
Shared vs. Snoop: Evaluation of Cache

Structure for Single-chip Multiprocessors

Toru Kisuki†,Masaki Wakabayashi†,Junji Yamamoto†,Keisuke Inoue†,
Hideharu Amano†

†Department of Computer Science, Keio University

3-14-1, Hiyoshi Yokohama 223 Japan

{kisuki,masaki,junji,keisuke,hunga}@aa.cs.keio.ac.jp

Abstract. The shared cache structures and snoop cache structures for

single-chip multiprocessors are evaluated and compared using an instruc-

tion level simulator. Simulation results show that 1-port large shared

cache achieves the best performance if there is no delay penalty for ar-

bitration and accessing the bus. However, if 1-clock delay is assumed for

accessing the shared cache, a snoop cache with internal wide bus and

invalidate style NewKeio protocol overcomes shared caches.

1 Introduction

In order to make the best use of a large silicon area, single-chip microprocessor
approach using simple microprocessors has been investigated[1][2]. The precise
simulation results demonstrated that this approach is hopeful compared with
complicated superscaler processors for parallel applications[1].

In these evaluations, processors are connected with a shared cache which
is suitable for on-chip implementation. However, a private cache with snoop
mechanism which is mainly used in board level implementation is also hopeful
structure for on-chip implementation, since each cache can be connected with a
high bandwidth on-chip bus. The snoop cache protocol can be optimized for on-
chip implementation. In this paper, the structure of snoop cache for single-chip
multiprocessor is discussed and the performance is compared with shared cache
using an instruction level simulation.

2 Cache structures for Single-Chip Multiprocessors

Shared Cache

PU PU PU PU

VLSI
Bus

Interface

Shared Bus

Main Memory

Multiport Memory

Fig. 1. Shared Cache Structure

Main
MemoryI/O

Snoop
Cache

Snoop
Cache

Snoop
Cache

Snoop
Cache

VLSI

External Bus

On−chip Shared Bus

Bus
Interface

High Bandwidth

Low Bandwidth

PU PU PU PU

Fig. 2. Snoop Cache Structure



2.1 Shared cache structure In many possible connection architectures for
single-chip multiprocessors, the most simple structure is connecting processors
to shared cache directly. Fig.1 shows the most simple and quite realistic structure
of the single-chip multiprocessor. In this structure, a large SRAM shared cache is
also connected to main memory outside the chip. Due to the overhead caused by
the conflict, multi-port memory which allows simultaneous access is sometimes
introduced. But the access time is often stretched by a large fan-out required in
cells of m-port memory.

2.2 Snoop cache structure Private cache with snoop mechanism is an al-
ternative approach to efficient cache for single-chip multiprocessors. In this ap-
proach, each processor provides its private cache connected with each other by a
shared bus. Each cache checks the address and data on the shared bus and main-
tains the consistency according to the cache consistency protocol. This structure
is commonly used in the recent multiprocessor workstations. In the board level
implementation, since the common 64 bits address/data multiplexed bus is used,
the cost for maintaining cache consistency often dominates the performance.

However, in the single-chip multiprocessor, the cost of wire is much less than
that in the board-level implementation, and a bus with a large bandwidth can
be used. Here, we propose the snoop cache with a wide bus for single-chip mul-
tiprocessors. In this cache, the following bus is used: (1) the size of the data bus
is the same as the cache line, and (2) 64-bit address bus is provided indepen-
dent from the data bus. In such a snoop cache, a cache line can be transferred
between caches only with a clock, and overhead for maintaining the consistency
is drastically reduced.

2.3 NewKeio protocol In a snoop cache with a wide bus, the gap between
inside and outside of the chip is an essential problem. In order to cope with
this problem, we have proposed a coherent protocol which minimizes the data
transfer between cache and main memory.

