

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 141

unsigned 9 x;

x = 0;
do
{

......
x = x + 1;

} while (!x[8]);

By widening x by a single bit and just checking the top bit, we have removed an 8-bit
comparison.

Complex expression example
x = a + b + c + d + e + f + g + h;

reduces to:

par
{

temp1 = a + b;
temp2 = c + d;
temp3 = e + f;
temp4 = g + h;

}
par
{

temp1 = temp1 + temp2;
temp3 = temp3 + temp4;

}
x = temp1 + temp3;

This code takes three clocks cycles as opposed to one but each clock cycle is much shorter
and so the rest of the circuit should be speeded up by the faster clock rate permitted.

Empty statement example
if (a>b)

x++;
if (b>c)

x++;
if (c>d)

x++;

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 142

if (d>e)
x++;

if (e>f)
x++;

If none of these conditions is met then all the comparisons must be made in one clock cycle.
By filling in the else statements with delays, the long path through all these if statements
can be split at the expense of having each if statement take one clock cycle whether the
condition is true or not.

8.5.2 Pipelining
A classic way to increase clock rates in hardware is to pipeline. A pipelined circuit takes
more than one clock cycle to calculate any result but can produce one result every clock
cycle. The trade off is an increased latency for a higher throughput so pipelining is only
effective if there is a large quantity of data to be processed: it is not practical for single
calculations.

Pipelined multiplier example
unsigned 8 sum[8];
unsigned 8 a[8];
unsigned 8 b[8];
chanin inputa with {infile = "ina.dat"};

//dummy data file. User must provide their own
chanin inputb with {infile = "ina.dat"};

//dummy data file. User must provide their own
chanout output with {outfile = "out.dat"};

par
{

while(1)
inputa ? a[0];

while(1)
inputb ? b[0];

while(1)
output ! sum[7];

Handel-C Language Reference Manual

>: 8. Introduction to timing

>: Chapter :8 143

while(1)
{

par
{

macro proc level(x)
par
{

sum[x] = sum[x - 1] +
((a[x][0] == 0) ? 0 : b[x]);

a[x] = a[x - 1] >> 1;
b[x] = b[x - 1] << 1;

}

sum[0] = ((a[0][0] == 0) ? 0 : b[0]);
par (i=1; i <=7; i++)
{

level (i);
}

}
}

}

This multiplier calculates the 8 LSBs of the result of an 8-bit by 8-bit multiply using long
multiplication. The multiplier produces one result per clock cycle with a latency of 8 clock
cycles. This means that although any one result takes 8 clock cycles, you get a throughput
of 1 multiply per clock cycle. Since each pipeline stage is very simple, combinational logic is
shallow and a much higher clock rate is achieved than would be possible with a complete
single cycle multiplier.

At each clock cycle, partial results pass through each stage of the multiplier in the sum array.
Each stage adds on 2n multiplied by the b operand if required. The LSB of the a operand at
each stage tells the multiply stage whether to add this value or not. Stages are generated
with a macro procedure instantiated several times using a replicator

Operands are fed in on every clock cycle through a[0] and b[0]. Results appear 8 clock
cycles later on every clock cycle through sum[7].

Handel-C Language Reference Manual

>: 9. Clocks

>: Chapter :9 144

>: 9 Clocks
You can have multiple clocks interfacing with your design. Each main() function must be
associated with a single clock.

Clocks may be generated internally, fed from expressions, or fed from a pin (external
clocks).

The current clock may be referred to using the keyword _ _clock

You can specify the maximum delay in ns allowed between components fed from a clock by
using the rate specification.

The general syntax of the clock specification is:

set clock = Location with {RateSpec};

Communicating between multiple clock domains
It is not legal to access the same variable from different clock domains since there are
metastability issues around such communications. Instead, you must transmit data between
clock domains using a channel or a port.

9.1 Locating the clock
Since each Handel-C main() code block generates synchronous hardware, a single clock
source is required for each one.

The general syntax of the clock specification is:

set clock = Location;

Location may be any of the following:

Location Meaning

internal Frequency

Clock from internal clock generator (Xilinx 4000
series devices only)

internal_divide Frequency Factor

Clock from internal clock generator with integer
division (Xilinx 4000 series devices only)

internal Expression Clock from expression
internal_divide Expression Factor Clock from expression with integer division
external [Pin] Clock from device pin
external_divide [Pin] Factor Clock from device pin with integer division

Handel-C Language Reference Manual

>: 9. Clocks

>: Chapter :9 145

9.1.1 External clocks
External clocks may be accessed by associating the clock with a specific pin using set
clock external = "pin_Name" or set clock external_divide = "pin_Name"
factor, where the external_divide keyword is a constant integer. For example:

set clock = external "P35";
set clock = external_divide "P35" 3;
set clock = external_divide 3;

The first of these examples specifies a clock taken from pin P35. The second specifies a
clock taken from pin P35 which is divided on the FPGA by a factor of 3. The third option
shows a clock divided by 3 with no pin number specified.

When the pin number is omitted, the place and route tools will choose an appropriate pin.
Omitting pin specifications can speed up the clock rate of the design.

You can also define an interface that reads an external clock. If the clock is associated
with a specific pin, you can use the interface sort bus_in. You would only need to do
this if the external clock has been divided, otherwise you can use the intrinsic __clock.

Example
interface bus_in(unsigned 1 in with {clockport=1}) InputBus()

with {data={"Pin1"}};
set clock = external_divide "Pin1" 4;

You can now use InputBus.in to get an undivided external clock.

9.1.2 Internal clocks fed from expressions
You can set the clock to be any expression or any expression divided by a given factor.

set clock = internal <Expression>;

set clock = internal_divide <Expression> factor;

The clock division factor specified with the internal_divide keyword must be a constant
integer.

Example
This allows you to set the clock to a value read from an interface.

interface port_in(unsigned 1 clk with {clockport = 1}) ClockPort();
set clock = internal ClockPort.clk;

Handel-C Language Reference Manual

>: 9. Clocks

>: Chapter :9 146

9.1.3 Internally generated clocks
For Xilinx 4000 series chips, you can set the clock to be a value read from the on-chip clock
generator.

set clock = internal Frequency;

set clock = internal_divide Frequency Factor;

The clock division factor specified by Factor must be a constant integer.

For example:

set clock = internal "F8M";
set clock = internal_divide "F8M" 3;

The frequency of the internal clock may take one of the following values:

Specification string Frequency

"F15" 15Hz
"F490" 490Hz
"F16K" 16kHz
"F500K" 500kHz
"F8M" 8MHz

The tolerance for these values is -50% to +25% so you should not rely on the internal
clock being at exactly these frequencies.

9.2 Current clock
The current clock used by a function can be referenced using the keyword __clock. This
allows the function to pass the current clock to an external interface. The value of the system
variable __clock will be the value after any divide. The clock may be an internal or an
external clock.

Example
The code below shows the assignment of the current clock to a port in an interface.

interface reg32x1k() registers(unsigned addr=address,
unsigned data=data_in, unsigned 1 clk = __clock,
unsigned out = write);

Handel-C Language Reference Manual

>: 9. Clocks

>: Chapter :9 147

9.3 Channels communicating between clock
domains

Channels that connect between clock domains must be uni-directional point-to-point. This
means that their first use defines their direction and the domains in which they transmit and
receive. If you attempt to re-use the channel in a different direction or to or from a different
clock domain, the compiler generates an error.

Channels used between clock domains must be defined in one file and then declared as
extern in another.

The timing between domains is unspecified, but the transmission is guaranteed to occur, and
both sides will wait until the transmission has completed. For example:

//File: transmit.hcc
chan 8 c; // channel must have global scope

main()
{
int 8 x, y;
c ! x; //program will wait until data

//successfully transmitted
c ! y;
}

//File: receive.hcc
extern chan c;

main()
{
int 8 p, q;

c ? p;
c ? q;
}

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 148

>: 10 Targeting hardware

10.1 Interfacing with the simulator
Communication with the simulator takes place over channels. They are declared using the
keywords chanin and chanout. Standard channel communication statements can then be
used to transfer data. It is assumed that channels to and from the simulator never block and
will always complete a transfer in one clock cycle.

 Channels to and from the simulator are declared using chanin and chanout
instead of chan.

The special channels chanin and chanout are normally connected to files. An
unconnected channel that outputs data to the simulator will be displayed in the debug
window. You can declare multiple channels for input and output.

 If the simulation is still running when the end of the file has been reached, the
simulator will read in zeroes.

Simple example
chanin unsigned Input with {infile = "../Data/source.dat"};
chanout unsigned Output;

input ? x;
output ! y;

This example declares two channels: one for input from the simulator and one for output to
the simulator. The input channel connects to a file managed by the simulator; the output
channel connects to the simulator's standard output (the debug window in the DK1 GUI).

Multiple channel example
chanin int 8 input_1 with

{infile = "../Data/source_1.dat"};
chanin int 16 input_2 with

{infile = "../Data/source_2.dat"};
chanout unsigned 3 output_1;
chanout char output_2;

int 8 a;
int 16 b;

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 149

input_1 ? a;
input_2 ? b;
output_1 ! (unsigned 3)(((0 @ a) + b) <- 3);
output_2 ! a;

When simulated, such a program displays the name of channels before outputting their
value on the simulating computer screen.

10.1.1 Simulator input file format
The data input file should have one number per line separated by newline characters (either
DOS or UNIX format text files may be used). Each number may be in any format normally
used for constants by Handel-C. Blank lines are ignored as are lines prefixed by //
(comments). For example:

56
0x34
0654
0b001001

//is a comment, blank lines ignored
27

If EOF file is reached while reading an input file, zeroes will be read in until the simulation
completes.

10.1.2 Block data transfers
The Handel-C simulator has the ability to read data from a file and write results to another
file. For example:

chanin int 16 input with {infile = "in.dat"};
chanout int 16 output with {outfile = "out.dat"};

void main (void)
{

while (1)
{

int value;

input ? value;
output ! value+1;

}
}

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 150

This program reads data from the file in.dat and writes its results to the file out.dat. The
simulator will open and close the specified files for reading or writing as appropriate. If EOF
file is reached while reading an infile file, zeroes will be read in until the simulation
completes.

If the in.dat file consists of:

56
0x34
0654
0b001001

the out.dat will contain the decimal results as follows:

57
53
429
10

The base specification can be used to write to the outfile in different formats.

Block data transfers allow algorithms to be debugged and tested without needing to build
actual hardware. For example, an image processing application may store a source image
in a file and place its results in a second file. All that need be done outside the Handel-C
compiler is a conversion from the image (e.g. JPEG file) into the text file (which can then be
used by the simulator) and a conversion back from the output file to the image format. The
results can then be viewed and the correct operation of the Handel-C program confirmed.

10.2 Targeting FPGA and PLD devices
The Handel-C language is designed to target real hardware devices. To do this, you must
supply this information to the compiler:

• the FPGA/PLD family and part that the design will be implemented in
These are supplied through the Project>Settings dialog. They can be supplied
to the via the source code using the set statement or they can be supplied to
the command line using the -f (family) and -p (part) switches. They will be
passed to the FPGA/PLD place and route tool to inform it of the device it should
target.

• the location of a clock source
The clock source is specified using the set command.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 151

10.2.1 Summary of supported devices
In order to target a specific FPGA or PLD, the compiler must be supplied with the part
number. Ultimately, this information is passed to the place and route tool to inform it of the
device it should target.

You can specify your target device using the Chip tab on the Project Settings dialog, or
within your source code.

Recognized families are:

Description On-chip asynchronous
RAMs

On-chip synchronous
RAMs

Xilinx 4000E series FPGAs SelectRAM, dual-port -
Xilinx 4000L series FPGAs SelectRAM, dual-port -
Xilinx 4000EX series FPGAs SelectRAM, dual-port -
Xilinx 4000XL series FPGAs SelectRAM, dual-port -
Xilinx 4000XV series FPGAs SelectRAM, dual-port -
Xilinx Spartan series FPGAs SelectRAM, dual-port -
Xilinx Spartan XL series
FPGAs

SelectRAM, dual-port -

Xilinx SpartanII series
FPGAs

SelectRAM, dual-port Block RAM

Xilinx Virtex series FPGAs SelectRAM, dual-port Block RAM, dual-port
Xilinx VirtexE series FPGAs SelectRAM, dual-port Block RAM, dual-port
Xilinx Virtex-II series FPGAs SelectRAM, dual-port Block RAM, dual-port
Xilinx Virtex-II Pro series
FPGAs

SelectRAM, dual-port Block RAM, dual-port

Altera Apex 20K series PLDs Block RAM (in ESBs), dual-

port
Block RAM (in ESBs), dual-
port

Altera Apex 20KE series
PLDs

Block RAM (in ESBs), dual
port

Block RAM (in ESBs), dual
port

Altera Apex 20KC series
PLDs

Block RAM (in ESBs), dual
port

Block RAM (in ESBs), dual
port

Altera ApexII series PLDs Block RAM (in ESBs), dual-
port

Block RAM (in ESBs), dual-
port

Altera Excalibur ARM series
PLDs

Block RAM (in ESBs), dual-
port

Block RAM (in ESBs), dual-
port

Altera Flex10K series PLDs Block RAM (in EABs), dual-
port

Block RAM (in EABs), dual-
port

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 152

Description On-chip asynchronous
RAMs

On-chip synchronous
RAMs

Altera Flex10KA series PLDs Block RAM (in EABs), dual-
port

Block RAM (in EABs), dual-
port

Altera Flex10KB series PLDs Block RAM (in EABs), dual-
port

Block RAM (in EABs), dual-
port

Altera Flex10KE series PLDs Block RAM (in EABs), dual-
port

Block RAM (in EABs), dual-
port

Altera Mercury series ASSPs Block RAM (in ESBs), dual-
port, quad-port

Block RAM (in ESBs), dual-
port, quad-port

Actel eX series FPGAs None None
Actel 54SX series FPGAs None None
Actel 54SX-A series FPGAs None None
Actel RT54SX series FPGAs None None
Actel RT54SX-S series
FPGAs

None None

Actel ProASIC series FPGAs Block RAM, dual-port Block RAM, dual-port
Actel ProASIC+ series
FPGAs

Block RAM, dual-port Block RAM, dual-port

10.2.2 Targeting specific devices via source code
If you are not using the GUI to specify the target device, you must insert lines in the code to
specify it. In order to target a specific FPGA or PLD, the compiler must be supplied with the
FPGA part number. Ultimately, this information is passed to the FPGA/PLD place and route
tool to inform it of the device it should target.

Targeting devices is in two parts: specifying the target family and the target device. The
general syntax is:

set family = Family;
set part = Chip Number;

Recognized families are:

Family Name Description

Xilinx4000E 4000E series Xilinx FPGAs
Xilinx4000L 4000L series Xilinx FPGAs
Xilinx4000EX 4000EX series Xilinx FPGAs
Xilinx4000XL 4000XL series Xilinx FPGAs

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 153

Family Name Description

Xilinx4000XV 4000XV series Xilinx FPGAs
XilinxVirtex Virtex Xilinx FPGAs
XilinxVirtexE VirtexE Xilinx FPGAs
XilinxVirtexII Virtex-II Xilinx FPGAs
XilinxVirtexIIPro Virtex-II Pro Xilinx FPGAs
XilinxSpartan Spartan Xilinx FPGAs
XilinxSpartanXL SpartanXL Xilinx FPGAs
XilinxSpartanII SpartanII Xilinx FPGAs

AlteraFlex10K Flex10K series Altera PLDs
AlteraFlex10KA Flex10KA series Altera PLDs
AlteraFlex10KB Flex10KB series Altera PLDs
AlteraFlex10KE Flex10KE series Altera PLDs
AlteraApex20K Apex 20K series Altera PLDs
AlteraApex20KE Apex 20KE series Altera PLDs
AlteraApex20KC Apex 20KC series Altera PLDs
AlteraApexII Apex II series PLDs
AlteraMercury Altera Mercury series PLDs
AlteraExcaliburARM Altera Excalibur ARM series PLDs

ActelEX Actel eX series FPGAs
Actel54SX Actel 54SX series FPGAs
Actel54SXA Actel 54SX-A series FPGAs
ActelRT54SX Actel RT54SX series FPGAs
ActelRT54SXS Actel RT54SX-S series FPGAs
Actel500K Actel ProASIC series FPGAs
ActelPA Actel ProASIC+ series FPGAs

Deprecated
Altera10K Flex10K series Altera PLDs
Altera10KA Flex10KA series Altera PLDs
Altera10KB Flex10KB series Altera PLDs
Altera10KE Flex10KE series Altera PLDs
Altera20K Flex20K series Altera PLDs
Altera20KE Flex20KE series Altera PLDs

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 154

The part string is the complete Xilinx, Altera or Actel device string. For example:

set family = Xilinx4000E;
set part = "4010EPC84-1";

This instructs the compiler to target a XC4010E device in a PLCC84 package. It also
specifies that the device is a -1 speed grade. This last piece of information is required for the
timing analysis of your design by the Xilinx tools.

The family is used to inform the compiler of which special blocks it may generate.

To target Altera Flex 10K devices:

set family = AlteraFlex10K;
set part = "EPF10K20RC240-3";

This instructs the compiler to target an Altera Flex 10K20 device in a RC240 package. It also
specifies that the device is a -3 speed grade. This last piece of information is required for the
timing analysis of your design by the Altera Max Plus II or Quartus tools. Note that when
performing place and route on the resulting design, the device and package must also be
selected via the menus in the Max Plus II or Quartus software.
To target Actel RT54SX-S devices:

set family = ActelRT54SXS;
set part = "RT54SX32S-1CQ256B";

This instructs the compiler to target an Actel RT54SX-S device with 32,000 gates in a
CQ256 package (CQFP with 256 pins). It also specifies that the device is a -1 speed grade,
and that the device is to be used for a military application: the “B” at the end of the part string
specifies that the device is to conform to military temperature range standards. The speed
information is required for the timing analysis of your design by the Actel Designer tools. The
application information (“military” in this example) is required for place and route of your
design by the Actel Designer tools. Note that when performing place and route on the
resulting design, the device and package must also be selected via the menus in the
Designer software.

10.2.3 Specifying a global reset
set reset allows you to reset your device into a known state without reconfiguring it. You
can also use it to set up devices which are not in a known state at start up.

set reset causes the program to return to its initial state and resets variables to their initial
values. However, it does not reset any RAMs (distributed or block).

set reset = internal <expression>;

set reset = external <Pin>;

reset is active high.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 155

Examples
signal x, y;
set reset = internal x[0] & y[0];

set reset = external "P1"; // resets when a signal sent to named pin

set reset = external; // connects to a pin, but doesn't specify
which

Current reset value
The current reset state can be referenced using the __reset keyword. You can use the
__reset keyword to pass a reset condition to a black box.

For example:

set reset = external "P1";

interface UserBlock(unsigned 1 Status)
UserBlockInstance(unsigned 1 reset_port = __reset);

 You must specify a reset pin using set reset if you are targeting Altera devices.

10.3 Use of RAMs and ROMs with Handel-C
Handel-C provides support for:

• interfacing to on-chip and off-chip RAMs and ROMs using the ram and rom
keywords.

• specifying RAMs and ROMs external to the Handel-C code by using the ports
specification keyword.

• controlling the timing for read/write cycles by using specification keywords that
define the relationship between the RAM strobe and the Handel-C clock.

The usual technique for specifying timing in synchronous and asynchronous RAM is to have
a fast external clock which is divided down to provide the Handel-C clock and used directly
to provide the pulses to the RAM.

10.4 Asynchronous RAMs
There are three techniques for timing asynchronous RAMs, depending on the clock available

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 156

• Fast external clock. Use the Handel-C westart and welength specifications to
position the write strobe.

• External clock at the same speed as the Handel-C clock. Use multiple reads to
give the RAM enough time to respond.

• Use the wegate specification to position the write enable signal within the
Handel-C clock.

10.4.1 Fast external clock
This method of timing asynchronous RAMs depends on having an external clock that is
faster than the internal clock (i.e. the location of the clock is internal_divide or
external_divide with a division factor greater than 1). If so, Handel-C can generate a
write strobe for the RAM which is positioned within the Handel-C clock cycle. This is done
with the westart and welength specifications. For example:

set clock = external_divide "P78" 4;
ram unsigned 6 x[34] with { westart = 2,

welength = 1 };

The write strobe can be positioned relative to the Handel-C clock cycle by half cycle lengths
of the external (undivided) clock. The above example starts the pulse 2 whole external clock
cycles into the Handel-C clock cycle and gives it a duration of 1 external clock cycle. Since
the external clock is divided by a factor of 4, this is equivalent to a strobe that starts half way
through the internal clock cycle and has a duration of one quarter of the internal clock cycle.
This signal is shown below:

TIMING DIAGRAM: POSITIONED WRITE STROBE

This timing allows half a clock cycle for the RAM setup time on the address and data lines
and one quarter of a clock cycle for the RAM hold times. This is the recommended way to
access asynchronous RAMs.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 157

10.4.2 Asynchronous RAMs: fast external clock example

To declare a 16Kbyte by 8-bit RAM:
set clock = external_divide "P99" 4;

ram unsigned 8 ExtRAM[16384] with {
offchip = 1,
westart = 2,
welength = 1,
data = {"P1", "P2", "P3", "P4",

"P5", "P6", "P7", "P8"},
addr = {"P9", "P10", "P11", "P12",

"P13", "P14", "P15", "P16",
"P17", "P18", "P19", "P20",
"P21", "P22"},

we = {"P23"},
oe = {"P24"},
cs = {"P25"}};

The compiled hardware generates the following cycle for a write to external RAM:

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 158

The compiled hardware generates the following cycle for a read from external RAM:

10.4.3 Same rate external clock
This method of timing asynchronous RAMs uses multiple Handel-C RAM accesses to meet
the setup and hold times of the RAM.

ram unsigned 6 x[34];

Dummy = x[3];
x[3] = Data;
Dummy = x[3];

This code holds the address constant around the RAM write cycle, enabling a write to an
asynchronous RAM.

The timing diagram below shows the address being held constant during the write strobe. It
is held constant by the two assignments to Dummy.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 159

10.4.4 Undivided external clock
This method of accessing asynchronous RAMs is a compromise between the other two
methods (fast external clock and multiple RAM accesses). wegate is used with an
undivided external clock and keeps the write strobe in the first or second half of the clock
cycle. It is still necessary to hold the address constant either in the clock cycle before or in
the clock cycle after the access. For example:

ram unsigned 6 x[34] with { wegate = 1 };

x[3] = Data;
Dummy = x[3];

This places the write strobe in the second half of the clock cycle (use a value of -1 to put it in
the first half) and holds the address for the clock cycle after the write. The RAM therefore
has half a clock cycle of setup time and one clock cycle of hold time on its address lines.