(from shared memory) (from owner cache)

SCEO CSO

DEO DSO

P/R P/R

P/W P/W(U)

P/W(I)

B/R

B/R

P/R

P/R
P/W

P/R
P/W(U)

P/R

P/R

P/W(I)

P/
B/

---
---

Processor
Bus

P/W(I)

P/W(U)

P/W(I)

B/W(I)

B/W(U)

B/R, B/W(U)

B/R

B/R

I

P/W(U)

R
W

---
---

Read
Write

Processor-based transition
Bus-Induced transition

(I)
(U)

---
---

Invalidate
Update

Fig. 3. NewKeio protocol

This protocol is called NewKeio Protocol[3]. As
shown in Fig.3, the ownership is introduced
even for a clean line, and the miss-hit cache line
is transferred from cache as possible. Moreover,
the attribute is attached to the page table to s-
elect whether the protocol uses invalidation or
updating.
By using the invalidation protocol for instruc-
tion or local data, and the update protocol for
shared data, the loss caused by consistency is
minimized. In Fig.3, (U),(I) indicates Update
and Invalidate type, respectively.



3 Simulation Environment

3.1 Target systems By the end of 1997, it is possible to make a processor chip
which has 500mm

2 die area in 0.25µm process technology. Since a sophisticated
processors requires a large area, the possible number to be implement becomes
small. Therefore, there are many combinations between the class and number
of processors. Here, we select rather simple R3000 class RISC processor. In this
case, from four to six processors and 256KB SRAM can be mounted. 500MHz
system clock is assumed, and a latency accessing the outside main memory
becomes 50 clocks.

Here, we evaluate the following cache structures:

– 4-Port Shared Cache
In this cache, 4-port memory is used. Each processor has its own port and
accesses cache memory without any conflicts. However, the total cache size
is set to be a forth (64KB) of the 1-Port Shared Cache.

– 1-Port Shared Cache
A single-port memory is used for this cache. Since each processor shares a
port, a conflict occurs when multiple processors access the port simultane-
ously. However, its simple structure allows a large cache size (256KB).

– Snoop Cache(Illinois protocol)
A common cache protocol (Illinois protocol[4]) is used as snoop cache proto-
col. Each processor has its own 64Kbyte cache, so total cache size is 256KB.

– Snoop Cache(NewKeio protocol)
The same structure as the snoop cache with Illinois protocol, but NewKeio
protocol is used.

3.2 Instruction-level simulator ISIS Since the performance of cache is de-
pending on the detail behavior of hardware including pipeline structure, a precise
simulation is required.

For this purpose, we developed an instruction level simulator called ISIS. ISIS
simulates the behavior of the RISC processor pipeline stage for every instruction.
Precise operation of each pipeline stage including delay slots can be simulated.

R3000

Cache

R3000

Cache

R3000

Cache

R3000

Cache

Shared Bus

Shared Memory

R3000

Cache

R3000

Cache

R3000

Cache

R3000

Cache

Shared Bus

Shared Memory

R3000

Mem

BusCache

(1) Classes (2) Objects (3) Simulator

Fig. 4. Organization of ISIS

Fig.4 shows the organization of ISIS. All units such as processor, cache, bus
and memory are implemented as classes. At first, each class is constructed, then
each object is connected through an interface. In this way, various architectures
can be simulated by replacing units.



Three parallel applications from SPLASH benchmark programs[5] are select-
ed for evaluation.

– FFT(data points is set to be 4096)
– MP3D(100 steps with 8000 particles at test.geom)
– LU(128×128 matrix with a block size 16)

4 Simulation Results

 x 10
3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

(FFT)

A
cc

es
s 

nu
m

be
r 

of
 m

em
or

y

Illinois NewKeio
Shared
1−port

Sharad
4−port NewKeio

(inv) (update)

 x 10
6

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

A
cc

es
s 

nu
m

be
r 

of
 m

em
or

y

Illinois NewKeio
Shared
1−port

Sharad
4−port NewKeio

(inv) (update)
(MP3D)

 x 10
3

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

A
cc

es
s 

nu
m

be
r 

of
 m

em
or

y

Illinois NewKeio
Shared
1−port

Sharad
4−port NewKeio

(inv) (update)
(LU)

Fig. 5. Access Number of Memory

4.1 Access frequency of the outside memory Fig.5 shows the number of
accessing outside memory. Since there is a large gap between the bandwidth of
inside and outside chip, a large number of access to the main memory causes
performance degradation.