10.4.5 Asynchronous RAMs: wegate example
The wegate specification may be used when a divided clock is not available. For example,
to declare a 16Kbyte by 8-bit RAM:

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 160

ram unsigned 8 ExtRAM[16384] with {
offchip = 1,
wegate = 1,
data = {"P1", "P2", "P3", "P4",

"P5", "P6", "P7", "P8"},
addr = {"P9", "P10", "P11", "P12",

"P13", "P14", "P15", "P16",
"P17", "P18", "P19", "P20",
"P21", "P22"},

we = {"P23"},
oe = {"P24"},
cs = {"P25"}};

The compiled hardware generates the following cycle for a write to external RAM:

The compiled hardware generates the following cycle for a read from external RAM:

Note that the timing diagram above may violate the hold time for some asynchronous RAM
devices. If the delay between rising clock edge and rising write enable is longer than the

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 161

delay between rising clock edge and the change in data or address then corruption in the
write may occur in these devices. The two cycle access does not solve the problem since it
is not possible to hold the data lines constant beyond the end of the clock cycle. If this
causes a problem then a multiplied external clock must be used as described above.

 Using the wegate specification may violate the hold time for some asynchronous
RAM devices.

10.5 Synchronous RAMs

SSRAM clocks
Handel-C timing semantics require that any assignment takes one clock cycle. Typically,
SSRAMs have a latency of at least one clock cycle. Therefore, in order for accesses to a
SSRAM device to conform to Handel-C's one-clock-cycle-per-assignment rule, the SSRAM
clock needs to be offset from the Handel-C clock. If the SSRAM has a latency of more than
one clock cycle, its clock needs to be faster than the Handel-C clock, as well as being offset
from it.

This is done by using an independent fast clock (RAMCLK) to match the SSRAM timings
with the Handel-C timing constraints.

A fast external clock (CLK) is divided to provide the Handel-C clock (HCLK), and is also
used to generate pulses to clock the SSRAM, where the pulses can be placed within a single
HCLK cycle. This placed clock is the RAMCLK. It can be carried to an external SSRAM
using the clk specification.

By default, the Handel-C compiler uses an inverted copy of the Handel-C clock to drive
synchronous on-chip memories. This may mean you need to run your design at a lower
clock frequency than you want to. You can increase the efficiency of your design by using
the clock position specifications to alter the position of the RAM clock relative to the Handel-
C clock. For example, you might want to advance the write-clock, or delay the read-clock.

SSRAM devices supported
Handel-C supports ZBT-compatible (Zero Bus Turnaround) flow-through and pipelined
output devices. DDR (double data rate) and QDR (quad data rate) devices are not supported
directly; you can write your own interfaces.

SSRAM write-enable
The Handel-C compiler checks the block and offchip specifications to find out what type
of RAM is being built and generates the appropriate write-enable signal (e.g. active low for
ZBT SSRAM devices and active-high for block RAMs within Xilinx Virtex chips).

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 162

10.5.1 SSRAM read and write cycles
The inputs to most inputs to SSRAMs are captured on the rising edge of the input clock.
During a read cycle there is a latency of at least one clock cycle between an address being
captured at the input and data becoming available at the output. This is also true for the write
cycle in many devices: an address is captured on one clock cycle, and data on the next. A
diagram of a typical timing for a read (or write) cycle for an SSRAM device is shown below.

TIMING DIAGRAM: SSRAM READ AND WRITE

10.5.2 Specifying SSRAM timing
You can place the RAM clock pulses at different points within the Handel-C clock if a fast
divided clock is available. If you have a fast undivided clock CLK, a divided clock HCLK, and
you want to generate a RAM clock RAMCLK, the following applies:

The SSRAM clock (RAMCLK) is generated from the fast clock (CLK) according to the
specifications: rclkpos , wclkpos and clkpulselen. These specifications can be in
whole or half cycles of the external clock (i.e. the specifications are in multiples of 0.5).

rclkpos specifies the positions of the clock cycles of clock RAMCLK for a read cycle.
These positions are specified in terms of cycles and half-cycles of CLK, counting forwards
from a HCLK rising edge.

wclkpos specifies the positions of the clock cycles of RAMCLK for a write cycle. These are
also counted forward from an HCLK rising edge.

clkpulselen specifies the length of the RAMCLK pulses in CLK cycles. This is specified
once per RAM. It applies to both the read and write clocks.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 163

TIMING DIAGRAM: SSRAM READ CYCLE USING GENERATED RAMCLK

The pulse positions and lengths are specified in cycles and half-cycles of CLK. The
westart and welength specs are used to place the write enable strobe where it is
required.

10.5.3 Flow-through SSRAM example
ram unsigned 18 FlowBank[1024] with {block = 1,

westart = 2,
welength = 1,
rclkpos = {1.5},
wclkpos = {2.5, 3.5},
clkpulselen = 0.5};

This code instructs the compiler to build hardware to generate SSRAM control signals as
shown below. It is also applicable for reading from block RAMs in Xilinx FPGAs and Altera
PLDs.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 164

Read cycle for a flow-through SSRAM
The timing diagram shows a read-cycle from a flow-through SSRAM.

The rising HCLK edge at t0 initiates the read cycle. Some time later, the address A1 is set
up, which is sampled somewhere in the middle of the HCLK cycle: t0+1.5 in this case. By
the time the next HCLK rising edge occurs at t1, the data is available for reading. The cycle
completes within one Handel-C clock cycle.

Write cycle for a flow-through SSRAM
Flow-through SSRAMs perform a "late" write cycle; the data is clocked in one clock cycle
after the address is sampled.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 165

The timing diagram shows the complete write cycle.

The HCLK rising edge at t0 initiates the write cycle, causing the ADDRESS and DATAIN
signals to change. Two cycles of RAMCLK are needed to clock the new data into the RAM
at the specified address: the first to sample the address, the second to sample the data.
However, since we’re not expecting to read from the RAM’s output, we can wait until the last
possible moment. In this case, the two rising edges of RAMCLK occur at t0+2.5 and t0+3.5.

The write enable signal must be low during the rising edge of RAMCLK that samples the
address, but not during the one that samples the data. This can be done by setting westart
and welength as shown. The entire cycle completes within a single Handel-C clock cycle.

10.5.4 Pipelined-output SSRAM timing example
ram unsigned 18 PipeBank[1024] with {block = 1,

westart = 1.5,
welength = 1,
rclkpos = {1.5, 2.5},
wclkpos = {1.5, 2.5, 3.5},
clkpulselen = 0.5};

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 166

Read cycle for a pipelined-output SSRAM
The timing diagram shows the read cycle

This read cycle is very similar to that for a flow through RAM. The rising HCLK edge at t0
initiates the read cycle. Some time later, the address A1 is set up, which is sampled
somewhere near the middle of the HCLK cycle: (t0+1.5 in this case). The RAM contents at
address A1 are then piped to the RAM’s output register; it must be made available at the
RAM output. A second RAMCLK pulse (at t0+2.5 in this case) is used to do this. By the time
the next HCLK rising edge occurs at t1, the data is available for reading by the Handel-C
design. The cycle completes within one Handel-C clock cycle.

Write cycle for a pipelined-output SSRAM
Pipelined-output SSRAMs perform a "late-late" write cycle. This means that data is written
to memory two clock cycles after the address is sampled.

The timing diagram shows the complete cycle:

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 167

The HCLK rising edge at t0 initiates the write cycle, causing the ADDRESS and DATAIN
signals to change. Three cycles of RAMCLK are needed to clock the new data into the RAM
at the specified address: the first to sample the address and the third to sample the data.
Since you will not read from the RAM on a write strobe, you can sample the data as late as
possible to give the circuit maximum time to set up the data. In this case, the three rising
edges of RAMCLK occur at t0+1.5, t0+2.5 and t0+3.5.

The write enable signal must be low during the rising edge of RAMCLK that samples the
address, but not during the one that samples the data. This can be done by setting westart
and welength as shown. The entire cycle completes within a single Handel-C clock cycle.

10.6 Using on-chip RAMs in specified
devices

10.6.1 Using on-chip RAMs in Xilinx devices
Xilinx 4000 series devices can implement RAMs and ROMs in the look up tables on the
device. Handel-C supports the synchronous RAMs on the 4000E, 4000EX, 4000L, 4000XL,
4000XV and Virtex series parts directly simply by declaring a RAM or ROM. For example:

ram unsigned 6 x[34];

This will declare a RAM with 34 entries, each of which is 6 bits wide.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 168

10.6.2 Using on-chip RAMs in Altera devices
On-chip RAMs in Altera Flex10K devices use the EAB structures. These blocks can be
configured in a number of data width/address width combinations. When writing Handel-C
programs, you must be careful not to exceed the number of EAB blocks in the target device
or the design will not place and route successfully. While it is possible to use RAMs that do
not match one of the data width/address width combinations, EAB space may be wasted by
such a RAM.

RAM blocks in Flex 10K and Apex 20K parts can be configured to be either synchronous or
asynchronous.

Synchronous access
If no clock specification is given and none of westart, welength or wegate is specified,
Handel-C will use synchronous access as a default, by utilizing the falling edge of the clock
as the input clock signal to the RAM. However, to obtain the best performance use the clock
specification to tailor the RAM access timing to the needs of your design.

Asynchronous access
If you use one of the westart, welength or wegate specifications described in the
previous section, the Handel-C compiler will generate an asynchronous RAM, as long as no
clock specification is given.

Initialization
RAM/ROM initialization files with a .mif extension will be generated on compilation to feed
into the Max Plus II or Quartus software. This process is transparent as long as they are in
the same directory as the EDIF (.edf extension) file generated by the Handel-C compiler

10.6.3 Using on-chip RAMs in Actel devices
On-chip RAMs in Actel ProASIC and ProASIC+ devices use the embedded memory
structures, which are of a fixed width and depth. These blocks can be combined to create
deeper and wider memory spaces. When writing Handel-C programs, you must be careful
not to exceed the number of memory blocks in the target device or the design will not place
and route successfully. While it is possible to use RAMs that do not match one of the
width/depth combinations, memory space may be wasted.

Memory blocks in ProASIC and ProASIC+ parts can be configured to be either synchronous
or asynchronous.

Synchronous access
If no clock specification is given and none of westart, welength or wegate is specified,
Handel-C will use synchronous access as a default, by utilizing the falling edge of the
Handel-C clock as the input clock signal to the RAM. However, to obtain the best
performance use the clock specifications to tailor the RAM access timing to the needs of
your design.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 169

Asynchronous access
If you use one of the westart, welength or wegate specifications, the Handel-C compiler
will generate an asynchronous RAM, as long as no clock specifications is given.

Initialization
Actel memories may not be initialized.

10.7 Targeting external RAMs

10.7.1 Targeting external asynchronous RAMs
Handel-C provides support for accessing off-chip static RAMs in the same way as you
access internal RAMs. The syntax for an external RAM declaration is:

ram Type Name[Size] with {
offchip = 1,
data = Pins,
addr = Pins,
we = Pins,
oe = Pins,

cs = Pins};

To declare a 16Kbyte by 8-bit RAM:
ram unsigned 8 ExtRAM[16384] with {

offchip = 1,
data = {"P1", "P2", "P3", "P4",

"P5", "P6", "P7", "P8"},
addr = {"P9", "P10", "P11", "P12",

"P13", "P14", "P15", "P16",
"P17", "P18", "P19", "P20",
"P21", "P22"},

we = {"P23"},
oe = {"P24"},
cs = {"P25"}};

Note that the lists of address and data pins are in the order of most significant to least
significant. It is possible for the compiler to infer the width of the RAM (8 bits in this
example) and the number of address lines used (14 in this example) from the RAM’s usage.
This is not recommended since this declaration deals with real external hardware which has
a fixed definition.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 170

Accessing RAM
Accessing the RAM is the same as for accessing internal RAM. For example:

ExtRAM[1234] = 23;
y = ExtRAM[5678];

Similar restrictions apply as with internal RAM - only one access may be made to the RAM in
any one clock cycle.

The compiled hardware generates the following cycle for a write to external RAM:

The compiled hardware generates the following cycle for a read from external RAM:

This cycle may not be suitable for the RAM device in use. In particular, asynchronous static
RAM may not work with the above cycle due to setup and hold timing violations. For this
reason, the westart, welength and wegate specifications may also be used with external
RAM declarations.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 171

10.7.2 Targeting external synchronous RAMs
Off-chip synchronous SRAMs can be specified in exactly the same way as on-chip
synchronous SRAMs, with the addition of the rclkpos, wclkpos, clkpulselen and clk
specifications. clk specifies the pin on which the generated RAMCLK will appear, when the
SSRAM in question is external (offchip = 1).

Example
macro expr addressPins = {Pin List...};
macro expr dataPins = {Pin List...};
macro expr csPins = {Pin List...};
macro expr wePins = {Pin List...};
macro expr oePins = {Pin List...};
macro expr clkPins = {Pin List...};

ram unsigned 32 ExtBank[1024] with {offchip = 1,

addr = addressPins,
data = dataPins,
cs = csPins,
we = wePins,
oe = oePins,
westart = 2,
welength = 1,
rclkpos = {1.5, 2.5},
wclkpos = {1.5, 2.5, 3.5},
clkpulselen = 0.5,
clk = clkPins};

10.7.3 Using external ROMs
An external ROM is declared as an external RAM with an empty write enable pin list. For
example:

ram unsigned 8 ExtROM[16384] with {
offchip = 1,
data = {"P1", "P2", "P3", "P4",

"P5", "P6", "P7", "P8"},
addr = {"P9", "P10", "P11", "P12",

"P13", "P14", "P15", "P16",
"P17", "P18", "P19", "P20",
"P21", "P22"},

we = {},
oe = {"P24"},
cs = {"P25"}};

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 172

Note that no westart, welength or wegate specification is required since there is no write
strobe signal on a ROM device.

10.7.4 Connecting to RAMs in foreign code
You can create ports to connect to a RAM by using the ports = 1 specification to your
memory definition. This will generate VHDL or EDIF wires which can be connected to a
component created elsewhere. The ports specification cannot be used in conjunction with
the offchip=1 specification, but all other specifications will apply.

The interface generated will have separate read (output) and write (data) ports, write enable,
data enable and clock wires. This ensures that it can be connected to any device. Pin names
provided in the addr, data, cs,we, oe, and clk specifications will be passed
through to the generated EDIF. They are not passed through to VHDL, since VHDL
interfaces are generated as n-bit wide buses rather than n 1-bit wide wires. This means that
it is ambiguous to specify a separate identifier for each wire. If they are used when compiling
to VHDL, the compiler issues a warning.

For VHDL or Verilog output, the compiler generates meaningful port names. For example,
with the following RAM declaration compiled to VHDL:

ram unsigned 4 rax[4] with
{ports = 1, data = dataPins, addr = addrPins,

we = wePins, cs = csPins, oe = oePins};

the compiler will warn that all the pins specifications have been ignored, and will generate an
interface in VHDL with the following ports:

component rax_SPPort
port(
rax_SPPort_addr: in unsigned(1 downto 0);
rax_SPPort_clk: in std_logic;
rax_SPPort_cs: in std_logic;
rax_SPPort_data_en: in std_logic;
rax_SPPort_data_in: out unsigned(3 downto 0);
rax_SPPort_data_out: in unsigned(3 downto 0);
rax_SPPort_oe: in std_logic;
rax_SPPort_we: in std_logic
);

The port names consist of the memory name (rax in this case), description of the memory
type (SPPort : single port in this case) and an identifier describing the ports function.

A clock port will always be generated.

If ylou use the ports specification with an MPRAM, a separate interface will be generated
for each port.

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 173

Generating an interface to a foreign code RAM: Example
set family = Xilinx4000XV;
set part = "V1000BG560-4";
set clock = external "C1";

unsigned 4 a;
ram unsigned 4 rax[4] with {ports = 1};

void main(void)
{
static unsigned 2 i = 0;

while(1)
{
par
{
i++;
a++;
rax[i] = a;

}
a = rax[i];

}
}

The declaration of rax would produce wires

rax_SPPort_addr<0> // Address
rax_SPPort_addr<1>
rax_SPPort_data_in<0> // Data In
rax_SPPort_data_in<1>
rax_SPPort_data_in<2>
rax_SPPort_data_in<3>
rax_SPPort_data_out<0> // Data Out
rax_SPPort_data_out<1>
rax_SPPort_data_out<2>
rax_SPPort_data_out<3>
rax_SPPort_data_en // Data Enable
rax_SPPort_clk // Clock
rax_SPPort_cs // Chip Select
rax_SPPort_oe // Output Enable
rax_SPPort_we // Write Enable

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 174

Generating an interface to a foreign code MPRAM: Example

set family = XilinxVirtex;
set part = "V1000BG560-4";
set clock = external "C1";

unsigned 4 a;

mpram Mpaz
{
wom unsigned 4 wox[4];
rom unsigned 4 rox[4];

} mox with {ports = 1};

void main(void)
{
static unsigned 2 i = 0;

while(1)
{
par
{
i++;
a++;
mox.wox[i] = a;

}
a = mox.rox[i];

}
}

The declaration of the read only port rox would produce wires

Handel-C Language Reference Manual

>: 10. Targeting hardware

>: Chapter :10 175

mox_rox_addr_0 // Address
mox_rox_addr_1
mox_rox_clk // Clock
mox_rox_cs // Chip select
mox_rox_data_en // Data enable
mox_rox_oe // Output enable
mox_rox_we // Write enable
mox_rox_data_in_0 // Data In (into Handel-C, out from foreign code
memory)
mox_rox_data_in_1
mox_rox_data_in_2
mox_rox_data_in_3

The declaration of the read only port wox would produce wires

mox_wox_addr_0 // Address
mox_wox_addr_1
mox_wox_clk // Clock
mox_wox_cs // Chip select
mox_wox_data_en // Data enable
mox_wox_data_out_0 // Data Out (from Handel-C, into foreign code
memory)
mox_wox_data_out_1
mox_wox_data_out_2
mox_wox_data_out_3
mox_wox_oe // Output enable
mox_wox_we // Write enable

10.8 Using other RAMs
The interface to other types of RAM such as DRAM should be written by hand using
interface declarations. Macro procedures can then be written to perform complex or even
multi-cycle accesses to the external device.

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 176

>: 11 External hardware and logic

11.1 Interfacing with external hardware
and logic

All off-chip accesses are based on the idea of a bus which is just a collection of external
pins. Handel-C provides the ability to read the state of pins for input from the outside world
and set the state of pins for writing to the outside world. Tri-state buses are also supported
to allow bi-directional data transfers through the same pins.

The pins used may be defined in Handel-C by using pin specifications (e.g. data). If this is
omitted, the pins will be left unconstrained and can be assigned by the place and route tools.

Note that Handel-C provides no information about the timing of the change of state of a
signal within a Handel-C clock cycle. Timing analysis is available from the FPGA or PLD
manufacturer's place-and-route tools.

Handel-C programs can also interface to external logic (other Handel-C programs, programs
written in VHDL or Verilog etc.) by using user-defined interfaces or Handel-C ports.

11.2 Interface sorts
Handel-C provides a number of predefined interface sorts.

"bus-type" interfaces (bus_*) generate the hardware for buses connected to pins.

"port-type" interfaces (port_*) generate the hardware for floating ports (buses which are
not connected to pins). These can be of any width, and can carry signals between different
sections of Handel-C code, or to software or hardware beyond the Handel-C program.

You can also define your own sorts to interface to external blocks of code ("generic" or
custom interface sorts).

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 177

Predefined interface sorts

Sort identifier Description

bus_in Input bus from pins
bus_latch_in Registered input bus from pins
bus_clock_in Clocked input bus from pins
bus_out Output bus to pins
bus_ts Bi-directional tri-state bus
bus_ts_latch_in Bi-directional tri-state bus with registered input
bus_ts_clock_in Bi-directional tri-state bus with clocked input
port_in Input port from logic
port_out Output port to logic

Custom or generic interface sorts
You can define your own interface sorts to connect to non-Handel-C objects:

• Hardware descriptions written in another language.
VHDL, Verilog and EDIF are currently supported. For a VHDL code interface, the
interface sort would be the name of the VHDL entity. For a Verilog code interface,
the interface sort would be the name of the Verilog module.

• Native PC object code used in simulation.
Programs that run on your PC for simulation and connect to a Handel-C interface
are known as plugins. There are special port specifications to enable you to
connect user-defined interfaces with a plugin for simulation. These are extlib,
extfunc, and extinst.

11.2.1 Reading from external pins: bus_in
The bus_in interface sort allows Handel-C programs to read from external pins. Its general
usage is:

interface bus_in(type portName)
Name()

with {data = {Pin List}};

Reading the bus is performed by accessing the identifier Name.portName as a variable
which will return the value on those pins at that clock edge. If no input port name is given,
the port name defaults to in.

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 178

Example
interface bus_in(int 4 To) InBus() with {data =

{"P4", "P3", "P2", "P1"}};
int 4 x;

x = InBus.To;

This declares a bus connected to pins P1, P2, P3 and P4 where pin P4 is the most
significant bit and pin P3 is the least significant bit.

The variable x is set to the value on the external pins. The type of InBus.To is int 4 as
specified in the type list after the bus_in keyword.

11.2.2 Registered reading from external pins: bus_latch_in
The bus_latch_in interface sort is similar to bus_in but allows the input to be registered
on a condition. This may be required to sample the signal at particular times. Its general
usage is:

interface bus_latch_in(type portName)
Name(type conditionPortName=Condition)

with {data = {Pin List}};

Reading the bus is performed by accessing the identifier Name.portName as a variable
which will return the value on those pins at that clock edge. If no input port name is given,
the port name defaults to in. Condition specifies a signal that is used to clock the input
registers in the FPGA or PLD. The rising edge of this signal clocks the external signal into
the internal value.

Example
int 1 get;
int 4 x;

interface bus_latch_in(int 4 To)
InBus(int 1 condition = get)
with {data = {"P4", "P3", "P2", "P1"}};

get = 0;
get = 1; // Register the external value
x = InBus.To; // Read the registered value

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 179

11.2.3 Clocked reading from external pins: bus_clock_in
The bus_clock_in interface sort is similar to the bus_in interface sort but allows the input
to be clocked continuously from the Handel-C global clock. This may be required to
synchronize the signal to the Handel-C clock. Its general usage is:

interface bus_clock_in(type portName) Name()
with {Specs};

Reading the bus is performed by accessing the identifier Name.portName as a variable
which will return the value on those pins at that clock edge. If no input port name is given,
the port name defaults to in. The rising edge of the Handel-C clock clocks the external
signal into the internal value. For example:

interface bus_clock_in(int 4 InTo) InBus() with
{data = {"P4", "P3", "P2", "P1"}};

x = InBus.InTo; // Read flip-flop value

11.2.4 Writing to external pins: bus_out
The bus_out interface sort allows Handel-C programs to write to external pins. Its general
usage is:

interface bus_out()
Name(type portName=Expression)

with {data = {Pin List}};

A specific example is:

interface bus_out () OutBus(int 4 OutPort=x+y)
with {data = {"P4", "P3", "P2", "P1"}};

This declares a bus connected to pins 1, 2, 3 and 4 where pin 4 is the most significant bit
and pin 1 is the least significant bit. The value appearing on the external pins is the value of
the expression x+y at all times.

11.2.5 Bi-directional data transfer: bus_ts
The bus_ts interface sort allows Handel-C programs to perform bi-directional off-chip
communications via external pins. Its general usage is:

interface bus_ts (type inPortName)
Name(type outPortName = Value, type conditionPortName = Condition)
with {Specs};

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 180

Value is an expression giving the value to output on the pins. Condition is an expression
giving the condition for driving the pins. When Condition is non-zero (i.e. true), the value of
Value is driven on the pins. When the value of Condition is zero, the pins are tri-stated and
the value of the external bus can be read using the identifier Name.inPortName. If
inPortName is not defined, the port name defaults to in.

Example
unsigned 1 condition;
int 4 x;

interface bus_ts(int 4 read)
BiBus(int write=x+1, unsigned 1 enable= condition)
with {data = {"P4", "P3", "P2", "P1"}};

condition = 0; // Tri-state the pins
x = BiBus.read; // Read the value
condition = 1; // Drive x+1 onto the pins

This example reads the value of the external bus into variable x and then drives the value of
x + 1 onto the external pins.

Take care when driving tri-state buses that the FPGA/PLD and another device on the
bus cannot drive simultaneously as this may result in damage to one or both of them.

11.2.6 Bi-directional data transfer with registered input
The bus_ts_latch_in interface sort allows Handel-C programs to perform bi-directional
off-chip communications via external pins with inputs registered on a condition. Its general
usage is:

interface bus_ts_latch_in (type inPortName)
Name(type outPortName = Value,

type conditionPortName = Condition,
type clockPortName = Clock)

with {Specs};

Value is an expression giving the value to output on the pins. Condition is an expression
giving the condition for driving the pins. Clock is an expression giving the signal to clock the
input from the pins. When Condition is non-zero (i.e. true), the value of Value is driven on the
pins. When the value of Condition is zero, the pins are tri-stated and the registered value of
the external bus can be read using the identifier Name.inPortName. If inPortName is not
defined, the port name defaults to in.

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 181

The rising edge of the value of the third expression clocks the external values through to the
internal values on the chip.

Example
int 1 get;
unsigned 1 condition;
int 4 x;

interface bus_ts_latch_in(int 4 read)
BiBus(int write = x+1,

unsigned 1 enable = condition,
unsigned 1 clock_port = get)

with {data = {"P4", "P3", "P2", "P1"}};

condition = 0; // Tri-state external pins
get = 0;
get = 1; // Register external value
x = BiBus.read; // Read registered value
condition = 1; // Drive x+1 onto external pins

This example samples the external bus and reads the registered value into variable x and
then drives the value of x + 1 onto the external pins.

 Take care when driving tri-state buses that the FPGA/PLD and another device on
the bus cannot drive simultaneously as this may result in damage to one or both of
them.

11.2.7 Bi-directional data transfer with clocked input
The bus_ts_clock_in interface sort allows Handel-C programs to perform bi-directional
off-chip communications via external pins with inputs clocked continuously with the Handel-C
clock. Its general usage is:

interface bus_ts_clock_in (type inPortName)
Name(type outPortName = Value,

type conditionPortName = Condition)
with {Specs};

Value is an expression giving the value to output on the pins. Condition is an expression
giving the condition for driving the pins. When Condition is non-zero (i.e. true), the value of
Value is driven on the pins. When the value of Condition is zero, the pins are tri-stated and
the value of the external bus can be read using the identifier Name.inPortName. If
inPortName is not defined, the port name defaults to in

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 182

The rising edge of the Handel-C clock reads the external values into the internal flip-flops on
the chip. For example:

unsigned 1 condition;
int 4 x;

interface bus_ts_clock_in (int 4 read)
BiBus(int 4 writePort=x+1,

unsigned 1 enable=condition)
with {data = {"P4", "P3", "P2", "P1"}};

condition = 0; // Tri-state external pins
x = BiBus.read; // Read registered value
condition = 1; // Drive x+1 onto external pins

This example reads the value from the flip-flop into variable x and then drives the value of x
+ 1 onto the external pins.

Take care when driving tri-state buses that the FPGA/PLD and another device on the
bus cannot drive simultaneously as this may result in damage to one or both of them.

11.2.8 Example hardware interface
The example shows the use of buses. The scenario is of an external device connected to
the FPGA which may be read from or written to. The device has a number of signals
connected to the FPGA.

Signals connected

Signal Name FPGA pin Description

D3..0 1, 2, 3, 4 Data Bus
Write 5 Write strobe
Read 6 Read strobe
WriteRdy 7 Able to write to device
ReadRdy 8 Able to read from device

Read cycle timing
A read from the device is performed by waiting for ReadRdy to become active (high). The
Read signal is then taken high for one clock cycle and the data sampled on the falling edge
of the strobe.

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 183

Write cycle timing
A write to the device is performed by waiting for WriteRdy to become active (high). The
Write signal is then taken high for one clock cycle while the data is driven to the device by
the FPGA. The device samples the data on the falling edge of the Write signal.

Bus declarations
The first stage of the code declares the buses associated with each of the external signals.

int 4 Data;
int 1 En = 0;
interface bus_ts_clock_in(int 4 DataIn)

dataB(int outPort=Data, int EnableSignal=En) with
{data = {"P4", "P3", "P2", "P1"}};

int 1 Write = 0;
interface bus_out() writeB(int WriteSignal = Write) with

{data = {"P5"}};

int 1 Read = 0;
interface bus_out() readB(int readSignal=Read) with

{data = {"P6"}};

interface bus_clock_in(int 1 wr)
WriteReady() with {data = {"P7"}};

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 184

interface bus_clock_in(int 1 readySignal)
ReadReady() with {data = {"P8"}};

void main (void)
{

int 4 Data, Reg;

// Read word from external device
while (ReadReady.readySignal == 0)

delay;

Read = 1; // Set the read strobe
par
{

Data = dataB.DataIn; // Read the bus
Read = 0; // Clear the read strobe

}

// Write one word back to external device
Reg = Data + 1;
while (WriteReady.wr == 0)

delay;

par
{

En = 1; // Drive the bus
Write = 1; // Set the write strobe

}

Write = 0; // Clear the write strobe
En = 0; // Stop driving the bus

}

Writing data
You can change the values on the output buses by setting the values of the Data, Write
and Read variables. You can drive the data bus with the contents of Data by setting En to
1.

The variables that drive buses have been initialized to 0. That means that these variables
must be static or global. This may be important when driving write strobes. Care should be
taken during configuration that the FPGA pins are disconnected in some way from the
external devices because the FPGA pins become tri-state during this time.

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 185

The main program
The main program reads a word from the external device before writing one word back.

void main (void)
{

int 4 Data, Reg;

// Read word from external device
while (ReadReady.readySignal == 0)

delay;
Read = 1; // Set the read strobe
par
{

Data = dataB.DataIn; // Read the bus
Read = 0; // Clear the read strobe

}

// Write one word back to external device
Reg = Data + 1;
while (WriteReady.wr == 0)

delay;
par
{

En = 1; // Drive the bus
Write = 1; // Set the write strobe

}
Write = 0; // Clear the write strobe
En = 0; // Stop driving the bus

}

Note that during the write phase, the data bus is driven for one clock cycle after the write
strobe goes low to ensure that the data is stable across the falling edge of the strobe.

11.3 Merging pins
It is possible to merge pins.

• merge input pins with double declarations of input bus interfaces
• merge tri-state pins

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 186

Input pins
Input pins can be merged so that pins can be read simultaneously into multiple variables.
This can be done by specifying multiple interfaces (bus_in, bus_clock_in,
bus_latch_in) which have some pins in common. If required, a different subset of pins
can be specified for each instance of the interface. For example:

interface bus_in(int 8 wide) wideDataBus() with
{data ={"P7", "P6", "P5", "P4", "P3",

"P2", "P1", "P0"}};
interface bus_in(int 3 thin) thinDataBus() with

{data ={"P5", "P4", "P3"}};

wideDataBus.wide would give the values of pins P0 – P7, whereas thinDataBus.thin
would give the three bit value on pins P3, P4 and P5.

Tri-state bus pins
Tri-state bus pins can be merged, though doing so will generate a compiler warning, as the
compiler cannot detect whether there is a conflict in the use of the merged pins. You might
wish to merge output pins for a tri-state bus if you wished to switch the circuit connections
from one external piece of logic to another. For example:

int 1 en1, en2;
int 4 x, y;
interface bus_ts_clock_in (int 4 read)

BiBus1(int 4 writePort=x+1, unsigned 1 enable = (en1==1))
with {data = {"P4", "P3", "P2", "P1"}};

interface bus_ts_clock_in (int 4 read)
BiBus2(int 4 writePort=y+1, unsigned 1 enable = (en2==1))
with {data = {"P4", "P3", "P2", "P1"}};

 Take care when driving tri-state buses that the FPGA/PLD and another device on
the bus cannot drive simultaneously as this may result in damage to one or both of
them.

11.4 Buses and the simulator
The Handel-C simulator cannot simulate buses directly, because the simulation of buses
cannot determine when input and output should occur. The recommended process for
debugging is:

For simple data, use a channel or a chanin/chanout to connect to a file. This is the
simplest method.

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 187

For more complex buses/interfaces, write a C/C++ function and call it to bring in data. This
allows you to operate on the data or read it in a complex format. This models functionality
but not hardware.

To model buses accurately, use the Plugin Library to write a plugin which can be co-
simulated. This is precise and allows you to read I/O signals using the waveform analyzer,
but can be slow and cumbersome.

Using preprocessor definitions
By using the #define and #ifdef...#endif constructs of the preprocessor, it is possible
to combine both the simulation and hardware versions of your program into one.

Channel example
#define SIMULATE
#ifdef SIMULATE

input ? value;
#else

value = BusIn.in;
#endif

External function call example
#define SIMULATE

#ifdef SIMULATE
extern "C++" int 8 bus_input_function(void);
data_in = bus_input_function();

#else
interface bus_in(int 8 in) BusIn();
data_in = BusIn.in;

#endif

Example with plugin
To simulate a tri-state bus:

interface bus_ts (int 32 in with
{extlib = "MyPlugin.dll", extinst = "1", extfunc = "DataBusIn"})
DataBus(int 32 out = DataOut with {extlib = "MyPlugin.dll",

extinst = "1", extfunc = "DataBusOut"},
int 1 enable = !WriteBus.in with {extlib = "MyPlugin.dll",
extinst = "1", extfunc = "DataBusEnable"})
with {data = pinList};

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 188

In this case, the functions DataBusIn, DataBusOut and DataBusEnable would be
provided in the plugin MyPlugin.dll and called by the simulator. The extlib, extfunc
and extinst specifications are ignored if compiled to HDL so the interface definition does
not have to be within an #ifdef.

11.5 Timing considerations for buses

bus_in interfaces
This form of bus is built with no register between the external pin and the points inside the
FPGA or PLD where the data is used. If the value on the external pin changes
asynchronously with the Handel-C clock then routing delays within the FPGA can cause the
value to be read differently in different parts of the circuit. The solution to this problem is to
use either a bus_latch_in or a bus_clock_in interface sort.

bus_out interfaces
The output value on pins cannot be guaranteed except at rising Handel-C clock edges. In
between clock edges, the value may be in the process of changing. Since the routing delays
through different parts of the logic of the output expression are different, some pins may
change before others giving rise to intermediate values appearing on the pins. This is
particularly apparent in deep combinational logic. Adding a flip-flop to the output (as shown
in the bus_out example) will minimize these effects.

Race conditions within the combinational logic can lead to glitches on output pins between
clock edges. When this happens, pins may glitch from 0 to 1 and back to zero or vice versa
as signals propagate through the combinational logic. Adding a flip-flop at the output
removes these effects.

Bi-directional tri-state buses
The timing considerations for bus_in and bus_out interfaces should also be taken into
account when using bi-directional tri-state buses since these are effectively a combination of
an input bus and an output bus.

11.5.1 Example timing considerations for input buses
interface bus_in(int 1 read) a() with

{data = {"P1"}};

par
{

x = a.read;
y = a.read;

}

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 189

Even though a.read is assigned to both x and y on the same clock cycle, if the delay from
pin 1 to the flip-flop implementing the x variable is significantly different from that between
pin 1 and the flip-flop implementing the y variable then x and y may end up with different
values.

The delay between pin 1 and the input of y is slightly longer than the delay between pin 1
and the input to x. As a result, when the rising edge of the clock registers the values of x
and y, there is one clock cycle when x and y have different values.

This effect can also occur in places that are more obscure.

interface bus_in(int 1 read) a() with
{data = {"P1"}};

while (a.read==1)
{

x = x + 1;
}

Although a.read is only apparently used once, the implementation of a while loop
requires the signal to be routed to two different locations giving the same problem as before.
The solution to this problem is to use either a bus_latch_in or a bus_clock_in
interface sort.

The compiler will detect any occurrences of a pin feeding more than one register, and issue
a warning.

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 190

11.5.2 Example of timing considerations for output buses
int 8 x;
int 8 y;

interface bus_out() output(int out = x * y)
with {data = {"P7", "P6", "P5", "P4",

"P3", "P2", "P1", "P0"}};

A multiplier contains deep logic so some of the 8 pins may change before others leading to
intermediate values. It is possible to minimize this effect (although not eliminate it
completely) by adding a variable before the output. This effectively adds a flip-flop to the
output. The above example then becomes:

int 8 x;
int 8 y;
int 8 z;

interface bus_out() output(int out = z)
with {data = {"P7", "P6", "P5", "P4",

"P3", "P2", "P1", "P0"}};

z = x * y;

You must now take care to update the value of z whenever the value output on the bus must
change.

11.6 Metastability
The output of a digital logic gate is a voltage level that normally represents either ‘0’ or ‘1’. If
the voltage is below the low threshold, it represents 0 and if it is above the high threshold, it
represents 1. However, if the voltage input to a register or latch is between these thresholds
on the clock edge, then the output of that register will be indeterminate for a time before
reverting to one of the normal states. The state to which it reverts and the time at which it
reverts cannot be predicted. This is called metastability, and can occur when data is clocked
into a register during the time when the data is changing between the two normal voltage
levels representing 0 and 1. It is therefore an important consideration for Handel-C programs
that may clock in data when the data is changing state.

Techniques to minimize the problem
• examine the metastability characteristics of the device used
• use extra registers to stabilize the data
• decouple the FPGA/PLD from external synchronous hardware by using external

buffer storage

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 191

Metastability characteristics of devices
The metastability characteristics of digital logic devices vary enormously. For a discussion of
Xilinx FPGAs see the Xilinx FPGA data sheet (reference 2). This document puts the problem
into perspective. For example a XC4000E device clocking a 1MHz data signal with a 10MHz
clock is expected only once in a million years to take longer than 3ns to recover from a
metastable state to a stable state. So when designing a system examine the metastability
characteristics of the devices under the conditions in which they will be used to determine
whether any precautions need be taken.

Stabilize the data
The ideal system is designed such that when data is clocked into a register it is guaranteed
to be stable. This can be achieved by using intermediate buffer storage between the two
systems that are transferring data between each other. This storage could be a single dual-
port register, dual-port memory, FIFO, or shared memory. Handshaking flags are used to
indicate that data is ready, and that data has been read.

However even in this situation sampling of the flags could cause metastability. The solution
is to clock the flag into the Handel-C program more than once, so it is clocked into one
register, and the output of that register is then clocked into another register. On the first clock
the flag could be changing state so the output could be metastable for a short time after the
clock. However, as long as the clock period is long relative to the possible metastable
period, the second clock will clock stable data. Even more clocks further reduce the
possibility of metastable states entering the program, however the move from one clock to
two clocks is the most significant and should be adequate for most systems.

The example below has 4 clocks. The first is in the bus_clock_in procedure, and the next
3 are in the assignments to the variables x, y, and z.

int 4 x,y,z;

interface bus_clock_in(int 4 read) InBus() with
{data = {"P4", "P3", "P2", "P1"}};

par
{

while(1)
x = InBus.read;

while(1)
y = x;

{
......
z = y;

}
}

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 192

Design the system to minimize the problem
Remember to keep the problem in perspective by examining the details of the system to
estimate the probability of metastability. Design the system in the first place to minimize the
problem by decoupling the FPGA from external synchronous hardware by using external
buffer storage.

11.6.1 Metastability across clock domains
There are particular metastability issues when dealing with communications across clock
domains.

Channels between clock domains
Channels that connect between clock domains are uni-directional point-to-point. The timing
between domains is unspecified, but the transmission is guaranteed to occur, and both sides
will wait until the transmission has completed. For example:

//File: transmit.hcc
chan 8 c; // channel must have global scope

set clock = external "P1";
void main(void)
{

int 8 x, y;
c ! x; //program will wait until data successfully transmitted
c ! y;

}

//File: receive.hcc
extern chan c;

set clock = external "P2";
void main(void)
{

int 8 p, q;

c ? p;
c ? q;

}

Interfaces between hardware components in separate clock domains
If you are dealing with hardware components in separate clock domains, you will need to
insert resynchronizing hardware if it is not included in the components. For example, if data
is sent from port_out A in domain bbA and received from port_in B in domain bbB, the

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 193

data must be resynchronized to the clock in domain bbB. This can be done by registering the
data at least once in the Handel-C wrapper file.

11.6.2 Metastability in separate clock domains: example

External resynchronizing example
This example shows the three files required to connect two EDIF blocks (bbA and bbB)
which use different clocks. The small files bbA.hcc and bbB.hcc compile to the EDIF code
using the port_out from and port_in to interfaces. The metastable.hcc file
connects the two together and generates one flip –flop that resynchronizes the data by
reading the value from bbA into a variable.

File: metastable.hcc
/*
* Black box code to resynchronize
* Needs to be clocked from the reading clock
* (i.e. bbB.hcc's clock)
*/

int 1 x;
interface bbA(int 1 from) A();
interface bbB() B(int 1 to=x);

set clock = external "P1";
void main(void)
{

while(1)
{
/* stabilize the data by adding
* resynchronization FF
*/

x = A.from;
}

}

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 194

File: bbA.hcc
/*
* Domain bbA
* Compiles to bbA.edf
*/

set clock = external "P2";
void main(void)
{
int 1 y;
interface port_out() from (int 1 from = y);

}

File: bbB.hcc
/*
*Domain bbB
* Compiles to bbB.edf
*/

set clock = external "P3";
void main(void)
{
int 1 q;

interface port_in(int 1 to) to();
par
{
while(1)
{
q = to.to; // Read data

}
}

}

Internal resynchronizing example
The resynchronizing flip-flop can be placed in the file that reads the data from the foreign
code block.

This example shows the three files required to connect two EDIF blocks (bbA and bbB)
which use different clocks. The small files bbA.hcc and bbB.hcc compile to the EDIF code

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 195

using the port_out from and port_in to interfaces. The toplevel.hcc file connects
them together. The data is resynchronized in the bbB.hcc file.

File: toplevel.hcc
/*
* Code to connect data between two cores
*/

interface bbA(int 1 from) A();
interface bbB() B(int 1 to=A.from);

File: bbA.hcc
/*
* Domain bbA
* Compiles to bbA.edf
*/
set clock = external "P1";
void main(void)
{
int 1 y;
interface port_out() from (int 1 from = y);

}

File: bbB.hcc
/*
*Domain bbB
* Complies to bbB.edf
*/
set clock = external "P2";
void main(void)
{

int 1 q, y;

interface port_in(int 1 to) to();

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 196

while(1)
{

par
{

q = to.to; // Resynchronize data
y = q;

}
}

}

11.7 Ports: interfacing with external logic
Handel-C provides the interface sorts port_in and port_out. These allow you to have a
set of wires, unconnected to pins, which you can use to connect to a simulated device or to
another function within the FPGA or PLD. Handel-C supplies the interface declaration for
these sorts, and you supply the instance definition.

port_in
For a port_in, you define the port(s) carrying data to the Handel-C code and any
associated specifications.

interface port_in(Type data_TO_hc [with {port_specs}])
Name() [with {Instance_specs}];

For example:

interface port_in(int 4 signals_to_HC) read();

You can then read the input data from the variable Name.data_TO_hc, in this case
read.signals_to_HC

port_out
For a port_out, you define the port(s) carrying data from the Handel-C code, the
expression to be output over those ports, and any associated specifications.

interface port_out() Name(Type data_FROM_hc =
output_Expr[with {port_specs}])

[with {Instance_specs}];

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 197

For example:

int X_out;
interface port_out()

drive(int 4 signals_from_HC = X_out);

In this case, the width of X_out would be inferred to be 4, as that is the width of the port that
the data is sent to.

Port names
The name of each port in a port_in or port_out interface must be different, as they will
all be built to the top level of the design.

The examples below would both generate a compiler error.

Example 1:

interface port_in(unsigned 1 soggy) In1();
interface port_in(unsigned 1 soggy) In2();

Example 2:

interface port_in(unsigned 1 soggy) In1();
void main(void)
{
interface port_in(unsigned 1 soggy) In2();
…
}

Both examples build two ports to the top level of the design called soggy. When they were
integrated with external code, the PAR tools wouldn’t know which soggy to use where.

11.8 Specifying the interface
You can specify your own interface format. This allows you to communicate with code
written in another language such as VHDL, Verilog or EDIF and allows the Handel-C
simulator to communicate with an external plugin program (e.g., a connection to a VHDL
simulator).

The expected use for this is to allow you to incorporate bought-in or handcrafted pieces of
low-level code in your high-level Handel-C program. It also allows your Handel-C program
code to be incorporated within a large EDIF, VHDL or Verilog program. You can also use it
to communicate with programs running on a PC that simulate external devices.

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 198

To use such a piece of code requires that you include an interface definition in the
Handel-C code to connect it to the external code block. This interface definition also tells the
simulator to call a plugin (which in turn may invoke a simulator for the foreign code).

11.9 Targeting ports to specific tools
When compiling to EDIF, Handel-C has the capacity to format the names of wires to external
logic according to the different syntaxes used by any external components generated by
foreign tools. You can do this using the busformat specification to a port. This allows you
to specify how the bus name and wire number are formatted.

To specify a format, you use the syntax

with {busformat = "formatString"}

formatstring can be one of the following strings. B represents the bus name, and I
represents the wire number.

BI
B_I
B[I]
B(I)
B<I>

B specifies a bus

B[N:0], B<N:0> or B(N:0) specify a bus of width (N+1).

Example format B[I]
interface port_in(int 4 signals_to_HC with

{busformat="B[I]"}) read();

Handel-C Language Reference Manual

>: 11. External hardware and logic

>: Chapter :11 199

would produce wires

signals_to_HC[0]
signals_to_HC[1]
signals_to_HC[2]
signals_to_HC[3]

Example format B<I>
ram unsigned 4 rax[4] with {ports = 1, busformat="B<I>"};

would produce wires

rax_SPPort_addr<0> // Address
rax_SPPort_addr<1>
rax_SPPort_data_in<0> // Data In
rax_SPPort_data_in<1>
rax_SPPort_data_in<2>
rax_SPPort_data_in<3>
rax_SPPort_data_out<0> // Data Out
rax_SPPort_data_out<1>
rax_SPPort_data_out<2>
rax_SPPort_data_out<3>
rax_SPPort_data_en // Data Enable
rax_SPPort_clk // Clock
rax_SPPort_cs // Chip Select
rax_SPPort_oe // Output Enable
rax_SPPort_we // Data In

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 200

>: 12 Object specifications
Handel-C provides the ability to add ‘tags’ to certain objects (variables, channels, ports,
buses, RAMs, ROMs, mprams and signals) to control their behaviour. These tags or
specifications are listed after the declaration of the object using the with keyword.