In FFT, 4-port shared cache shows most frequent memory access by the
capacity miss. Illinois protocol is better than 4-port shared cache, since cache
to cache inside the chip is provided for access miss of a clean line. NewKeio
protocol shows further better performance than Illinois protocol. Unlike Illinois
protocol which requires write back when the dirty line is required from other
processor, the write back occurs only at replacing in NewKeio protocol. This
causes the difference of the access number, especially in MP3D which requires a
large amount of interprocessor communication. Due to this reason, the update
type protocol is advantageous in MP3D.

4.2 Execution Time Considering the multi-port and the arbitration delay, it
takes a few more clocks to access the shared cache. We assume this delay by
penalizing additional clocks to shared cache (1-3 clocks). In order to investigate
the influence of the conflicts which occur in 1-port shared cache, the result of
ideal execution time without conflicts is also shown in Fig.6.

Without delay, the performance of 1-port shared cache is the best in all
applications. In 1-port shared cache, the influence of the conflict is not so large
if no delay is assumed. As mentioned above, the performance of 4-port shared
cache is degraded mainly by the communication with outside memory.

However, with the delay penalty, the performance of 1-port shared cache
is severely degraded because of the conflict. Even with 1-clock delay, invalidate



 x 10
6

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Illinois NewKeioShared

E
xe

cu
ti

on
 T

im
e 

(c
lo

ck
)

(FFT)

NewKeio
(inv) (update)

(64KB)
Conflict
(256KB)

 x 10
6

0.00

50.00

100.00

150.00

200.00

250.00

Illinois NewKeioShared

E
xe

cu
ti

on
 T

im
e 

(c
lo

ck
)

NewKeio
(inv) (update)

No Conflict
(256KB) Delay 3

(MP3D)

 x 10
6

0.00

5.00

10.00

15.00

20.00

25.00

Illinois NewKeioShared

E
xe

cu
ti

on
 T

im
e 

(c
lo

ck
)

NewKeio
(inv) (update)

(LU)

Delay 2 Delay 1

Fig. 6. Execution Time

type NewKeio protocol shows better performance than 1-port shared cache. Since
there are a few shared line and interprocessor communication, each private cache
can be used efficiently and reduce the overhead to maintain the consistency.
From this reason, the performance of invalidate type NewKeio protocol is better
than that of update type. Compared with Illinois protocol, NewKeio protocol
improves the performance in 15%-20%.

5 Conclusion

The simulation results show that with the parameters used here, 1-port large
shared cache achieves the best performance if there is no delay penalty for arbi-
tration and accessing the bus. However, if 1-clock delay is assumed for accessing
the shared cache, a snoop cache with internal wide bus and invalidate style
NewKeio protocol shows better performance. Further simulations with various
parameters and applications are required for investigating optimized cache struc-
ture for single-chip multiprocessors.

References

1. Basem A. Nayfeh, Lance Hammond, and Kunle Olukotun. Evaluation of Design

Alternatives for a Multiprocessor Microprocessor. ISCA, 1995.

2. Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter, Andrew

Chang, Yevgeny Gurevish, and Whay S. Lee. The M-Machine Multicompuer. 1995.

3. T. Terasawa, S. Ogura, K. Inoue, and H. Amano. A Cache Coherence Protocol for

Multiprocessor Chip. In proc. of IEEE International Conference on Wafer Scale

Integration, pages 238–247, January 1995.

4. M.S.Papamarcos and J.H.Patel. A Low-overhead Coherence Solution for Multipro-

cessors with Private Cache Memoryes. ISCSA84, pages 348–354, 1992.

5. Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The SPLASH-2 Programs: Characterization and Methodological

Considerations. ISCA, pages 24–36, June 1995.

This article was processed using the LaTEX macro package with LLNCS style