When declaring multiple objects, the specification must be given at the end of the line and
applies to all objects declared on that line. For example:

unsigned x, y with {show=0};

This attaches the show specification with a value of 0 to both x and y variables.

Compiler attributes

Specification Possible
Values

Default Applies to Meaning

warn 0, 1 1 variables
memories
channels
interfaces

Enable warnings for
object

extpath Name of port
TO Handel-C
on the same
interface

None port FROM
Handel-C

Specify any direct logic
(combinational logic)
connections to another
port

Simulator attributes

Specification Possible
Values

Default Applies to Meaning

show 0, 1 1 variables
channels
o/p interfaces
tri-state
interfaces

Show variable during
simulation

base 2, 8, 10, 16 10 variables
chanouts
o/p interfaces
tri-state
interfaces

Print variable in
specified base

infile Any valid
filename

None chanins
i/p interfaces tri-
state interfaces

Redirect from file

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 201

Specification Possible
Values

Default Applies to Meaning

outfile Any valid
filename

None chanouts
o/p interfaces
tri-state
interfaces,
variables

Redirect to file

extlib Name of a
plugin .dll

None interface or
port

Specify external plugin
for simulator

extfunc Name of a
function
within the
plugin

PlugInSet
or
PlugInGet
depending
on port
direction

interface or
port

Specify external
function within the
simulator for this port

extinst Instance
name (with
optional
parameters)

None interface or
port

Specify simulation
instance used

Interface attributes

Specification Possible
Values

Default Applies to Meaning

bind 0,1 0 interface,
port

Bind component to
work library

properties string-value pair
OR string-value-
string triplet

None generic
interfaces

Parameterize
instantiations of
external black
boxes

std_logic_vector 0, 1 0 port_in,
port_out or
generic
interfaces

Creates a
std_logic_vect
or port instead of
an unsigned port
in VHDL output

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 202

Interface and memory attributes

Specification Possible Values Default Applies to Meaning

0, 1, 2, 3
(Xilinx 4000 only)

3 for Xilinx 4000
series

0, 1, 2
(Actel ProASIC
only)

2 for Actel
ProASIC and
ProASIC+

speed

0, 1
(Xilinx and Altera)

1 for Xilinx
VirtexE and
Spartan2 series
and Altera

o/p or tri-state
interfaces

Set buffer speed

intime Any floating point
ns delay

None input port or
interfaces or
tri-state
interfaces
external
RAMs

Maximum
allowable delay
between interface
and variable

outtime Any floating point
ns delay

None output port or
interfaces or
tri-state
interfaces
external
RAMs

Maximum
allowable delay
between variable
and interface

standard Specified
keywords
representing I/O
standards

LVCMOS33:ProA
SIC / ProASIC+
LVTLL: other

any external
interface
(dependent
on FPGA
type) and off-
chip
memories

I/O standard used
(electrical
characteristics)

2, 4, 6, 8, 12, 16,
24
OR

strength

0 (Min), -1 (Max)

Various, refer to
table of supported
values

external
interfaces and
off-chip
memories

Signal strength.

dci 0, 1 0 (No DCI) external
interfaces
(Virtex II only)
and off-chip
memories

Digital control
impedance
enabled (only valid
with some
standards)

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 203

Specification Possible Values Default Applies to Meaning

busformat Format string B_I interface,
port or
memories in
external logic

Specify the way
that wire names
are formatted in
EDIF

pull 0, 1 None Xilinx and
ApexII
interfaces

Add pull up or pull
down resistor(s)

data Any valid pin list None memories
interfaces

Set data pins

Memory attributes

Specification Possible
Values

Default Applies to Meaning

offchip 0, 1 0 memories Set RAM/ROM to be off
chip. Cannot be used in
conjunction with ports

ports 0, 1 0 memories Set RAM/ROM to be in
external code. Cannot be
used in conjunction with
offchip

block 0, 1 for Xilinx,
Altera
1 for Actel

0 for Xilinx
1 for Altera,
Actel

memories (on-
chip)

Set RAM/ROM to be in
block memory

wegate -1, 0, 1 0 RAMs Place write enable signal
westart in multiples of

0.5 to (clock
division -0.5)

None RAMs Position write enable
signal

welength in multiples of
0.5 to clock
division

None RAMs Set length of write enable
signal

rclkpos in multiples of
0.5 to (clock
division -0.5)

None memories Set read cycle position of
SSRAM clock

wclkpos in multiples of
0.5 to (clock
division -0.5)

None memories Set write cycle position of
SSRAM clock

clkpulselen in multiples of
0.5 to clock
division

None memories Set pulse length of
SSRAM clock

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 204

Specification Possible
Values

Default Applies to Meaning

clk Any valid pin
list

None memories
(off-chip)

Set clock pins for external
SSRAM clock

addr Any valid pin
list

None memories (off-
chip)

Set address pins

oe Any valid pin
list

None memories (off-
chip)

Set output enable pin(s)

we Any valid pin
list

None RAMs
(off-chip)

Set write enable pin(s)

cs Any valid pin
list

None memories (off-
chip)

Set chip select pin(s)

Clock attributes

Specification Possible
Values

Default Applies to Meaning

clockport 0, 1 0 for a port
on an
interface, 1
for a clock
declaration

ports on
interfaces,
external clocks

Mark port as
feeding a clock

fastclock 0,1 1 external clocks Use a fast clock
buffer

rate Any floating
point frequency
in MHz

None clocks Minimum frequency
at which the clock
in question should
be capable of
running

Example
Specifications can be added to objects as follows:

unsigned 4 w with {show=0};
int 5 x with {show=0, base=2};
chanout char y with {outfile="output.dat"};
chanin int 8 z with {infile="input.dat"};
interface bus_clock_in(int 4 in) InBus() with

{ pull = 1,
data = {"P4", "P3", "P2", "P1"}

};

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 205

12.1 base specification
The base specification may be given to variable, output channel, output bus and tri-state
bus declarations. The value that this specification is set to tell the Handel-C compiler which
base to display the value of the object in. Valid bases are 2, 8, 10 and 16 for binary, octal,
decimal and hexadecimal respectively.

The default value of this specification is 10. If you write with {base = 0} this is
equivalent to not specifying a base.

Example
int 5 x with {base=2};

12.2 bind specification
The bind specification may be given to an user-defined interface that connects to a
component in external logic. It only has meaning when instantiating an external block of
code from Handel-C generated VHDL or Verilog. If bind is set to 1, it is assumed that the
definition of the component exists in HDL elsewhere. If it is set to 0, it does not and the
component is assumed to be a black box.

In VHDL, setting bind to 1 instantiates the component and generates a declaration of this
component of which the definition is assumed to be within the work library. Setting bind to 0
(default) instantiates the component and generates a black box component declaration.

In Verilog, setting bind to 1 instantiates the component but does not declare it. Setting
bind to 0 instantiates the component and generates a black box component declaration.
This black box component declaration is an empty module, which merely describes the
interfaces of the component.

VHDL example 1: with bind set to 0:
interface Bloo(unsigned 1 myin) B(unsigned 1 myout = x)

with {bind = 0};

results in Handel-C generating this VHDL instantiation of the Bloo component:

component Bloo
port (

myin : out std_logic;
myout : in std_logic

);
end component;

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 206

VHDL example 2: with bind set to 1:
interface Bloo(unsigned 1 myin) B(unsigned 1 myout = x)

with {bind = 1};

results in Handel-C generating this VHDL instantiation/declaration of the Bloo component:

component Bloo
port (

myin : out std_logic;
myout : in std_logic

);
end component;
for all : Bloo use entity work.Bloo;

In this case Bloo is bound to the work library.

Verilog example 1: with bind set to 0:
interface Bloo(unsigned 1 myin) B(unsigned 1 myout = x)

with {bind = 0};

results in Handel-C generating this Verilog instantiation of the Bloo component:

module Bloo;
input myin;
output myout;

endmodule;

module MyModule;
...
wire a, b;
...
Bloo MyInstance (.myin(a), .myout(b));
...

endmodule;

Note that the code includes a black box declaration of Bloo.

Verilog example 2: with bind set to 1:
interface Bloo(unsigned 1 myin) B(unsigned 1 myout = x)

with {bind = 1};

results in Handel-C generating this Verilog instantiation of the Bloo component:

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 207

module MyModule;
...
wire a, b;
...
Bloo MyInstance (.myin(a), .myout(b));
...

endmodule;

(The VHDL or Verilog synthesizer expects the declaration of Bloo to be provided in another
block of HDL.)

12.3 block specification
The block specification may be given to a RAM or ROM declaration. You can specify that a
block RAM is created by using the specification block = 1. E.g.

ram int 8 a[15][43] with {block = 1};

The default value for the block specification varies according to the target device:

• For Xilinx, the default value is 0, which means that the memory will be built from
LUTs rather than from block memory.

• For Altera, the default is 1.

The implementation of parallel read/writes to block memory is different on Xilinx and Altera
devices.

 If you want to build a ROM from look-up tables (distributed memory) in Altera
devices, you need to declare the ROM with {block = 0}.

Example
static ram 8 blockRAM[2] = {12, 49} with {block = 1} ;

Issues with Xilinx Virtex and VirtexE
Due to the pipelined nature of Virtex block RAM, if you attempt to read from one bank of
block RAM and write the value into another on a single cycle, the value read is the value in
block RAM on the previous clock cycle, not the current cycle.

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 208

Code example with timing issues
ram unsigned 8 RAM1[4] = {0,1,2,3} with {block=1};
ram unsigned 8 RAM2[4] with {block=1};
signal s;
unsigned x;
unsigned i;

while(1)
{

par
{

s = RAM1[i];
RAM2[i] = s;
x = s;
i++;

}
}

Here, x and Block1[i] get different values. s changes on the falling edge. x is written to
on the rising edge. Block1[i] is written to on the falling edge.

Therefore, Block1[i] gets the value of Block0[i-1] and x gets the value of
Block0[i].

To alter this, you must use the rclkpos, wclkpos and clkpulselen specifications to set
the RAM clock cycle positions.

Solution to timing problem
//divide CLK by four to give Handel-C clock
set clock = external_divide “C1” 4;

ram unsigned 8 RAM1[4] with {block = 1,
rclkpos = {1.0},
wclkpos = {3.5},
clkpulselen = 0.5,
westart = 3.0,
welength = 1.0};

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 209

ram unsigned 8 RAM2[4] with {block = 1,
rclkpos = {1.0},
wclkpos = {3.5},
clkpulselen = 0.5,
westart = 3.0,
welength = 1.0};

HCLK initiates the parallel read from and write to the different blocks of RAM

The settings of rclkpos and ckpulselen delays the read cycle until the address is stable.
(Read clock pulse 1CLK pulse after HCLK, held for 0.5 CLK pulses)

The settings of wclkpos and ckpulselen delays the write cycle until after the data has
been read and is stable. The settings of westart and welength positions the write enable
appropriately.

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 210

12.4 busformat specification
The busformat specification may be given to

• generic and port-type (port_in and port_out) interfaces (but not bus-type
interfaces)

• port memories (memories using with {ports = 1} to connect to external
code)

busformat specifications are ignored for VHDL and Verilog output and for bus-type
interfaces (bus_in, bus_ts etc).

When compiled to EDIF, the busformat string defines the format of the wire names. Valid
values for the busformat string are

BIB_I B[I] B(I) B<I>

B represents the bus name and I the wire number. The default format is B_I

If you want to specify a single port for the entire bus, use

B B[N:0] B<N:0> B(N:0)

B specifies a bus without specifying a width and B[N:0] and B<N:0> specify a bus of
width (N +1). A 6-bit port could therefore be generated as port, port[5:0]or
port<5:0> depending on the value of busformat.

 If data specifications are used with busformat, they are ignored and a warning is
issued.

You can place the busformat specification after any port, or at the end of an interface
statement. If you place a specification at the end of the interface declaration, it will apply to
all ports in the declaration, except for any ports that have their own specification. For
example:

interface Bloo (unsigned 4 in) InstBloo (unsigned 4 out = x with
{busformat = "BI"})

with {busformat = "B(I)"};
// first port has spec B(I) and second port has spec BI

Examples
interface port_in(int 4 signals_to_HC with {busformat="B[I]"}) read
();

creates four ports named signals_to_HC[0], signals_to_HC[1],
signals_to_HC[2] and signals_to_HC[3]:

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 211

interface port_in(unsigned 6 myvar) MyFunction() with {busformat =
"B[N:0]"};

creates a single 6-bit port: myvar[5:0]

unsigned 6 x;
interface ExtThing(unsigned 6 myvar)

Inst1ExtThing(unsigned 6 anothervar = x)
with {busformat = "B[N:0]"};

creates two ports: myvar[5:0] and anothervar[5:0]

12.5 clockport specification
The clockport specification can be used when declaring a port on an interface, or when
declaring a clock.

Port declaration
You can use the clockport specification to indicate that a port on an interface is used to
drive a clock in the Handel-C design. This is useful when the clock for the Handel-C design
originates in an external 'black box' component. For example

unsigned 1 En;
interface BlackBox(unsigned 1 CLK with {clockport=1})
Instance(unsigned 1 Enable = En);

set clock = internal Instance.CLK;

If you don't use the clockport specification you may end up with combinational
loops.

Clock declaration
You can use the clockport specification, with {clockport=1}, when declaring
external clocks to assign the clock to a dedicated clock input resource on the target device.

If you apply the clockport specification to Xilinx Virtex parts, you can use it to specify a
particular "input" clock buffers.

If clockport is set to 0, the clock is assigned to a pin that is not a dedicated clock input
and the IO standard and DCI specifications are not available.

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 212

Example clock declarations
set family = XilinxVirtexII;
set clock = external with {standard = “LVCMOS33”, dci = 1};

OR

set family = XilinxVirtexII;
set clock = external with {clockport = 1, standard = “LVCMOS33”,
dci = 1};

both instruct the compiler to build an external clock interface, using a dedicated Virtex-II
clock input (IBUFG) resource. That is, the clock interface logic built will be:

set family = XilinxVirtexII;
set clock = external with {clockport = 0, standard = “LVCMOS33”,
dci = 1};

This instructs the compiler to build an external clock interface, without using a dedicated
Virtex-II clock input resource. That is, the clock interface logic built will be:

12.6 data specification (pin constraints)
The data specification can be used to constrain pin location or name ports:

• When applied to bus-type interfaces or off-chip memories, data specifies pin
locations as a list of pin numbers separated by commas

• When applied to foreign code memories (using with {ports=1}), port-type
interfaces and generic interfaces, data specifies port names as a list of names
separated by commas

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 213

If the data specification is omitted for bus-type interfaces or off-chip memories, the place
and route tools will assign the pins. The pins are listed in order MSB to LSB, but the LSB pin
(rightmost element of list) is assigned first. If you do not assign all the pins used, the MSB
pins remain unassigned.

If you are targeting EDIF output, the data specification can also be used for a port_in or
port_out interface to specify the names of the ports to be exported. (This part of the data
specification is ignored for VHDL or Verilog output.)

If you are compiling your Handel-C code to VHDL or Verilog, you can only use the data
specification to constrain pin locations for LeonardoSpectrum, FPGAExpress and Synplify
outputs. If you compile for ModelSim, the data specification is ignored.

In LeonardoSpectrum VHDL or Verilog output, pin constraints are implemented using the
pin_number attribute. In Synplify output, pin constraints are implemented using the loc
attribute. If you compile your VHDL or Verilog for FPGAExpress, the pin constraints
specified by data are put into a FES file (FPGAExpress script file) with the same name as
your top-level VHDL or Verilog file (e.g. MyProject.fes).

If the busformat specification is used as well as data specifications for port-type or
generic interfaces, the data specifications are ignored and a warning is issued.

Bus-type interface example
macro expr dataPins = {"P3", "P2", "P1", "P0"};
interface bus_in(unsigned 4 inPort) hword() with

{data = dataPins, intime = 5};

Port-type interface example
macro expr dataInNames = {“I3”, “I2”, “I1”, “I0”};
macro expr dataOutNames = {“O3”, “O2”, “O2”, “O1”};

unsigned 4 x;
interface port_in(unsigned 4 in) Ig() with {data = dataInNames};
interface port_out() Og(unsigned 4 out = x) with {data =
dataOutNames};

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 214

Generic interface example
macro expr dataInNames = {“I3”, “I2”, “I1”, “I0”};
macro expr dataOutNames = {“O3”, “O2”, “O2”, “O1”};

unsigned 4 x;
interface Igator

(
unsigned 4 in with {data = dataInNames}
)

InstIgator
(
unsigned 4 out = x with {data = dataOutNames}
);

12.7 dci specification
The dci specification may be used with the standard specification on external bus
interface connected to pins (not port_in or port_out) to select whether Digital Controlled
Impedance is to be used on all pins of that interface. It may also be applied to off-chip
memories.

The only devices that currently support DCI are Xilinx Virtex-II and Virtex-II Pro. For more
information on DCI, please refer to the Xilinx Data Book.

If you have used the clockport specification and set it to 0, dci specifications will be
ignored. (The default for clockport is 1.)

Standards supporting dci are:

GTL GTL+
HSTL Class I HSTL Class II HSTL Class III HSTL Class IV
LVCMOS33 LVCMOS25 LVCMOS18 LVCMOS15
SSTL2 Class I SSTL2 Class II SSTL3 Class I SSTL3 Class II

The possible values for the dci specification are:

0 No DCI (default)
1 DCI with single termination
0.5 DCI with split termination. This can only be used with LVCMOS standards.

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 215

If dci is used on a device or standard that does not support it, a warning is issued
and the specification is ignored.

Example:
// Use dci on all pins
interface bus_out() Eel(outPort = x) with {data = dataPinsO,
standard = "HSTL2_I", dci=1};

12.8 extlib, extfunc, extinst specifications
The extlib extfunc and extinst specifications are used when connecting a Handel-
C interface to a simulation .dll. There is a default value for extfunc, but extlib and
extinst must both be specified.

Specification Possible Values Default Meaning

extlib Name of a plugin
.dll

None Specify external plugin for
simulator

extfunc Name of a function
within the plugin

PlugInSet or
PlugInGet
depending on port
direction

Specify external function
within the simulator for this
port

extinst Instance name (with
optional parameters)

None Specify simulation instance
used

extlib
extlib takes the name of a .dll. It specifies that the named .dll plugin will be
connected to the port or interface.

extfunc
extfunc specifies the name of an external function within the .dll.

On output ports, this function is called by the simulator to pass data from the Handel-C
simulator to the plugin (default PlugInSet). It is guaranteed to be called every time the
value on the port changes but may be called more often than that.

On input ports, this function is called by the simulator to get data from the plugin (default
PlugInGet). It is guaranteed to be called at least once every clock cycle.

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 216

extinst
extinst takes a string, which is passed to the PlugInOpenInstance function within the
plugin. If parameters must be passed to the .dll instance, they can be done so in the string.
A new instance of the plugin will be generated for each unique extinst string.

Examples
interface bus_out() MyBusOut(outPort=MyOutExpr) with

{extlib="pluginDemo.dll", extinst="0", extfunc="MyBusOut"};

interface TTL7446(unsigned 7 segments, unsigned 1 rbon)
decode(unsigned 1 ltn=ltnVal, unsigned 1 rbin=rbinVal,

unsigned 4 digit=digitVal, unsigned 1 bin=binVal)
with {extlib="PluginModelSim.dll",

extinst="decode; model=TTL7446_wrapper; delay=1"};

12.9 extpath specification
The extpath specification is used when connecting a Handel-C interface to external (black-
box) logic. Its usage is

portName with {extpath={portNameList}}

portNameList is a comma-separated list of port names.

It specifies that a Handel-C output port on an interface will have direct logic connections via
the black box to one or more input ports on the same interface. It is used during simulation to
tell the simulator what order to update the ports in.

Example

There are direct logic connections between ports 1 and 2 and ports 3 and 4 on a black box
interface. Port 2 (output) is directly connected to port 3 (input) via the Handel-C.

The interface definition would be:

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 217

interface blackBox(int 1 Two, int 1 Four)
bb1(int 1 One = out with {extpath = {bb1.Two}},

int 1 Three = bb1.Two with {extpath={bb1.Four}});

12.10 fastclock specification
The fastclock specification can only be applied to clock declarations. If fastclock is set
to 1, this specifies that an external clock should use a fast clock buffer. The default value is
0.

The fastclock specification currently only applies to Actel antifuse devices (eX, 54SX, 54SX-
A, RT54SX, RT54SX-S). It is ignored for all other devices.

Examples
set family = Actel54SXA;
set clock = external with {fastclock = 1};

This clock definition instructs the compiler to build an external clock interface, using a fast
clock input (HCLKBUF) resource. That is, the clock interface logic built will be:

set family = Actel54SXA;
set clock = external;

set family = Actel54SXA;
set clock = external with {fastclock = 0};

Both of these clock definitions instruct the compiler to build an external clock interface, using
a regular clock input (CLKBUF) resource. That is, the clock interface logic built will be:

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 218

12.11 infile and outfile specifications
The infile specification may be given to chanin, port_in, port_out, bus_in,
bus_latch_in, bus_clock_in, bus_ts, bus_ts_latch_in and bus_ts_clock_in
declarations. The outfile specification may be given to chanout, bus_out, bus_ts,
bus_ts_latch_in and bus_ts_clock_in declarations. The strings that these
specifications are set to will inform the simulator of the file that data should be read from
(infile) or the file that data should be written to (outfile).

When applied to a variable, the state of that variable at each clock cycle is placed in that file
when simulation takes place. Note that when applying the outfile specification, it should
not be given to multiple variables or channels. For example, the following declarations are
allowed, but it would be better to place them in separate files to avoid undefined results:

int x, y with {outfile="out.dat"};
chanout a, b with {outfile="out.dat"};

The filename passed to infile and outfile is a standard string and follows all string rules,
including the need to specify the backslash character as '\\'.

12.12 intime and outtime specifications
The intime specification may be given to an input port or bus, tri-state bus, foreign code
memory or off-chip memory. The outtime specification may be given to an output port or
bus, tri-state bus, foreign code memory or off-chip memory

intime specifies the maximum delay in ns allowed between an interface or memory
interface and the sequential elements it feeds. outtime specifies the maximum delay in ns
allowed between an interface or memory interface and the sequential elements it is fed from.
They can be floating point numbers. For example:

macro expr memoryPins = {"P13", "P12", "P11",
"P10", "P9", "P8", "P7", "P6"};

macro expr dataPins = {"P4", "P3", "P2", "P1"};

interface bus_in(unsigned 4 dataIn) hword() with {data = dataPins,
intime = 5};
interface port_out()

new_hword(unsigned 4 out = hword.dataIn + 1)
with {outtime = 5.2};

ram int 8 a[15][43] with {outtime = 5.2,
offchip = 1,
data = memoryPins};

When applied to Xilinx chips, intime and outtime specifications cause Handel-C to
generate a Netlist Constraints File (NCF) for the design. When an Altera device is the target,

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 219

Handel-C generates ACF or TCL files. When an Actel device is targeted, Handel-C
generates DCF or GCF files. These files are used by the place-and-route tools to constrain
the relevant paths.

12.13 offchip specification
The offchip specification may be given to a RAM or ROM declaration. When set to 1, the
Handel-C compiler builds an external memory interface for the RAM or ROM using the pins
listed in the clk, addr, data, cs, we and oe specifications. When set to 0, the Handel-C
compiler builds the RAM or ROM on the FPGA or PLD and ignores any pins given with other
specifications.

ram int 8 a[15][43] with {offchip = 1};

12.14 Pin specifications
The addr, data, we, cs and oe specifications each take a list of device pins and are
used to define the connections between the FPGA and external devices. If the specifications
are omitted, the place and route tools will assign the pins. The specifications apply to the
following objects:

Specification Input bus Output bus Tri-state
bus

RAM ROM

addr - - - • •
data • • • • •

we - - - • -

cs - - - • •
oe - - - • •
clk - - - • •

Pin lists are always given in the order most significant to least significant. Multiple write
enable, chip select and output enable pins can be given to allow external RAMs and ROMs
to be constructed from multiple devices. For example, when using two 4-bit wide chips to
make an 8-bit wide RAM, the following declaration could be used:

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 220

ram unsigned 8 ExtRAM[256] with {offchip=1,
addr={"P1", "P2", "P3", "P4", "P5", "P6", "P7", "P8"},
data={"P9", "P10", "P11", "P12", "P13", "P14", "P15", "P16"},
we={"P17", "P18"},
cs={"P19", "P20"},
oe={"P21", "P22"}

};

12.15 ports specification
The ports specification may be given to a RAM, ROM or MPRAM declaration. When set to
1, the Handel-C compiler builds an external memory interface for the RAM, ROM or MPRAM
using the ports defined in the addr, data, cs, we, oe and clk specifications. This allows
you to connect to RAMs in external code. The compiler generates an error if the ports and
offchip specification are both set to 1 for the same memory. All other specifications can be
applied.

If you use the ports specification with an MPRAM, a separate interface will be generated
for each port.

Examples
mpram
{

ram <unsigned 8> ReadWrite[256]; // Read/write port
rom <unsigned 8> Read[256]; // Read only port

} Joan with {ports = 1, busformat = "B<I>"};

generates EDIF ports with names prefixed by Joan_Read and Joan_ReadWrite. For
example:

(interface
(port Joan_Read_addr<0> (direction INPUT))
(port Joan_Read_addr<1> (direction INPUT))

......

(interface
(port Joan_ReadWrite_addr<0> (direction INPUT))
(port Joan_ReadWrite_addr<1> (direction INPUT))
.....

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 221

12.16 properties specification
The properties specification can be given to generic interfaces and is used to
parameterize instantiations of external black boxes.

Properties are specified as a list of property items, where each item comprises two or three
values:

{property_name, property_value [, property_type]}

• property_name is a string
• property_value can be a string or an integer
• property_type is optional, with 3 possible values (all strings): "integer",

"boolean" or "string"

If your property is a boolean, you need to specify 0 (false) or 1 (true) as the property value,
and specify "boolean" as the type.

If your property is an integer or string, the type can be inferred from the property value and
you do not need to specify it.

Each valid property is propagated through to the EDIF netlist as an EDIF property.
properties specifications are ignored for VHDL and Verilog output.

Compiler warnings are issued if illegal values are entered, or if there is a mismatch between
the property type and property value.

Example
unsigned 6 x;
interface ExtThing(unsigned 6 myvar)

Inst1ExtThing(unsigned 6 anothervar = x)
with {properties = {{“LPM_TYPE”, “LPM_RAM_DQ”},
{“LPM_WIDTH”, 6, “integer”}}, busformat = “B[N:0]”};

12.16.1 Using properties: example LVDS interface
This example shows how to use the properties specification to create a LVDS interface
for a Xilinx Virtex-II Pro.

properties are used to constrain the pin locations and to specify LVDS as the IO
standard.

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 222

set family = XilinxVirtexIIPro;
set part = "XC2VP20-6FF1152C";
set clock = external "D17";

/*
* LVDS input interface
*/
interface IPAD(unsigned 1 IPAD) SignalInP() with {properties =
{{"LOC", "F7"}}};
interface IPAD(unsigned 1 IPAD) SignalInN() with {properties =
{{"LOC", "F8"}}};
interface IBUFDS
(

unsigned 1 O
)
SignalIn
(

unsigned 1 I = SignalInP.IPAD,
unsigned 1 IB = SignalInN.IPAD

)
with
{

properties = {{"IOSTANDARD", "LVDS_25"}}
};

unsigned 1 x;

/*
* LVDS output interface
*/
interface OBUFDS
(

unsigned 1 O,
unsigned 1 OB

)
SignalOut
(

unsigned 1 I = ~x
)
with
{

properties = {{"IOSTANDARD", "LVDS_25"}}
};

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 223

interface OPAD
()
SignalOutP
(unsigned 1 OPAD = SignalOut.O)

with {properties = {{"LOC", "E3"}}};

interface OPAD
()
SignalOutN
(unsigned 1 OPAD = SignalOut.OB)

with {properties = {{"LOC", "E4"}}};

void main(void)
{

while(1)
{

x = SignalIn.O;
}

}

The example creates the following circuit:

12.17 pull specification
The pull specification may be given to an input or tri-state bus. When set to 1, a pull up
resistor is added to each of the pins of the bus. When set to 0, a pull down resistor is added
to each of the pins of the bus. When this specification is not given for a bus, no pull up or
pull down resistor is used.

Most Altera devices do not have pull-up or pull-down resistors. The ApexII and Mercury
devices have a pull-up resistor but no pull-down resistor. Refer to the appropriate data sheet
for details.

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 224

Most Actel devices do not have pull-up or pull-down resistors. ProASIC and ProASIC+
devices have a pull-up resistor but no pull-down resistor. Refer to the appropriate data sheet
for details.

Refer to the Xilinx FPGA data sheet for details of pull up and pull down resistors.

By default, no pull up or pull down resistors are attached to the pins.

Example
interface bus_clock_in(int 4 in) InBus() with

{ pull = 1,
data = {"P4", "P3", "P2", "P1"}

};

12.18 rate specification
The rate specification may be given to a clock, and is used to specify the frequency (in
MHz) at which the clock will need to be driven. This specification causes Handel-C to
generate one of the following:

• a Netlist Constraints File (NCF) for Xilinx devices
• an Assignments and Constraints File (ACF) for use with Max+PlusII for non-Apex

Altera devices
• a TCL script (for use with Quartus) for Altera Apex devices.
• a Gate-field Constraints File (GCF) for Actel ProASIC and ProASIC+
• a Delay Constraints File (DCF) for Actel antifuse devices

The place-and-route tools then use these timing requirements to constrain the relevant paths
so that the part of the design connected to the clock in question can be clocked at the
specified rate. In the example below, the clock will need to run at 17.5MHz.

set clock = external_divide "D17" 4 with
{rate = 17.5};

When rate is applied to a divided clock (as shown), it is the divided clock that will be
constrained by the specification, not the external clock. Undivided clocks are also
constrained to the appropriate value as calculated from the specified rate and the division
factor.

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 225

12.19 clkpos, wclkpos, clkpulselen and clk
specifications (SSRAM timing)

The rclkpos, wclkpos and clkpulselen may be given to internal or external SSRAM
declarations. They are specified as floating-point numbers in multiples of 0.5. The clk
specification is used for external SSRAM declarations. To use these specifications, you must
be using the external_divide or internal_divide clock types with a division factor of
2 or more.

rclkpos specifies the positions of the clock cycles of the RAM clock, for a read cycle.
These positions are specified in terms of cycles of a fast external clock, counting forwards
from the rising edge of the divided Handel-C clock rising edge.

wclkpos specifies the positions of the clock cycles of the RAM clock, for a write cycle.

clkpulselen specifies the length of the pulses of the RAM clock, in terms of cycles of a
fast external clock. This is specified only once for a RAM. It thus applies to both the read
and write clocks.

clk specifies the pin(s) that carry the RAM clock to the external SSRAM.

12.20 show specification
The show specification may be given to variable, channel, output bus and tri-state bus
declarations. When set to 0, this specification tells the Handel-C simulator not to list this
object in its output. This means that it will not appear in the Variables debug window in the
GUI, but it can be seen in the Watch window.

The default value of this specification is 1.

int 5 x with {show=0};

12.21 speed specification
The speed specification may be given to an output or tri-state bus. The value of this
specification controls the slew rate of the output buffer for the pins on the bus. For Xilinx
4000 series devices, 0 is slow, 3 is fast, and the default value is 3. For Xilinx Virtex series,
Xilinx Spartan 2 series and Altera, 0 is slow, 1 is fast, and the default value is 1. Refer to the
Xilinx or Altera data sheets for details of slew rate control.

For Actel, the speed specification is only supported for ProASIC and ProASIC+ devices,
and there are three possible values: 0 (slow), 1 (normal) and 2 (fast – default value).

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 226

Example
interface bus_out()

drive(int 4 signals_from_HC = X_out) with {speed=0};

12.22 standard specification
The standard specification may be applied to any external bus interface connected to pins
(not port_in or port_out) to select the I/O standard to be used on all pins of that
interface. It may also be applied to off-chip memories. If the standard supports it, you can
use the strength specification to set the drive current and the dci specification to set
digital controlled impedance.

standard and dci specifications are ignored if you have used the clockport
specification and set it to 0. (The default for clockport is 1.)

Different device families support different standards. Consult the data sheet for a specific
device for details of which standard it supports. The compiler will issue errors if a non-
supported standard is selected for a particular device, or if the standard specification is
used on a family not supporting selectable I/O standards.

Available I/O standards
IO
Standard

Handel-C
keyword

 IO
Standard

Handel-C
keyword

 IO Standard Handel-C
keyword

LVTTL "LVTTL" HSTL
Class I

"HSTL_I" LVDS - see
note 1

"LVDS"

LVCMOS
(3.3 V)

"LVCMOS33" HSTL
Class II

"HSTL_II" LVPECL -
see note 1

"LVPECL"

LVCMOS
(2.5 V)

"LVCMOS25" HSTL
Class III

"HSTL_III" LVDCI (3.3 V)
- see note 2

"LVDCI_33"

LVCMOS
(1.8 V)

"LVCMOS18" HSTL
Class IV

"HSTL_IV" LVDCI (2.5 V)
- see note 2

"LVDCI_25"

LVCMOS
(1.5 V)

"LVCMOS15" SSTL2
Class I

"SSTL2_I" LVDCI (1.8 V)
- see note 2

"LVDCI_18"

PCI (33
MHz,
3.3 V)

"PCI33_3" SSTL2
Class II

"SSTL2_II" LVDCI (1.5 V)
- see note 2

"LVDCI_15"

PCI (33
MHz,
5.0 V)

"PCI33_5" SSTL3
Class I

"SSTL3_I" LVDCI (3.3 V,
split
termination) -
see note 3

"LVDCI_DV2
_33"

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 227

IO
Standard

Handel-C
keyword

 IO
Standard

Handel-C
keyword

 IO Standard Handel-C
keyword

PCI (66
MHz,
3.3 V)

"PCI66_3" SSTL3
Class II

"SSTL3_II" LVDCI (2.5 V,
split
termination) -
see note 3

"LVDCI_DV2
_25"

PCI-X "PCIX" CTT "CTT" LVDCI (1.8 V,
split
termination) -
see note 3

"LVDCI_DV2
_18"

GTL "GTL" AGP (1x) "AGP-1X" LVDCI (1.5 V,
split
termination) -
see note 3

"LVDCI_DV2
_15"

GTL+ "GTL+" AGP (2x) "AGP-2X"

Notes:
1. LVDS and LVPECL are not yet supported by Handel-C. Interfaces can be created

using the properties specification.
2. LVDCI standards are equivalent to using LVCMOS standards with a dci

specification of 1
3. LVDCI split termination standards are equivalent to using LVCMOS standards with

a dci specification of 0.5

Example:
interface bus_out() Eel(outPort=x) with {data = dataPinsO, standard
= "HSTL2_I"};

interface bus_ts(unsigned 3) Baboon(ape1=y, ape2 =
en) with {data = dataPinsT, standard = "LVTTL",
strength = 24};

If no I/O standard is specified, the default for Actel ProASIC and ProASIC+ is LVCMOS33
(with drive strength “High” or “Max”). The default for all other devices is LVTTL (with a drive
current of 12mA in the case of the Xilinx families supporting Select I/O).

Datasheets
Datasheets for Xilinx devices can be found at http://www.xilinx.com/partinfo/databook.htm

Datasheets for Altera devices can be found at http://www.altera.com/literature/lit-ds.html

Datasheets for Actel devices can be found at http://www.actel.com/techdocs/ds/index.html

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 228

I/O standard Handel-C
keyword

Xilinx devices
supporting standard

Altera devices
supporting standard

LVTTL "LVTTL" Spartan II, Virtex,
VirtexE, Virtex-II

Apex20K, Apex20KC,
Apex20KE, ApexII,
Mercury

LVCMOS (3.3V) "LVCMOS33" Virtex-II Apex20KC, Apex20KE,
ApexII, Mercury

LVCMOS (2.5V) "LVCMOS25" Spartan II, Virtex,
VirtexE, Virtex-II

Apex20K, Apex20KC,
Apex20KE, ApexII,
Mercury

LVCMOS (1.8V) "LVCMOS18" VirtexE, Virtex-II Apex20KC, Apex20KE,
ApexII, Mercury

LVCMOS (1.5V) "LVCMOS15" Virtex-II ApexII
PCI (33 MHz,
3.3V)

"PCI33_3" Spartan II, Virtex,
VirtexE, Virtex-II

Apex20K, Apex20KC,
Apex20KE, ApexII,
Mercury

PCI (33MHz, 5V) "PCI33_5" Spartan II, Virtex,
VirtexE

-

PCI (66MHz, 3.3V) "PCI66_3" Spartan II, Virtex,
VirtexE, Virtex-II

Apex20K, Apex20KC,
Apex20KE, ApexII,
Mercury

PCI-X "PCIX" Virtex-II ApexII, Mercury
GTL "GTL" Spartan II, Virtex,

VirtexE, Virtex-II
-

GTL+ "GTL+" Spartan II, Virtex,
VirtexE, Virtex-II

Apex20KC, Apex20KE,
ApexII, Mercury

HSTL Class I "HSTL_I" Spartan II, Virtex,
VirtexE, Virtex-II

ApexII, Mercury

HSTL Class II "HSTL_II" Virtex-II ApexII, Mercury
HSTL Class III "HSTL_III" Spartan II, Virtex,

VirtexE, Virtex-II
-

HSTL Class IV "HSTL_IV" Spartan II, Virtex,
VirtexE, Virtex-II

-

SSTL2 Class I "SSTL2_I" Spartan II, Virtex,
VirtexE, Virtex-II

Apex20KC, Apex20KE,
ApexII, Mercury

SSTL2 Class II "SSTL2_II" Spartan II, Virtex,
VirtexE, Virtex-II

Apex20KC, Apex20KE,
ApexII, Mercury

SSTL3 Class I "SSTL3_I" Spartan II, Virtex,
VirtexE, Virtex-II

Apex20KC, Apex20KE,
ApexII, Mercury

SSTL3 Class II "SSTL3_II" Spartan II, Virtex,
VirtexE, Virtex-II

Apex20KC, Apex20KE,
ApexII, Mercury

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 229

I/O standard Handel-C
keyword

Xilinx devices
supporting standard

Altera devices
supporting standard

CTT "CTT" Spartan II, Virtex,
VirtexE

Apex20KC, Apex20KE,
ApexII, Mercury

AGP(1x) "AGP-1X" - ApexII, Mercury
AGP(2x) "AGP-2X" Spartan II, Virtex,

VirtexE, Virtex-II
Apex20KC, Apex20KE,
ApexII, Mercury

LVDS (see note 1) "LVDS" VirtexE, Virtex-II Apex20KC, Apex20KE,
ApexII, Mercury

LVPECL (see note
1)

"LVPECL" VirtexE -

LVDCI (3.3V) "LVDCI_33" Virtex-II -
LVDCI (3.3V split
termination)

"LVDCI_DV2_
33"

Virtex-II -

LVDCI (2.5V) "LVDCI_25" Virtex-II -
LVDCI (2.5V split
termination)

"LVDCI_DV2_
25"

Virtex-II -

LVDCI (1.8V) "LVDCI_18" Virtex-II -
LVDCI (1.8V split
termination)

"LVDCI_DV2_
18"

Virtex-II -

LVDCI (1.5V) "LVDCI_15" Virtex-II -
LVDCI (1.5V split
termination)

"LVDCI_DV2_
15"

Virtex-II -

Amongst Actel devices, only ProASIC and ProASIC+ support selectable I/O standards, and
the only standards supported are LVCMOS33(default) and LVCMOS25.

12.22.1 I/O standard details

LVTTL – Low Voltage TTL
The Low-Voltage TTL, or LVTTL standard is a single ended, general purpose standard for
3.3V applications that uses an LVTTL input buffer and a Push-Pull output buffer. The LVTTL
interface is defined by JEDEC Standard JESD 8-A, Interface Standard for Nominal 3.0 V/3.3
V Supply Digital Integrated Circuits. This standard requires a 3.3V output source voltage, but
does not require the use of a reference voltage or a termination voltage.

LVCMOS (3.3 V) – 3.3 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard and is defined in JEDEC Standard
JESD 8-A, Interface Standard for Nominal 3.0 V/3.3 V Supply Digital Integrated Circuits. This
is a single-ended general-purpose standard also used for 3.3V applications. It uses a 5V-
tolerant CMOS input buffer and a Push-Pull output buffer. This standard requires a 3.3V

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 230

input/output source voltage, but does not require the use of a reference voltage or a board
termination voltage.

LVCMOS (2.5 V) – 2.5 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard and is documented by JEDEC
Standard JESD 8-5, 2.5 V ± 0.2 V (Normal Range) and 1.7 V to 2.7 V (Wide Range) Power
Supply Voltage and Interface Standard for Non-terminated Digital Integrated Circuit. This is a
single-ended general-purpose standard, used for 2.5V (or lower) applications. It uses a 5V-
tolerant CMOS input buffer and a Push-Pull output buffer. This standard requires a 2.5V
input/output source voltage, but does not require the use of a reference voltage or a board
termination voltage. Altera documentation refers to this standard as simply “2.5 V”.

LVCMOS (1.8 V) – 1.8 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard and is documented by JEDEC
Standard JESD 8-7, 1.8 V ± 0.15 V (Normal Range) and 1.2 V to 1.95 V (Wide Range)
Power Supply Voltage and Interface Standard for Non-terminated Digital Integrated Circuit.
This is a single-ended general-purpose standard, used for 1.8V power supply levels and
reduced input and output thresholds. It uses a 5V-tolerant CMOS input buffer and a Push-
Pull output buffer. This standard does not require the use of a reference voltage or a board
termination voltage. Altera documentation refers to this standard as simply “1.8 V”.

LVCMOS (1.5 V) – 1.5 Volt Low-Voltage CMOS
This standard is an extension of the LVCMOS standard. This is a single-ended general-
purpose standard, used for 1.5V applications. It uses a 5V-tolerant CMOS input buffer and a
Push-Pull output buffer. This standard does not require the use of a reference voltage or a
board termination voltage. Altera documentation refers to this standard as simply “1.5 V”.

PCI (33 MHz, 3.3 V) & PCI (66 MHz, 3.3 V) – 3.3 Volt PCI
The PCI standard specifies support for 33 MHz, 66 MHz and 133 MHz PCI bus applications.
It uses a LVTTL input buffer and a Push-Pull output buffer. This standard requires a 3.3V
input output source voltage, but not the use of input reference voltages or termination.

PCI (33 MHz, 5.0 V) – 5.0 Volt PCI
Some Xilinx devices may be configured in this mode (an extension of the 3.3 Volt PCI
standard), which makes them 5V tolerant. No Altera devices currently support this mode.

PCI-X
The PCI-X standard is an enhanced version of the PCI standard that can support higher
average bandwidth and has more stringent requirements.

GTL – Gunning Transceiver Logic Terminated
The GTL standard is a high-speed bus standard (JESD 8-3) invented by Xerox. Xilinx has
implemented the terminated variation for this standard (Altera has not). This standard
requires a differential amplifier input buffer and an Open Drain output buffer.

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 231

GTL+ – Gunning Transceiver Logic Plus
The GTL+ standard is a high-speed bus standard (JESD 8-3) first used by Intel Corporation
for interfacing with the Pentium Pro processor and is often used for processor interfacing or
communication across a backplane. GTL+ is a voltage-referenced standard requiring a 1.0 V
input reference voltage and board termination voltage of 1.5 V. The GTL+ standard is an
open-drain standard that requires a minimum input/output source voltage of 3.0 V.

HSTL – High-speed Transceiver Logic
The HSTL standard, specified by JEDEC Standard JESD 8-6, High-Speed Transceiver Logic
(HSTL), is a 1.5 V output buffer supply voltage based interface standard for digital integrated
circuits. This is a voltage-referenced standard, and has four variations or classes. Classes I
& II require a reference voltage of 0.75 V and a termination voltage of 0.75 V; classes III & IV
require a reference voltage of 0.9 V and a termination voltage of 1.5 V. All four classes
require an input/output source voltage of 1.5 V. This standard requires a Differential
Amplifier input buffer and a Push-Pull output buffer.

SSTL2 – Stub Series Terminated Logic for 2.5 V
The SSTL2 standard, specified by JEDEC Standard JESD 8-9, Stub-Series Terminated
Logic for 2.5 Volts (SSTL-2), is a general purpose 2.5 V memory bus standard sponsored by
Hitachi and IBM. This is a voltage-referenced standard, and has two variations or classes,
both of which require a reference voltage of 1.25 V, an input/output source voltage of 2.5 V
and a termination voltage of 1.25 V. This standard requires a Differential Amplifier input
buffer and a Push-Pull output buffer. SSTL2 is used for high-speed SDRAM interfaces.

SSTL3 – Stub Series Terminated Logic for 3.3 V
The SSTL2 standard, specified by JEDEC Standard JESD 8-8, Stub-Series Terminated
Logic for 3.3 Volts (SSTL-3), is a general purpose 3.3 V memory bus standard sponsored by
Hitachi and IBM. This is a voltage-referenced standard, and has two variations or classes,
both of which require a reference voltage of 1.5 V, an input/output source voltage of 3.3 V
and a termination voltage of 1.5 V. This standard requires a Differential Amplifier input buffer
and an Push-Pull output buffer. SSTL3 is used for high-speed SDRAM interfaces.

CTT – Centre Tap Terminated
The CTT standard is a 3.3V memory bus standard, specified by JEDEC Standard JESD 8-4,
Center-Tap-Terminated (CTT) Low-Level, High-Speed Interface Standard for Digital
Integrated Circuits, and sponsored by Fujitsu. CTT is a voltage-referenced standard
requiring a reference voltage of 1.5 V, an input/output source voltage of 3.3 V and a
termination voltage of 1.5 V. The CTT standard is a superset of LVTTL and LVCMOS. CTT
receivers are compatible with LVCMOS and LVTTL standards. CTT drivers, when un-
terminated, are compatible with the AC and DC specifications for LVCMOS and LVTTL. This
standard requires a Differential Amplifier input buffer and a Push-Pull output buffer.

AGP (1x, 2x) – Advanced Graphics Port
The AGP standard is specified by the Advanced Graphics Port Interface Specification
Revision 2.0 introduced by Intel Corporation for graphics applications. AGP is a voltage-

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 232

referenced standard requiring a reference voltage of 1.32 V, an input/output source voltage
of 3.3 V and no termination. This standard requires a Differential Amplifier input buffer and a
Push-Pull output buffer.

LVDS – Low Voltage Differential Signal
LVDS is a differential I/O standard. It requires that one data bit be carried through two signal
lines. The LVDS I/O standard is used for very high-performance, low-power-consumption
data transfer. Two key industry standards define LVDS: IEEE 1596.3 SCI-LVDS and
ANSI/TIA/EIA-644. Both standards have similar key features, but the IEEE standard
supports a maximum data transfer of 250 Mbps. The use of a reference voltage or a board
termination voltage is not required, but a 100Ω termination resistor is required between the
two traces at the input buffer.

LVPECL – Low Voltage Positive Emitter Coupled Logic
LVDS is a differential I/O standard. It requires that one data bit be carried through two signal
lines. The LVPECL standard is similar to LVDS. In LVPECL, the voltage swing between the
two differential signals is approximately 850 mV. The use of a reference voltage or a board
termination voltage is not required, but an external termination resistor is required.

LVDCI - Low Voltage Digital Controlled Impedance
Xilinx Virtex II devices are able provide controlled impedance input buffers and output drivers
that eliminate reflections without an external source termination. Output drivers can be
configured as controlled impedance drivers, or as controlled impedance drivers with half
impedance. Inputs can be configured to have termination to VCCO or to VCCO/2 (split
termination), where VCCO is the input/output source voltage. All of these are available at four
voltage levels: 1.5 V, 1.8 V, 2.5 V and 3.3 V. For further details, please refer to the Xilinx
Data Book.

12.23 std_logic_vector specification
The std_logic_vector specification may be given to port_in, port_out or generic
interfaces, where you want to use a std_logic_vector port instead of an unsigned port
in VHDL. Set std_logic_vector to 1 if you want to:

• instantiate an external block of code in Handel-C generated VHDL, and the
external block uses one or more std_logic_vector ports

• produce a block of VHDL that will be linked into another VHDL block that uses
one or more std_logic_vector ports.

The default value for std_logic_vector is 0. You can apply the std_logic_vector
specification to an individual port. If you place the specification at the end of the interface
statement, it will be applied to all the ports.

The std_logic_vector specification is ignored for all outputs except for VHDL

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 233

Example 1: Handel-C instantiation of a Bloo component with
std_logic_vector set to 0 (default):

interface Bloo(unsigned 1 myin) B(unsigned 4 myout = x) with
{std_logic_vector = 0};

results in Handel-C generating this VHDL instantiation of the Bloo component:

component Bloo
port (

myin : out std_logic;
myout : in unsigned (3 downto 0)

);
end component;

Example 2: Handel-C instantiation of a Bloo component with
std_logic_vector set to 1:

interface Bloo(unsigned 1 myin) B(unsigned 4 myout = x) with
{std_logic_vector = 1};

results in Handel-C generating this VHDL instantiation of the Bloo component:

component Bloo
port (

myin : out std_logic_vector (0 downto 0);
myout : in std_logic_vector (3 downto 0)

);
end component;

12.24 strength specification
The strength specification may be used in conjunction with the standard specification on
any external bus interface connected to pins (not port_in or port_out) to select the drive
current to be used on all pins of that interface. It may also be applied to off-chip memories.

Different device families support different values, as shown in the table below. The compiler
will issue warnings if a non-supported value is selected for a particular device.

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 234

I/O
Standard

Xilinx
SpartanII,
Virtex,
VirtexE

Xilinx
Virtex-II and
Virtex-II Pro

Altera
ApexII

Altera
Mercury

Actel ProASIC
and ProASIC+

LVTTL 2, 4, 6, 8, 12,
16, 24
Default: 12

2, 4, 6, 8, 12,
16, 24
Default: 12

- - -

LVCMOS
(3.3 V)

- 2, 4, 6, 8, 12,
16, 24
Default: 12

2, 4, 6, 8,
12, 16, 24
No default

-2, 4, 6, 8, 12,
16, 24
No default

'0' (min)
'-1' (max)
Default: max

LVCMOS
(2.5 V)

- 2, 4, 6, 8, 12,
16, 24
Default: 12

2, 4, 6, 8,
12, 16, 24
No default

2, 4, 6, 8, 12,
16, 24
No default

'0' (min)
'-1' (max)
Default: max

LVCMOS
(1.8 V)

- 2, 4, 6, 8, 12,
16, 24
Default: 12

2, 4, 6, 8,
12, 16, 24
No default

2, 4, 6, 8, 12,
16, 24
No default

-

LVCMOS
(1.5 V)

- 2, 4, 6, 8, 12,
16, 24
Default: 12

2, 4, 6, 8,
12, 16, 24
No default

- -

GTL+ - - '0' (min)
only

'0' (min)
'-1' (max)
No default

-

HSTL
Class I

- - '0' (min)
only

'0' (min)
'-1' (max)
No default

-

HSTL
Class II

- - '0' (min)
only

'0' (min)
'-1' (max)
No default

-

SSTL2
Class I

- - '0' (min)
only

'0' (min)
'-1' (max)
No default

-

SSTL2
Class II

- - '0' (min)
only

'0' (min)
'-1' (max)
No default

-

SSTL3
Class I

- - '0' (min)
only

'0' (min)
'-1' (max)
No default

-

SSTL3
Class II

- - '0' (min)
only

'0' (min)
'-1' (max)
No default

-

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 235

 Example:
interface bus_out() Eel(outPort = x)

with {data = dataPinsO, standard = "HSTL2_I", strength = -1};

interface bus_ts(unsigned 3 inPort) Baboon(ape1 = y, ape2 = en)
with {data = dataPinsT, standard = "LVTTL", strength = 24};

12.25 warn specification
The warn specification may be given to a variable, RAM, ROM, channel or bus. When set
to zero, certain non-crucial warnings will be disabled for that object. When set to one (the
default value), all warnings for that object will be enabled.

int 5 x with {warn=0};

12.26 wegate specification
The wegate specification may be given to external or internal RAM declarations to force the
generation of an asynchronous RAM.

When set to 0, the write strobe will appear throughout the Handel-C clock cycle. When set
to -1, the write strobe will appear only in the first half of the Handel-C clock cycle. When set
to 1, the write strobe will appear only in the second half of the Handel-C clock cycle.

12.27 westart and welength specifications
The westart and welength specifications may be given to internal or external RAM
declarations. You can only use these specifications together with external_divide or
internal_divide clock types with a division factor greater than 1.

The westart and welength specifications position the write enable strobe within the
Handel-C clock cycle. westart is used to specify the starting position of the write enable
strobe, and welength is used to specify its length. For both of these specifications, a unit
value corresponds to a single cycle of the fast clock which has been divided in order to
generate the Handel-C clock. The size of welength and westart can be given in
multiples of 0.5, but (westart + welength) must not exceed the clock divide.

Handel-C Language Reference Manual

>: 12. Object specifications

>: Chapter :12 236

WRITE ENABLE STROBE WITH A WESTART OF 1, A WELENGTH OF 1.5, AND A CLOCK DIVIDE OF
 4

Handel-C Language Reference Manual

>: 13. DK1 preprocessor

>: Chapter :13 237

>: 13 DK1 preprocessor
The preprocessor is invoked by the Handel-C compiler as the first stage in the compilation
process, and is used to manipulate the text of source code files. Correct use of this tool can
simplify code development and the subsequent maintenance process. There are a number
of functions performed by the preprocessor:

• Macro substitution
• File inclusion
• Conditional compilation
• Line splicing
• Line control
• Concatenation
• Error generation
• Predefined macro substitution

Communication with the preprocessor occurs through the use of directives. Directives are
lines within source code which begin with the # character, followed by an identifier known as
the directive name. For example, the directive to define a macro is ‘#define’.

13.1 Preprocessor macros

Simple macros
The preprocessor supports several types of macros. Simple macros (or manifest constants)
involve the simplest form of macro substitution and are defined with the form:

#define name sequence-subsitute

Any occurrences of the token name found in the source code are replaced with the token
sequence sequence-substitute, which may include spaces. All leading and trailing white
spaces around the replacement sequence are removed. For example:

#define FOO 1024
#define loop_forever while (1)

Parameterized macros
You can also define macros with arguments. This allows replacement text to be passed as
parameters. For example:

#define mul(A, B) A*B

Handel-C Language Reference Manual

>: 13. DK1 preprocessor

>: Chapter :13 238

This will replace

x = mul (2, 3);

with

x = 2 * 3;

Take care to preserve the intended order of evaluation when passing parameters. For
example the line

x = mul (a – 2, 3);

will be expanded into

x = a – 2 * 3;

The multiplication is evaluated first, then the result subtracted from variable a. This is
almost certainly not the intention, and errors of this type may be difficult to locate.

If a parameter name is preceded by a # when declared as part of a macro, it is expanded
into a quoted string by the preprocessor. E.g., if a macro is defined:

#define quickassert(X) assert (width(X)==1,O "Width of " #X " is not
1!\n");

The line:

quickassert(length);

will expand into:

assert (width(X)==1,O "Width of length is not 1!\n");

Undefining identifiers
To undefine an identifier, the #undef directive may be used. E.g.

#undef FOO

Note that no error will occur if the identifier has not previously been defined.

Preprocessor directives cannot be used unexpanded in a library; use macro
procedures instead.

Handel-C Language Reference Manual

>: 13. DK1 preprocessor

>: Chapter :13 239

13.2 File inclusion
File inclusion makes it possible to easily manage and reuse declarations, macro definitions,
and other code. The feature is helpful when writing general purpose functions and
declarations which can be reused for a number of designs. File inclusion is achieved using
directives of the form:

#include "filename"

or

#include <filename>

Such lines are replaced by the contents of the file indicated by filename. If the filename is
enclosed by quotation marks, the preprocessor looks for the file in the directory containing
source code for the current design. If the file cannot be found there, or the filename is
enclosed with angular brackets, the search examines user-defined include file directories
(specified using Tools>Options>Directories), and the main DK1 include file directory.

13.3 Conditional compilation

Conditional directives
You can control preprocessing with conditional directives. These statements can add a great
deal of flexibility to source code. For example, they may be used to alter the behaviour of a
design, depending upon whether a macro definition is present. Conditional statements must
begin with an #if directive and an expression to be evaluated, and end with the #endif
directive. Valid directives are:

#if expression

#elif expression
#else

#endif

Handel-C Language Reference Manual

>: 13. DK1 preprocessor

>: Chapter :13 240

Example
#if a==b

/* include this section if a is equal to b */
#elif a>b

/* include this section if a is greater than b */
#else

/* otherwise include this section */
#endif

If the expression is evaluated to be zero, then any text following the directive will be
discarded until a subsequent #elif, #else, or #endif statement is encountered;
otherwise the lines will be included as normal. Note that each directive should be placed
individually on its own line starting at column 0.

A useful application for conditional directives is easy exclusion of code without the use of
comments. For example:

#if (0)
/* Code for debugging purposes*/

#endif
/* Code continues */

By amending the above evaluation to (1), the code can quickly be included during
compilation.

Conditional definition
To test for the existence of a macro definition, use the following directives:

#ifdef identifier (equivalent to #if defined
(identifier))

#ifndef identifier (equivalent to #if !defined
(identifier))

These are used in the same way as #if, but are followed by an identifier, rather than an
expression. The #ifndef directive is often used to ensure that source code is only
included once during compilation. E.g.

#ifndef UTILCODE
#define UTILCODE

/* Utility code is written here */

#endif

Handel-C Language Reference Manual

>: 13. DK1 preprocessor

>: Chapter :13 241

13.4 Line splicing
You can splice multiple lines together by placing a backslash character (‘\’) followed by a
carriage return between them. This feature allows you to break lines for aesthetic purposes
when writing code, which are then joined by the preprocessor prior to compilation. For
example, if a macro is defined:

#define ERRORCHECK(error) \
if (error!=0) \

return (error)

The line:

ERRORCHECK(i);

Expands to:

if (i!=0)
return i;

13.5 Line control
A directive of the form:

#line integer

instructs the compiler that the next source line is the line number specified by integer. If a
filename token is also present:

#line integer "filename"

the compiler will additionally regard filename as the name of the current input file.

13.6 Concatenation in macros
If a macro is defined with a token sequence containing a ## operator, each instance of ## is
removed (along with any surrounding white space), thus concatenating adjacent tokens into
one. For example, if the macro below was declared:

#define million(X) X ## e6

then

i = million (3);

Handel-C Language Reference Manual

>: 13. DK1 preprocessor

>: Chapter :13 242

is expanded into:

i = 3e6;

Take care when specifying parameters. In the example above, if 3e6 was passed instead of
3, then the line would be expanded into:

i = 3e6e6;

which would result in an error.

13.7 Error generation
Fatal error messages may be reported during preprocessing using the directive:

#error error_message

This may be useful with conditional compilation if your design only supports certain
combinations of parameter definitions.

13.8 Predefined macro substitution
The preprocessor contains a number of useful predefined macros which may be placed into
source code:

_ _FILE_ _ Expands to the name of the current file being compiled
_ _LINE_ _ Expands to the number of the current source line
_ _TIME_ _ Expands to the current time of compilation in the form

hh:mm:ss
_ _DATE_ _ Expands to the current date of compilation in the form mmm

dd yyyy

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 243

>: 14 Language syntax
The complete Handel-C language syntax is given in BNF-like notation.

The overall syntax for the program is:

program ::= {global_declaration}

void main(void) {

{declaration}

{statement}

}

Language
external_declaration ::= function_definition
 | declaration
 | set_statement ;

14.1 Language syntax conventions
BNF (Backus-Naur Format) is a way to describe the syntax of file formats. It consists of
definitions of the form

identifier ::= definition

The identifier is a word which describes this part of the syntax.
The ::= represents "consists of".
The definition lists the permitted contents of the identifier.

The conventions used in this language reference are:

• Terminal symbols are set in typewriter font like this.
• Non-terminal symbols are set in italic font like this.
• Square brackets [...] denote optional components.
• Braces {...} denotes zero, one or more repetitions of the enclosed components.
• Braces with a trailing plus sign {...}+ denote one or several repetitions of the

enclosed components.
• Parentheses (...) denote grouping.

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 244

14.2 Keyword summary
The keywords listed below are reserved and cannot be used for any other purpose.

Keyword Meaning ANSI-C/C++ ?

= assignment operator Yes
; statement terminator Yes
, C only Yes
{ } code block delimiters Yes
<> type specialization No
(open delimiter Yes
) close delimiter Yes
[] array index delimiters, bit selection Yes
[:] bit range selection No
! logical NOT operator Yes
! output to channel No
~ bitwise NOT Yes
+ addition operator Yes
- subtraction operator Yes
- unary minus operator Yes
* multiplication operator Yes
/ division operator Yes
% modulo operator Yes
\\ drop LSB No
<- take LSBs No
? read from channel No
? conditional expression Yes
^ Bitwise XOR Yes
& Bitwise AND Yes
| Bitwise OR Yes
&& Logical AND Yes
|| Logical OR Yes
. structure member operator Yes
<< left-shift operator Yes
>> right shift operator Yes
< less than operator Yes
> greater than operator Yes

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 245

Keyword Meaning ANSI-C/C++ ?

<= less or equal operator Not standard
>= greater or equal operator Not standard1
== equality operator Not standard1
!= inequality operator Not standard1
++ increment operator Not standard
-- decrement operator Not standard
+= assignment operator Not standard
-= assignment operator Not standard
*= assignment operator Not standard
/= assignment operator Not standard
%= assignment operator Not standard
<<= assignment operator Not standard
>>= assignment operator Not standard
&= assignment operator Not standard
|= assignment operator Not standard
^= assignment operator Not standard
... Reserved. Not valid in Handel-C, but can be

used for C/C++ calls.
Yes

-> structure pointer operator Yes
@ concatenation operator No

1 Note, the results of these tests are a single bit unsigned int

Keyword Meaning ANSI-C/C++ ?

assert diagnostic macro to print to stderr Not standard
auto auto variable Yes
break immediate exit from code block Yes
case selection within switch and prialt Yes
chan define channel variable No
chanin simulator channel in No
chanout simulator channel out No
char 8-bit variable Yes
clock define clock No
const specify that variable's value will not change Yes

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 246

Keyword Meaning ANSI-C/C++ ?

continue force next iteration of loop Yes
default default case within switch, prialt Yes
delay wait one clock cycle No
do start do while loop Yes
double Reserved. Not valid in Handel-C C-only
else conditional execution Yes
enum enumeration constant Yes
expr define macro as expression No
extern define global variable Yes
external clock from device pin No
external_divide clock from device pin with integer division No
family define target device's family No
float Reserved. Not valid in Handel-C C-only
for for loop iteration Yes
goto jump to specified label Yes
if conditional execution Yes
ifselect conditional compilation on compile-time selection No
in define scope for local macro expression

declaration
No

inline declaration of inline function No
int definable width variable Yes
interface declaration of off-chip interface No
internal use internal clock No
internal_divide internal clock with integer division No
intwidth set integer width No
let start declaration of local macro expression No
long declare 32-bit variable Yes
macro declare a macro No
mpram declare a multi-port RAM No
par execute statements in parallel No
part define target hardware No
prialt execute first ready channel No
proc define macro as procedure No
ram declare a RAM (array) No
register declare register variable Yes

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 247

Keyword Meaning ANSI-C/C++ ?

releasesema(semap
hore)

free semaphore No

reset reset design No
return return from function Yes
rom declare a ROM (array) No
select select expression or macro expr at compile time No
sema declare a semaphore No
set specify device family or part, int width, target, reset

or clock
No

seq execute statements in sequence No
shared declare a shared expression No
short declare 16-bit variable Yes
signal declare a signal object No
signed declare a signed variable Yes
sizeof Reserved. Not valid in Handel-C Yes
static specify variable with limited scope Yes
struct declare a structure variable Yes
switch switch statement (between cases) Yes
try
reset(Condition){...}

execute statements if Condition is true during
execution within related try block

No

trysema Test if semaphore owned. Take if not. No
typedef define type Yes
typeof return type of expression No
undefined specify a variable of undefined width No
union Reserved. Not valid in Handel-C Yes
unsigned declare an unsigned variable Yes
void specify void return type, Yes
volatile declare volatile variable Yes
while loop statement Yes
width return integer width No
with specify interface, signals, channels, RAM and ROM

types, variables etc.
No

wom declare a WOM (array) No

The following character sequences are also reserved:
/* */ // # " '

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 248

14.3 Constant expressions
The following constants are available in Handel-C

• Identifiers
• Integer constant
• Character constants
• String constant
• Floating point constants

14.3.1 Identifiers: syntax
Identifiers are sequences of letters, digits and _, starting with a letter. All characters in an
identifier are meaningful and all identifiers are case sensitive.

identifier ::= letter {letter | 0...9}

letter ::= A...Z | a...z | _

14.3.2 Integer constants: syntax
integer_constant ::= [-]{1...9}+{0...9}

| [-](0x | 0X){0...9 | A...F | a...f}+

| [-](0){0...7}
| [-](0b | 0B){0...1}+

14.3.3 Character constants: syntax
character is any printable character or any of the following escape codes.

Escape Code ASCII Value Meaning

\a 7 Bell (alert)
\b 8 Backspace
\f 12 Form feed
\t 9 Horizontal tab
\n 10 Newline
\v 11 Vertical tab
\r 13 Carriage return
\" - Double quote mark

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 249

\0 0 String terminator
\\ - Backslash
\’ - Single quote mark
\? - Question mark

14.3.4 Strings: syntax
string ::= "{character}"

14.3.5 Floating point constants: syntax
float_constant::=

[{0...9}+].{0...9}+[(e | E)[+|-]{0...9}+][f | F | l | L]
| {0...9}+.[(e | E)[+|-]{0...9}+][f | F | l | L]
| {0...9}+(e | E)[+|-]{0...9}+[f | F | l | L]

14.4 Functions and declarations
function_definition ::= declaration_specifiers declarator compound_statement
 [with initializer ;]
 | declarator compound_statement [with initializer ;]

declaration ::= declaration_specifiers [init_declarator_list] [with initializer] ;

 | interface_declaration
 | macro_declaration

declaration_specifiers ::= storage_class_specifier [declaration_specifiers]
 | type_specifier [declaration_specifiers]
 | type_qualifier [declaration_specifiers]

storage_class_specifier ::= auto

 | register

 | inline

 | typedef

 | extern

 | static

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 250

type_specifier ::= void

 | char

 | short

 | int

 | long

 | float

 | double

 | signed

 | unsigned

 | typeof (expression)

 | signal_specifier
 | channel_specifier
 | ram_specifier
 | struct_or_union_specifier
 | enum_specifier
 | typedef_name

type_qualifier ::= const

 | volatile

typedef_name ::= identifier

init_declarator_list ::= declarator [= initializer] { ,declarator [= initializer]}

14.5 Macro/shared
expressions/procedures: syntax

macro_declaration ::= macro_proc_decl
 | macro_expr_decl

macro_proc_decl ::= [static | extern] macro_proc_spec identifier
 [([macro_param{, macro_param}])] statement
 [with initializer ;]

macro_expr_decl ::= [static | extern] macro_expr_spec identifier
 [([macro_param{, macro_param}])] ;
 | [static | extern] macro_expr_spec identifier
 [([macro_param{, macro_param}])] = let_initializer
 [with initializer] ;

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 251

macro_proc_spec ::= macro proc
 | shared proc

macro_expr_spec ::= macro expr
 | shared expr

let_initializer ::= initializer
 | let macro_expr_decl in let_initializer

macro_param ::= identifier

14.6 Interfaces: syntax
interface_declaration ::= interface identifier ([int_parameter_declaration { ,
int_parameter_declaration}])
 identifier ([assignment_expr_spec {,
assignment_expr_spec}]) [with initializer];
 | interface_type_declarator
 | old_style_interface_declarator

interface_type_declarator :: = interface identifier ([int_parameter_proto{ ,
int_parameter_proto}])
 identifier ([int_init_parameter_declaration { ,
 int_init_parameter_declaration}])

This format is deprecated but retained for compatibility reasons

old_style_interface_declarator ::= interface identifier ([int_parameter_declaration
{,int_parameter_declaration}])
 identifier ([assignment_expr_spec {,assignment_expr_spec})
 [with initializer] ;

interface ::= [static | extern] interface

 int_parameter_proto::= declaration_specifiers
 | declaration_specifiers declarator
 | declaration_specifiers abstract_declarator
 | declaration_specifiers width

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 252

int_parameter_declaration ::= declaration_specifiers [with initializer]
 | declaration_specifiers declarator [with initializer]
 | declaration_specifiers abstract_declarator [with initializer]
 | declaration_specifiers width [with initializer]

int_init_parameter_declaration ::= int_parameter_declaration
 | declaration_specifiers declarator [= initializer] [with initializer]

assignment_expr_spec ::= assignment_expression [with initializer]

14.7 Structures and unions: syntax
struct_or_union_specifier ::= aggregate_form [identifier] { {struct_declaration}+ }
 | aggregate_form identifier

aggregate_form ::= struct
 | union
 | mpram

struct_declaration ::= { type_specifier | type_qualifier}+
 {struct_declarator}+[with initializer];

struct_declarator ::= declarator
 | [declarator]: constant_expression

The current version of Handel-C does not support unions.

14.8 Enumerated types: syntax
enum_specifier ::= enum [identifier] { enumerator {,[enumerator]} }

 | enum identifier

enumerator ::= identifier
 | identifier = constant_expression

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 253

14.9 Signal specifiers: syntax
signal_specifier ::= signal < type_name >
 | signal

14.10 Channel syntax
channel_specifier ::= chan [< type_name >]
 | chanin [< type_name >]
 | chanout [< type_name >]

14.11 Ram specifiers: syntax
ram_specifier ::= ram [< type_name >]
 | rom [< type_name >]
 | wom [< type_name >]

14.12 Declarators: syntax
declarator ::= [width] pointer direct_declarator

width ::= undefined
 | primary_expression

direct_declarator ::= identifier
 | (pointer direct_declarator)
 | direct_declarator [[constant_expression]]
 | direct_declarator ([{parameter_declaration}+])

pointer ::= *
 | * type_qualifier
 | * pointer
 | * type_qualifier pointer

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 254

14.13 Function parameters: syntax
parameter_declaration ::= declaration_specifiers
 | declaration_specifiers width
 | declaration_specifiers abstract_declarator
 | declaration_specifiers declarator

14.14 Type names and abstract declarators:
syntax

type_name ::= { type_specifier | type_qualifier}+
 | { type_specifier | type_qualifier}+ abstract_declarator
 | { type_specifier | type_qualifier}+ width

abstract_declarator ::= [width] pointer direct_abstract_declarator

direct_abstract_declarator ::= (pointer direct_abstract_declarator)
 | [direct_abstract_declarator][[constant_expression]]
 | [direct_abstract_declarator] ([{parameter_declaration}+])

14.15 Statements: syntax
statement ::= semi_statement ;
 | non_semi_statement

semi_statement ::= expression_statement
 | do statement while (expression)
 | jump_statement
 | assert (constant_expression [, assignment_expression{,
assignment_expression}])
 | delay
 | channel_statement
 | set_statement

non_semi_statement ::= labeled_statement
 | compound_statement
 | selection_statement
 | iteration_statement

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 255

The following statements can appear in for start/end conditions

for_statement ::= non_semi_statement
 | expression_statement
 | do statement while (expression)
 | assert (constant_expression , constant expression
 [, assignment_expression{, assignment_expression}])

 | delay
 | channel_statement

These are the statements that can appear in prialt blocks

prialt_statement ::= semi_statement ;
 | non_semi_prialt_statement

non_semi_prialt_statement ::= prialt_labeled_statement
 | compound_statement
 | selection_statement
 | iteration_statement

labeled_statement ::= identifier : statement
 | case constant_expression : statement
 | default : statement

prialt_labeled_statement ::= identifier : prialt_statement
 | case channel_statement : prialt_statement
 | default : prialt_statement

expression_statement ::= [expression]

channel_statement ::= unary_expression ! expression
 | logical_or_expression ? expression

jump_statement ::= goto identifier
 | continue
 | break
 | return
 | return expression

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 256

selection_statement ::= if (expression) statement if

 | if (expression) statement else statement
 | ifselect (constant_expression) statement if

 | ifselect (constant_expression) statement else statement
 | switch (expression) statement
 | prialt { [{prialt_statement}+] }

set_statement ::= set part = STRING
 | set clock = clock
 | set family = identifier
 | set intwidth = constant_expression
 | set intwidth = undefined
 | set reset = reset

clock ::= internal expression [with initializer]
 | external expression [with initializer]
 | internal_divide expression expression [with initializer]

 | external_divide expression expression [with initializer]

reset ::= internal expression
 | external expression

iteration_statement ::= while (expression) statement
 | for ([for_statement] ; [expression] ; [for_statement]) statement

14.15.1 Compound statements with replicators
compound_statement ::= [seq | par] {{ declaration} {statement} }
 | [seq | par] ([repl_macro_param{, repl_macro_param}]
;constant_expression;

[repl_update_param {, repl_update_param}]) {{declaration}
{statement} }

14.16 Replicator syntax

Replicator initialization definitions
repl_macro_param ::= repl_param = initializer
 | (repl_param = initializer)

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 257

Replicator update definitions
repl_update_param ::= repl_update_param_body
 | (repl_update_param)

repl_update_param_body ::= repl_param assignment_operator initializer
 | ++ repl_param

 | repl_param ++

 | -- repl_param

 | repl_param --

repl_param ::= identifier
 | (repl_param)

14.17 Expressions: syntax
constant_expression ::= assignment_expression

expression ::= assignment_expression
| expression, assignment_expression}

assignment_expression ::= conditional_expression
| unary_expression assignment_operator assignment_expression

assignment_operator ::= = | *= | /= | %= | += | -= | <<= |
>>= | &=

| ^= | |=

initializer ::= assignment_expression

conditional_expression ::= logical_or_expression
| logical_or_expression ? expression : conditional_expression

logical_or_expression ::= logical_and_expression
| logical_or_expression || logical_and_expression

logical_and_expression ::= inclusive_or_expression
| logical_and_expression && inclusive_or_expression

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 258

inclusive_or_expression ::= exclusive_or_expression
| inclusive_or_expression | exclusive_or_expression

exclusive_or_expression ::= and_expression
| exclusive_or_expression ^ and_expression

and_expression ::= equality_expression
| and_expression & equality_expression

equality_expression ::= relational_expression
| equality_expression == relational_expression
| equality_expression != relational_expression

relational_expression ::= cat_expression
| relational_expression < cat_expression
| relational_expression > cat_expression
| relational_expression <= cat_expression
| relational_expression >= cat_expression

cat_expression ::= shift_expression
| cat_expression @ shift_expression

shift_expression ::= additive_expression
| shift_expression << additive_expression
| shift_expression >> additive_expression

additive_expression ::= multiplicative_expression
| additive_expression + multiplicative_expression
| additive_expression - multiplicative_expression

multiplicative_expression ::= take_drop_expression
| multiplicative_expression * take_drop_expression
| multiplicative_expression / take_drop_expression
| multiplicative_expression % take_drop_expression

take_drop_expression ::= cast_expression
| take_drop_expression <- cast_expression
| take_drop_expression \\ cast_expression

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 259

cast_expression ::= unary_expression
| (type_name) cast_expression

unary_expression ::= postfix_expression
| ++ unary_expression
| -- unary_expression
| unary_operator cast_expression
| sizeof unary_expression
| sizeof (type_name)

| width (expression)

unary_operator ::= & | + | - | ~ | ! | *

postfix_expression ::= select_expression
| postfix_expression [expression]

| postfix_expression [expression : expression]

| postfix_expression [: expression]

| postfix_expression [expression :]

| postfix_expression []

| postfix_expression ([assignment_expression
{, assignment_expression}])

| postfix_expression . identifier
| postfix_expression -> identifier
| postfix_expression ++

| postfix_expression --

select_expression ::= primary_expression
| select (constant_expression , constant_expression ,

constant_expression)

primary_expression ::= identifier
| constant
| (expression)
| { }

| {[initializer {, initializer}[,]]}

constant ::= integer_constant
| character_constant
| string_constant

Handel-C Language Reference Manual

>: 14. Language syntax

>: Chapter :14 260

integer_constant ::= NUMBER

character_constant ::= CHARACTER

string_constant ::= STRING

Handel-C Language Reference Manual

Appendix

>: Chapter :14 261

Appendix: Changes in Handel-C
version 3
This chapter describes the changes between Handel-C version 2.1 and Handel-C version
3.0. Handel-C version 3.0 was released with the first release of DK1.

A.1 Operators: changes in version 3

Operator Meaning ANSI-C Change in
Version 3

[] array index delimiters, bit
selection

Extended Array index may
be a variable, bit
selection may not

[:] bit range selection Not standard Extended: the
value before or
after ':' can be
omitted

. structure, and multi-port RAM
member operator, interface
port operator

Yes struct variables
have been added

* indirection operator Yes New
& address operator Yes New
/ division operator Yes Extended:

division of
variables

% modulo operator Yes Extended:
modulo of
variables

<< left-shift operator Yes Extended: shift
by variable
amounts

>> right shift operator Yes Extended: shift
by variable
amounts

assert diagnostic macro to print to
stderr

Not
standard

Print string to
standard error
channel

Handel-C Language Reference Manual

Appendix

>: Chapter :14 262

A.2 Declarations: changes in version 3

Keyword Meaning ANSI-C Change in v.3

<> disambiguator No New
auto auto variable Yes New
const specify that variable's value

will not change
Yes New

enum enumeration constant Yes New
extern define global variable Yes New
inline declaration of inline function No New
interface declaration of off-chip

interface
No Extended: you

can now create
interfaces to
foreign code

mpram declare a multi-port RAM No Create dual-
ported RAMs

ram declare a RAM No Extended to
specify block
memory

register declare register variable Yes New
rom declare a ROM No Extended to

specify block
memory

sema declare a semaphore No New
signal declare a signal object No New
signed declare a signed variable Yes New
static specify variable with limited

scope
Yes New

struct declare a structure variable Yes New
typedef define type Yes New
void specify void return type or

empty parameter list
Yes New

volatile declare volatile variable Yes New
wom declare a WOM (array) No Specify an area

of write-only
memory

Handel-C Language Reference Manual

Appendix

>: Chapter :14 263

A.3 Statements: changes in version 3

Statement Meaning ANSI-C Change in v.3

continue continue execution outside
code block

Yes New

goto jump to specified label Yes New
ifselect conditional compilation on

compile time selection
No Compile following

code if selected,
else…

par execute statements in parallel No Extended:
parallel
statements can
be replicated

releasesema
(semaphore)

free semaphore No New

return return from function Yes New
seq execute statements in

sequence
No New: seq blocks

can also be
replicated

try
reset(Condition)
 {statement}

execute statements if
Condition is true during
execution within related try
block

No New

trysema
(semaphore)

test semaphore No New

typeof return type of operator No As in GNU C

A.4 Macros: changes in version 3

Keyword Meaning ANSI-C Change in version 3

in define scope for local
macro expression
declaration

No New: let macro expr
name = expression in macro
expression

let start declaration of
local macro
expression

No New: let macro expr
name = expression in macro
expression

Handel-C Language Reference Manual

Appendix

>: Chapter :14 264

In version 3, macro procedures that don't take any parameters require an empty parameter
list. This was not required in version 2.1.

A.5 Clocks: changes in version 3

Keyword Meaning ANSI-C Change in version 3

internal use internal clock No Extended: can use any
expression

internal_divide use divided internal
clock

No Extended: can use any
expression

__clock use current clock No New

The rate specification been added, allowing you to specify the clock rate that the design
should run at. This gives a maximum delay between components. It does not appear in
ANSI-C.

A.6 Other language changes in version 3

Linker changes
Multiple files can be linked together and loaded into a single FPGA. This allows you to create
and access library files.

You can load a single chip with multiple main functions. This means that you can have
independent logic blocks using different clocks running within the same FPGA. The clock
can be internal or external. External clocks may be user specified.

ANSI-C compatible extensions
Compatibility with ANSI standard C has been increased, so most standard types and derived
types are supported. This includes pointers and structures but does not include floats. goto,
continue and return are supported. (Note that you cannot use goto, continue, break
or return to enter or exit from a par statement.)

Handel-C now supports functions. These can be used instead of macros. Functions can be
immediately expanded using the inline keyword

To support the multiple files system, prototypes are supported, as are the ANSI-C keywords
extern and static.

You can send messages to the standard error channel during compilation using the assert
directive.

Handel-C Language Reference Manual

Appendix

>: Chapter :14 265

Macro changes
You can now declare local variables inside a macro expression with let ... in

There is a new statement, ifselect, which permits conditional compilation according to
the result of a test at compile time.

Statements
The Handel-C language has been extended to allow code to be replicated using a construct
similar to a for loop. This means that you can generate multiple identical copies of the
same block of code, either in sequence or in parallel.

Initialization
Only static or global variables may be initialized in version 3. In previous versions all
memories could be initialized.

Architecture
There is a new type to represent signals.

You can have multi-dimensional arrays of RAMs and dual-ported RAMs.

Interfaces have been extended to allow you to connect to input or output ports as well as
pins. You can also define your own interface sorts and use them to link to blocks of external
code (currently VHDL, Verilog or EDIF). Interface declarations have changed, and the
previous style is deprecated. The names of ports within interfaces can no longer be omitted.
For example, in Handel-C v2.1 you could declare 'interface bus_ts() abus(x,y)'
and the default port name abus.in would be used. You can no longer do this in version 3.0.

Pins no longer need to be assigned. You can omit the data specification to leave the pin
assignment unconstrained. In this case, the place and route tools will assign the pins.

You can have multiple clocks within a system, and refer to the current clock by using
__clock.

A.7 Linking multiple files to a single output
module
The Handel-C compiler has a linker, allowing you to have multiple input files and links to
library files.

Multiple files can now be linked into a single output module. These files can be pre-compiled
core modules, libraries or header files. The extern keyword allows you to reference a
function or variable in another file.

Handel-C Language Reference Manual

Appendix

>: Chapter :14 266

LINKING MULTIPLE FILES TO A SINGLE OUTPUT MODULE

Linking is carried out during a build. You define the files to link by adding files to a project
within the GUI.

A.8 Symbol scoping rules
The rules for scoping for macro expr and macro proc constructs have changed between
version 2.1 and 3.0. Version 2.1 expands macros in the scope of their use. Version 3.0
expands macros in the scope of their declaration. This is consistent with C scoping rules.
For example:

Handel-C Language Reference Manual

Appendix

>: Chapter :14 267

int x; // Version 3.0 will use this x
macro expr a = x;

void main(void)
{
int x; // Version 2.1 will use this x

y = a;
}

This may lead to undeclared identifier errors. For example, the following code is valid in
version 2.1 but not in version 3.0:

macro proc a(x)
{

b(x); //undefined in v 3.0
}
macro proc b(y)
{

y++;
}

void main(void)
{
int 4 z;
a(z);

}

A.9 Using macro expressions in widths
Version 3.0 requires disambiguating brackets around macro expressions used in variable
widths. For example:

int log2ceil(64) x;

must be rewritten as:

int (log2ceil(64)) x;

Handel-C Language Reference Manual

Appendix

>: Chapter :14 268

A.10 New keywords clashing with variable
names
Version 3 contains a number of new keywords which may clash with variable names in
version 2.1 code. The list of new keywords is:

assert auto const continue double
enum extern float goto ifselect
in inline let mpram register
releasesema reset return sema seq
signal sizeof static struct try
trysema typedef typeof union volatile

wom

A.11 Additional combinational loops
Version 2.1 uses approximations when checking for combinational loops in the generated
logic. Version 3.0 does not use such approximations and may report unbreakable
combinational loops in programs which compile with version 2.1.

A.12 Clock is required for simulation
Version 3.0 requires that a clock is specified when generating simulation output. A dummy
clock such as ‘set clock = external "P1";’ is valid.

A.13 Variable and interface name conflicts
You can no longer give a variable and an interface the same name. In version 2.1, this was
possible because variable and interface names were specified in different namespaces. In
version 3, these are stored in the same namespace. Giving a variable and an interface the
same name causes a compiler error in version 3.

Example

int 3 x;
interface bus_in (int 3) x(); //not allowed in v.3

Handel-C Language Reference Manual

>: Index

>: Index i

Index

-- (postfix and prefix operators) 87
-- (postfix and prefix operators),statement
 87
- (subtraction) 96
! 72, 111
(macro concatentation) 243
#define 65, 188, 241
#elif 241
#else 188
#endif 241
#ifdef 188
#include 59, 63, 107, 239, 241
#undef 239
% (modulo) 96
(drop operator) 94
(line breaker) 243
*/ (comments delimiter) 23
. (structure member operator) 101
/ (division) 96
/* (comments delimiter) 23
// (comments delimiter) 23
? 72, 75
@ 94
@,concatenation operator 94
[] (bit selection) 95
__clock 148
__reset 156
+ (addition) 96
++ (prefix and postfix operators) 87
<- (take operator) 94
<< (shift operator) 93
<> 29, 66
<>,disambiguator 29

<>,type clarifier 66
= (assignment) 75
-> (structure pointer operator) 101
>> (shift operator) 93
abstract declarators 256
ACF files 220, 226
Actel 153, 154, 156, 170
Actel,devices 153, 154
Actel,on-chip RAMs 170
Actel,specifying reset pin 156
Actel,using on-chip RAMs 170
addition 96
addr 221
AGP standard 228, 231
AGP-1X 228
AGP-2X 228
Altera 153, 154, 170, 209
Altera,devices 153, 154
Altera,on-chip RAMs 170
Altera,ROMs 209
Altera,using on-chip RAMs 170
ampersand (address operator) 42
ANSI-C 14, 16, 60
ANSI-C,calling from Handel-C 60
ANSI-C,comparison with Handel-C 14
Application Programmers Interface
(Plugin) 188
architectural types 43
arithmetic operators 96
arrays 34, 35, 43, 51, 109, 110, 111
arrays,channels 43
arrays,functions 109, 110, 111
arrays,indices 35

Handel-C Language Reference Manual

>: Index

>: Index ii

arrays,multi-dimensional 34, 51
assert 91
assertion failed 91
assignments 75
asterix (indirection operator) 42
asynchronous RAMs157, 158, 159, 161,
171
asynchronous RAMs,timing 157
attributes 202, 214
attributes,VHDL 214
auto 59
base 30, 45, 48, 207
base specification 207
basic concepts 18
bi-directional data transfers 181, 182, 183
bi-directional data transfers,clocked input
 183
bi-directional data transfers,registered
input 182
binary 30
bind specification 207
bit fields 37
bit manipulation 93
bit manipulation,operators 93
bit selection 95
bits 37, 93, 95
block RAMs 52, 153, 163, 209
block specification 153, 209
blocks 151, 209
blocks,data transfer 151
break 73, 79, 81, 82
breaking lines 243
BUFG 213
bus_clock_in 44, 178, 181
bus_in 44, 178, 179
bus_latch_in 44, 180
bus_out 44, 181

bus_ts 44, 181
bus_ts_clock_in 44, 183
bus_ts_latch_in 44, 182
buses45, 48, 179, 180, 181, 182, 183,
188, 190, 192
buses,clocked 181
buses,input 179
buses,latched 180
buses,read/write 181
buses,read/write clocked 183
buses,registered 180, 182
buses,simulating 188
buses,specification 45, 48
buses,timing 190, 192
buses,write 181
busformat specification 200, 212
C language 13, 14
C language,compared to Handel-C 13, 14
C++ 60
C++,calling from Handel-C 60
C++,type mapping in Handel-C 60
case 81
casting 38, 88, 89
chan 43, 255
chanin 150, 255
chanin and chanout commands 18
channel communications 20, 43, 72, 149
channels 20, 43, 72, 149, 194, 255
channels,arrays 43
channels,between clock domains 194
channels,communication 20, 72
channels,reading from 72
channels,specifying 255
channels,syntax 255
channels,writing to 72
chanout 150, 255
char 32

Handel-C Language Reference Manual

>: Index

>: Index iii

character constants 250
chips 153
clk 173, 227
CLKBUF 219
clkpulselen 164, 209, 227
clock cycles used 131
clocked reading from external pins 181
clockport specification 213
clocks131, 141, 146, 147, 148, 152, 163,
164, 181, 219, 226, 227, 266, 270
clocks,changes in version 3 266
clocks,current 148
clocks,cycles 131, 164
clocks,external 147
clocks,fast 163, 219
clocks,for simulation 270
clocks,frequencies (internal) 146
clocks,generator 148
clocks,internal 148
clocks,inverted 163
clocks,locating 146
clocks,period 141
clocks,position specifications 227
clocks,reading from external pins 181
clocks,required for simulation 270
clocks,source 131, 146, 152
clocks,specifying 146
clocks,SSRAM 163
combinational loops 83, 136, 213, 270
comments 23
communication 72, 149
communication,between clock domains
 149
communication,channels 72
compares 98
compares,implicit 98
compares,signed/unsigned 98

compiler changes 264, 265, 266, 267
compile-time 91
compile-time,messages 91
complex declarations 63, 65
complex expressions 66, 87
compound statements with replicators 258
concatenation 94, 243
concatenation,operator 94
concatenation,preprocessor 243
conditional compilations 241
conditional directives 241
conditional execution (if ... else) 77
conditional operator 120
connecting to RAMs 174
connecting to RAMs,in foreign code 174
const 65
constant expressions 250
constant macro expressions 119
constants 30, 239, 250
constants,binary 30
constants,character 250
constants,decimal 30
constants,hexadecimal 30
constants,manifest 239
constants,octal 30
constraining pins 214
constraints 220, 226
constraints files 220, 226
constraints,timing 220, 226
continue 75
conversion 13, 88, 89
cs 221
CTT 228
CTT standard 228, 231
current clock 148
data 45, 48, 214, 221
data files 151

Handel-C Language Reference Manual

>: Index

>: Index iv

data files,format 151
data specification 214
data,specification 214
DCF files 220, 226
dci specification 216
DDR devices 163
debug 91
decimal 30
declarations 255, 264
declarators 255
default 73, 81
defining the clock 146
delay 83, 84, 85, 131, 136
device specifiers 153, 154
devices 153, 154
Digital Controlled Impedance 216
disambiguator 66
division 96
DK1 preprocessor 239
do ... while 79, 82
domains 194
domains,channel timing 194
double 246
drop operator 94
EDIF 44, 199, 200, 212
EDIF,buses 212
EDIF,wire names 200
efficiency 141
else 77
enum 36, 254
enumerated types 254
error generation 244
examples55, 105, 110, 111, 139, 149,
159, 161, 165, 167, 171, 173, 184, 200
examples,asynchronous RAM 159, 161
examples,channels between clock
domains 149

examples,functions 105, 110, 111
examples,interfacing to hardware 184
examples,macros 105
examples,mprams 55
examples,SSRAM 165, 167
examples,targeting external RAM 171, 173
examples,targeting ports to specific tools
 200
examples,timing 139
exit from code block 82
expressions 16, 66, 87, 125, 126, 250, 259
expressions,complex 66
expressions,shared 125, 126
expressions,timing 87
extern 59, 60, 107
extern,external variables 59
extern,linking to C and C++ 60
external clocks 147, 158, 160
external pins 178
external ROMs 173
external variables 59
external_divide 146, 147
extfunc 44, 45, 48, 217
extinst 44, 45, 48, 217
extlib 44, 45, 48, 217
extpath 44, 45, 48, 217, 218
families 152, 153, 154
families,recognised 153, 154
fast external clock 158
fastclock specification 219
FES files 214
files 151, 220, 226, 241, 267
files,inclusion 241
files,linking 267
files,reading and writing 151
files,timing constraints 220, 226
float 246

Handel-C Language Reference Manual

>: Index

>: Index v

floating point constants 251
for loops 79, 82
for loops,differences from ISO-C 79
formatting names 200
FPGA devices 152
functions65, 102, 104, 105, 108, 109, 110,
111, 112, 113, 116, 118, 119, 131, 256
functions and declarations 251
functions,arrays 109, 110, 111
functions,clock cycles 104, 131
functions,compared to macros102, 104,
105
functions,definitions and declarations 108
functions,examples 105
functions,parameters 256
functions,pointers 112, 113
functions,prototypes 108
functions,restrictions 116, 118, 119
functions,returning macro expr 65
functions,scope 109
functions,shared 116
GCF files 220, 226
generic interfaces 178
goto 76
GTL 228
GTL standard 228, 231
GTL+ 228
Handel-C 18, 25, 29, 102, 202, 245
Handel-C,code 18
Handel-C,functions 102
Handel-C,macros 102
Handel-C,object specifications 202
Handel-C,operators 25
Handel-C,programs 18
Handel-C,syntax 245
Handel-C,values and widths 29
hardware engineering 18

hardware interface examples 184
HCLKBUF 219
HDL 18
header files 59
hexadecimal 30
HSTL standard 228, 231
HSTL_I 228
HSTL_II 228
HSTL_III 228
HSTL_IV 228
IBUFG 213
identifiers 250
if...else 77
ifselect 122
implicit compares 98
in 126
increasing clock rates 144
indirection operator 42
indirection techniques 38, 42
inferring widths 33
infile 45, 48, 220
initialization 49, 51, 53, 67
initialization,mprams 53
initialization,RAMs 49, 51
initialization,variables 67
inline 29, 58, 62, 246, 264, 266
input 180, 181
input,clocked 181
input,latched 180
int 31
integer 31, 250
integer,constants 250
integer,range 31
integer,syntax 250
interface40, 44, 45, 46, 47, 48, 178, 199,
253, 270
interface,customized 178

Handel-C Language Reference Manual

>: Index

>: Index vi

interface,declaration 40, 44, 46
interface,declaration example 47
interface,definition 45, 48
interface,format 199
interface,generic 178
interface,name conflicting with variable270
interface,overview 44
interface,pointers 40
interface,sorts 178
interface,specification 45, 48
interface,syntax 253
interface,types 178
interfacing 150, 157, 178, 198
interfacing,memories 157
interfacing,with external hardware 178
interfacing,with external logic 178, 198
interfacing,with the simulator 150
internal clocks 146, 147, 148
internal clocks,fed from expressions 147
internal clocks,internally generated clocks
 148
internal RAMs and ROMs 49
internal_divide 146, 148
intime 220
intwidth 33
inverted clocks 163
ISO-C 14, 60
ISO-C,calling from Handel-C 60
ISO-C,comparison with Handel-C 14
keywords 246, 270
labels 76
language changes 266
language summary 245
language syntax 245
latch 180
latch,register 180
latency 144

let ... in 126
line control 243
line splicing 243
linker 267
linker,multiple files 267
linker,output module 267
loc attribute 214
locating the clock 146
logic depth 141
logic depth,reducing 141
logic types 31
long 32
loops 78, 79, 82, 136, 270
loops,combinational 136, 270
loops,do ... while 79
loops,for loops 79
loops,termination 82
loops,while loops 78
LVCMOS 228
LVCMOS standard 228, 231
LVCMOS15 228
LVCMOS18 228
LVCMOS25 228
LVCMOS33 228
LVDCI standard 228, 231
LVDCI_15 228
LVDCI_18 228
LVDCI_25 228
LVDCI_33 228
LVDCI_DV2_15 228
LVDCI_DV2_18 228
LVDCI_DV2_25 228
LVDCI_DV2_33 228
LVDS 228
LVDS standard 228, 231
LVPECL 228
LVPECL standard 228, 231

Handel-C Language Reference Manual

>: Index

>: Index vii

LVTTL 228
LVTTL standard 228, 231
macro expressions65, 119, 120, 123, 125,
126, 269
macro expressions,in widths 65, 269
macro procedures 128
macros65, 102, 104, 105, 119, 120, 123,
124, 125, 126, 128, 239, 244, 252, 265,
269
macros,compared to functions102, 104,
105
macros,examples 105
macros,introduction 119
macros,parameters 120
macros,preprocessor 239
macros,recursion 123, 124, 126
macros,substitution 239, 244
macros,syntax 252
main function 22
manifest constants 239
mapping of different width ports 54
maximum clock rate 141
member operators 101
memory 49, 51, 90, 158, 209
memory,arrays 51
memory,restrictions 90
memory,specification 209
merging pins 187
metastability 192, 194
metastability,clock domains 194
modulo arithmetic 96
mpram (multi-ported RAMs) 52, 55
multidimensional arrays 51
multi-file projects 107
multiple clocks 146, 149
multiple files 267
multiple files,input files 267
multiplication 96

NCF files 220, 226
new in version 3264, 265, 266, 267, 268,
269, 270
notes for C users 13
object specifications 202
octal 30
offchip 221
on-chip RAMs 153, 169, 170
operators 25, 77, 84, 93, 94, 95, 96
operators,arithmetic 96
operators,bit manipulation 93
operators,concatenation 94
operators,drop 94
operators,precedence 25
operators,shift 93
operators,summary 25
operators,take 94
operators,trysema 84
operators,width 95
optimizing code 113, 141
outfile 45, 48, 220
outtime 220
overflow 29
overview of Handel-C 13, 14, 18
padding 37, 94
padding,with zeroes 94
par 69, 70
parallel 19, 22, 43, 69, 72, 109, 138
parallel,access to variables 138
parallel,branches 43, 72
parallel,execution 69
parallel,functions 109
parallel,programs 19
parallel,statements 69
parallel,structure 22
parameterised macro expressions 120
PCI standard 228, 231

Handel-C Language Reference Manual

>: Index

>: Index viii

PCI33_3 228
PCI33_5 228
PCI66_3 228
PCIX 228
pin specifications 146, 214, 221
pin specifications,omitting 146, 221
pin_number attribute 214
pinouts 221
pinouts,specifying 221
pins 156, 178, 187, 214, 221
pins,constraining 214
pins,merging 187
pins,naming 214
pins,reset 156
pins,specifying 221
pipelining 70, 144, 167
plugin 199
Plugin API 188
PlugInGet 45, 48
plugins 44
PlugInSet 45, 48
pointers 38, 39, 40, 108, 112, 113
pointers,addresses 39
pointers,declaration 38
pointers,function parameters 108
pointers,operations 38
pointers,to functions 40, 112, 113
pointers,to interfaces 40
port_in 44, 46, 198
port_out 44, 46, 198
porting 32
ports 44, 149, 198, 214, 222
ports,interfacing with external logic 198
ports,port names 198, 214
ports,specification 149, 222
precedence 25
preprocessor 239, 241, 243, 244

preprocessor,concatenation 243
preprocessor,conditional compilation 241
preprocessor,error generation 244
preprocessor,file inclusion 241
preprocessor,line control 243
preprocessor,line splicing 243
preprocessor,macros 239, 244
prialt 73, 82
proc 128, 129
program structure 22
projects 18
properties 223
properties,specification 223
protecting critical code 57
prototypes 59, 107, 108, 109, 251
prototypes,functions 108
pull 45, 48, 225
QDR devices 163
qualifiers 29
RAM specifiers 255
RAMCLK 227
RAMs49, 51, 52, 55, 90, 153, 157, 159,
161, 163, 169, 170, 171, 173, 174, 209
RAMs and ROMs with Handel-C 157
RAMs,Actel 170
RAMs,Altera 170
RAMs,asynchronous 157, 171
RAMs,block RAMs 209
RAMs,different to arrays 49
RAMs,external 159, 161, 171
RAMs,foreign code 174
RAMs,initialization 49, 51
RAMs,multi-ported 52, 55
RAMs,off-chip 159, 161, 171
RAMs,on-chip 153, 169
RAMs,restrictions 90
RAMs,synchronous 163, 173, 209

Handel-C Language Reference Manual

>: Index

>: Index ix

RAMs,targeting 171, 173
RAMs,use of 157
RAMs,writing to 49
RAMs,Xilinx 169
range 31
rate 217, 218, 226
rclkpos 164, 209, 227
reading from external pins 179, 180
recursion 119, 123
recursive macros 125, 126
recursive macros,shared expressions 125,
126
reducing logic depth 141
reference books 12
register 62
registered reading from external pins 180
releasesema() 85
replication 70
replicators 258
reset 83, 156
reset,global 156
reset,specifying reset pin 156
restrictions 89, 90, 116, 118, 119, 126
restrictions,casting 89
restrictions,functions 116, 118, 119
restrictions,on RAMs and ROMs 90
restrictions,on shared expressions 126
return 76
ROMs 49, 157, 173, 209
ROMs,external 173
ROMs,LUT ROMs in Altera devices 209
RTL 18
same rate external clock 160
scope 20, 29, 109, 268
scope,variable sharing 20
scoping 268
scoping,changes 268

select operator 120
selection within switch 81
sema 57
semaphores 57, 84, 85
seq 70
sequential and parallel execution 69
sequential replication 70
set 146, 154, 156
set,clock 146
set,family 154
set,part 154
set,reset 156
shared code 104, 116
shared expressions 125, 126
shared expressions,restrictions 126
shift operators 93
short 32
show 227
side effects 87, 118
sign 123
sign extending 89
sign,sign extension 123
signal 57
signal specifiers 255
signals 18
signed 31, 98, 255
signed/unsigned 88, 98, 255
signed/unsigned,casting 88
simulator 151, 188, 227
simulator,buses 188
simulator,file I/O 151
simulator,input file format 151
simulator,output 227
sorts 178
sorts,interfaces 178
specifications202, 207, 209, 212, 213,
214, 216, 217, 218, 219, 220, 221, 222,

Handel-C Language Reference Manual

>: Index

>: Index x

223, 225, 226, 227, 228, 231, 234, 235,
237
specifications,base 207
specifications,block 209
specifications,busformat 212
specifications,clk 227
specifications,clkpulselen 227
specifications,clock position 227
specifications,clockport 213
specifications,data 214
specifications,dci 216
specifications,extinst extlib extfunc 217
specifications,extpath 218
specifications,fastclock 219
specifications,infile and outfile 220
specifications,intime and outtime 220
specifications,object 202
specifications,offchip 221
specifications,pin 221
specifications,ports 222
specifications,properties 223
specifications,pull 225
specifications,rate 226
specifications,rclkpos 227
specifications,show 227
specifications,speed 227
specifications,standard 216, 228, 231, 235
specifications,std_logic_vector 234
specifications,strength 216, 228, 231, 235
specifications,warn 237
specifications,wcclkpos 227
specifications,wegate 237
specifications,westart and welength 237
specifiers 29
specifying pin outs 221
specifying the interface 199
specifying timing 164

speed 227
SSRAM 163, 164, 165, 167, 227
SSRAM,clocks 163, 164
SSRAM,read and write cycles 164
SSRAM,timing 164, 227
SSTL 228
SSTL standard 228, 231
SSTL2_I 228
SSTL2_II 228
SSTL3_I 228
SSTL3_II 228
standard specification 216, 228, 231, 235
standard specification,AGP 228, 231
standard specification,CTT 228, 231
standard specification,GTL 228, 231
standard specification,HSTL 228, 231
standard specification,LVCMOS 228, 231
standard specification,LVDCI 228, 231
standard specification,LVDS 228, 231
standard specification,LVPECL 228, 231
standard specification,LVTTL 228, 231
standard specification,PCI 228, 231
standard specification,SSTL 228, 231
statements 131, 256, 265
statements,syntax 256
statements,timing 131
static 62, 67
static,initializing static variables 67
std_logic_vector 234
storage class specifiers 58
strength specification 216, 228, 231, 235
string constants 30
strings 251
struct 35
structure member operator 101
structure pointer operator 101
structure pointers 40

Handel-C Language Reference Manual

>: Index

>: Index xi

structures 35
structures and unions 254
structures,storage 35
subtraction 96
summaries 25, 27, 246
summaries,keyword 246
summaries,operator 25
summaries,type 27
supported 32, 153
supported,devices 153
supported,types for porting 32
switch 81, 82
switch,termination 82
symbol scoping rules 268
synchronization 20
synchronous RAMs 163, 164, 173
syntax 245
synthesis 18
synthesis,all code 18
take operator 94
targeting 152, 153, 154, 171, 173, 200
targeting,external RAMs 171, 173
targeting,FPGA devices 152
targeting,ports 200
targeting,specific devices 153, 154
targeting,specific tools 200
Tcl files 220, 226
timing131, 139, 141, 157, 158, 164, 190,
192, 220, 226, 227
timing,buses 190, 192
timing,constraints 220, 226
timing,efficiency 141
timing,example 139
timing,specifying 157
timing,specifying for SSRAM 164, 227
timing,statement 131
tri-state 44, 178, 181, 182, 183, 220

tri-state pins 187
tri-state pins,merging 187
try ... reset 83
trysema() 84, 85
ts 44, 178, 181, 182, 183, 220
type 27, 60, 66, 202, 256
type clarifier <> 66
type,clarifier 66
type,mapping for C and C++ 60
type,names 256
type,specification 202
type,summary 27
typedef 63
typeof 64
types 29, 31, 43, 234
types,architectural 29, 43
types,logic 29, 31
types,VHDL 234
undefined 29, 33
undivided external clock 161
unions 246
unsigned 31, 32
values 29
values,overflow 29
variable and interface name conflicts 270
variable initialization 30, 59, 65, 67
variables 59, 67, 138
variables,auto 59
variables,default values 67
variables,local 59
variables,parallel access 138
VHDL 18, 44, 199, 207, 234
VHDL,types 234
Virtex 209
VirtexII 216
void 38, 76, 108
volatile 65

Handel-C Language Reference Manual

>: Index

>: Index xii

warn 45, 48, 237
warn specification 237
wclkpos 164, 209, 227
we 221
wegate 159, 161, 171, 237
welength 158, 159, 161, 171, 209, 237
westart 158, 159, 161, 171, 209, 237
what’s new264, 265, 266, 267, 268, 269,
270
what’s new,Handel-C version 3264, 265,
266, 267, 268, 269, 270
while loops 78
width 29, 33, 95
width,inference 33
width,operator 95
with 202
wom (write-only memory) 56
work library 207

write enable 157, 163, 173, 237
write enable,asynchronous RAM 157, 237
write enable,external ROM 173
write enable,positioning 237
write enable,synchronous RAM 163
write strobe 158
write-only memory 56
writing to external pins 181
Xilinx 54, 153, 154, 169, 209, 216
Xilinx,bit mapping 54
Xilinx,block specification 209
Xilinx,devices 153, 154
Xilinx,on-chip RAMs 169
Xilinx,VirtexII 216
ZBF-compatible devices 163
zero padding 89, 94
zero-delay modelling 18

www.celoxica.com

Customer Support at support@celoxica.com and +44 (0)1344 663649.

Celoxica Ltd.
20 Park Gate
Milton Park
Abingdon
Oxfordshire OX14 4SH
United Kingdom
Tel: +44 (0) 1235 863 656
Fax: +44 (0) 1235 863 648

Celoxica, Inc
900 East Hamilton Avenue
Campbell, CA 95008
USA
Tel: +1 800 570 7004
Tel: +1 408 626 9070
Fax: +1 408 626 9079

Celoxica Japan KK
YBP West Tower 11F
134 Godo-cho, Hodogaya-ku
Yokohama 240-0005
Japan
Tel: +81 (0) 45 331 0218
Fax: +81 (0) 45 331 0433

Celoxica Pte Ltd
Unit #05-03
31 Int’l Business Park
Singapore
609921
Tel: (65) 6896 4838
Fax: (65) 6566 9213

Copyright © 2002 Celoxica Ltd. All rights reserved. Celoxica and the Celoxica logo are trademarks of
Celoxica Ltd.

mailto:Support@celoxica.com

	Table of contents
	Conventions
	Assumptions
	Omissions

	Introduction
	References

	Getting started with Handel-C
	Language changes in DK1.1
	Notes for C programmers
	How Handel-C differs from ANSI-C
	Statements in C and Handel-C

	Expressions in C and Handel-C statements
	Basic concepts
	Handel-C programs
	Parallel programs
	Channel communications: overview
	Scope and variable sharing

	Language basics
	Program structure
	Comments

	Language summary
	Statement summary
	Type summary

	Declarations
	Introduction to types
	Handel-C values and widths
	String constants
	Constants

	Logic types
	int
	Inferring widths

	Complex types
	Arrays
	Array indices
	Struct
	enum
	Bit field

	Pointers
	Pointers and addresses
	Pointers to functions
	Pointers to interfaces
	Structure pointers
	* operator / & operator

	Architectural types
	Channels
	Arrays of channels

	Interfaces: overview
	Interface definition
	Interface declaration
	Example interface to external code
	Interface specifications

	RAMs and ROMs
	Multidimensional memory arrays

	mpram (multi-ported RAMs)
	Initialization of mprams
	Mapping of different width mpram ports
	mprams example
	WOM (write-only memory)

	Other architectural types
	sema
	signal

	Storage class specifiers
	auto
	extern (external variables)
	extern language construct
	register
	inline
	static
	typedef

	typeof
	const
	volatile

	Complex declarations
	Macro expressions in widths
	<> (type clarifier)
	Using signals to split up complex expressions

	Variable initialization

	Statements
	Sequential and parallel execution
	seq
	Replicated par and seq
	Channel communication
	prialt

	Assignments
	Control statements
	continue
	goto
	return [expression]
	Conditional execution (if … else)
	while loops
	do ... while loops
	for loops
	switch
	break
	delay
	try... reset
	trysema()
	releasesema()

	Expressions
	Casting of expression types
	Restrictions on casting

	Restrictions on RAMs and ROMs
	assert
	Bit manipulation operators
	Shift operators
	Take /drop operators
	Concatenation operator
	Bit selection
	Width operator

	Arithmetic operators
	Relational operators
	Signed/unsigned compares
	Implicit compares

	Logical operators
	Bitwise logical operators

	Functions and macros
	Comparison of functions and macros
	Functions and macros: language issues
	Functions and macros: sharing hardware
	Functions and macros: clock cycles
	Functions and macros: examples
	Accessing external names

	Functions
	Function definitions, declarations and prototypes
	Functions: scope
	Arrays of functions
	Using static variables in arrays of functions
	Function pointers
	Shared code restrictions
	Multiple functions in a statement
	Recursion in macros and functions.

	Macros
	Non-parameterized macro expressions
	Parameterized macro expressions
	Select operator
	ifselect
	Recursive macro expressions
	Recursive macro expressions: a larger example
	Shared expressions
	Using recursion to generate shared expressions
	Restrictions on shared expressions
	let … in
	Macro procedures

	Introduction to timing
	Statement timing
	Example timings
	Statement timing summary

	Avoiding combinational loops
	Parallel access to variables
	Detailed timing example
	Time efficiency of Handel-C hardware
	Reducing logic depth
	Pipelining

	Clocks
	Locating the clock
	External clocks
	Internal clocks fed from expressions
	Internally generated clocks

	Current clock
	Channels communicating between clock domains

	Targeting hardware
	Interfacing with the simulator
	Simulator input file format
	Block data transfers

	Targeting FPGA and PLD devices
	Summary of supported devices
	Targeting specific devices via source code
	Specifying a global reset

	Use of RAMs and ROMs with Handel-C
	Asynchronous RAMs
	Fast external clock
	Asynchronous RAMs: fast external clock example
	Same rate external clock
	Undivided external clock
	Asynchronous RAMs: wegate example

	Synchronous RAMs
	SSRAM read and write cycles
	Specifying SSRAM timing
	Flow-through SSRAM example
	Pipelined-output SSRAM timing example

	Using on-chip RAMs in specified devices
	Using on-chip RAMs in Xilinx devices
	Using on-chip RAMs in Altera devices
	Using on-chip RAMs in Actel devices

	Targeting external RAMs
	Targeting external asynchronous RAMs
	Targeting external synchronous RAMs
	Using external ROMs
	Connecting to RAMs in foreign code

	Using other RAMs

	External hardware and logic
	Interfacing with external hardware and logic
	Interface sorts
	Reading from external pins: bus_in
	Registered reading from external pins: bus_latch_in
	Clocked reading from external pins: bus_clock_in
	Writing to external pins: bus_out
	Bi-directional data transfer: bus_ts
	Bi-directional data transfer with registered input
	Bi-directional data transfer with clocked input
	Example hardware interface

	Merging pins
	Buses and the simulator
	Timing considerations for buses
	Example timing considerations for input buses
	Example of timing considerations for output buses

	Metastability
	Metastability across clock domains
	Metastability in separate clock domains: example

	Ports: interfacing with external logic
	Specifying the interface
	Targeting ports to specific tools

	Object specifications
	base specification
	bind specification
	block specification
	busformat specification
	clockport specification
	data specification (pin constraints)
	dci specification
	extlib, extfunc, extinst specifications
	extpath specification
	fastclock specification
	infile and outfile specifications
	intime and outtime specifications
	offchip specification
	Pin specifications
	ports specification
	properties specification
	Using properties: example LVDS interface

	pull specification
	rate specification
	clkpos, wclkpos, clkpulselen and clk specifications (SSRAM timing)
	show specification
	speed specification
	standard specification
	I/O standard details

	std_logic_vector specification
	strength specification
	warn specification
	wegate specification
	westart and welength specifications

	DK1 preprocessor
	Preprocessor macros
	File inclusion
	Conditional compilation
	Line splicing
	Line control
	Concatenation in macros
	Error generation
	Predefined macro substitution

	Language syntax
	Language syntax conventions
	Keyword summary
	Constant expressions
	Identifiers: syntax
	Integer constants: syntax
	Character constants: syntax
	Strings: syntax
	Floating point constants: syntax

	Functions and declarations
	Macro/shared expressions/procedures: syntax
	Interfaces: syntax
	Structures and unions: syntax
	Enumerated types: syntax
	Signal specifiers: syntax
	Channel syntax
	Ram specifiers: syntax
	Declarators: syntax
	Function parameters: syntax
	Type names and abstract declarators: syntax
	Statements: syntax
	Compound statements with replicators

	Replicator syntax
	Expressions: syntax

	Appendix: Changes in Handel-C �version 3
	A.1 Operators: changes in version 3
	A.2 Declarations: changes in version 3
	A.3 Statements: changes in version 3
	A.4 Macros: changes in version 3
	A.5 Clocks: changes in version 3
	A.6 Other language changes in version 3
	A.7 Linking multiple files to a single output module
	A.8 Symbol scoping rules
	A.9 Using macro expressions in widths
	A.10 New keywords clashing with variable names
	A.11 Additional combinational loops
	A.12 Clock is required for simulation
	A.13 Variable and interface name conflicts

	Index

