
Environment for Multiprocessor Simulator Development

Masaki Wakabayashi† Hideharu Amano†

†Department of Computer Science, Keio University
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa Pref. 223-8522 Japan.

{masaki,hunga}@am.ics.keio.ac.jp

Abstract

Performance estimation is essential for designing and in-
vestigating of new architectures including multiprocessors.
Software simulation is one of the most common methods,
since there is no limitation on device technology nor hard-
ware configuration. Although lots of software simulators
have been developed and used, they must be modified for
each distinct target system. For designers of new architec-
tures, it is often a cumbersome job.

ISIS, an architecture independent simulation kit for mul-
tiprocessors, is developed so as to reduce such designers
load. It includes various small simulators called “Units”
corresponding to processors, buses, memories, caches and
I/O devices. ISIS users can build simulators for their orig-
inal target architectures only by connecting “Units” each
other. The implementation cost is much reduced with little
runtime overhead.

A sample instruction-level multiprocessor simulator
which has 4 processors can be executed 40,000 to 70,000
steps per second. This paper also reports experimental re-
sults of ISIS in various research projects.

1. Introduction

In order to keep up drastic performance improvement
of recent computer systems, parallel machines have been
widely investigated and developed. For development of new
computers, performance estimation before implementation
is a key to success. Software simulation is one of the most
effective methods owing to the flexibility and extendibility.

Software simulation is roughly classified into four type-
s: probabilistic-model simulation, trace-driven simulation,
execution-driven simulation and instruction-level simula-
tion. For performance estimation, one of these methods
is chosen depending on target machine architecture and re-
quired accuracy, and then simulation system is started to
build. Various kind of simulators, e.g. ATUM[9], Tango[1],
MINT[7] and SimOS[8] have been implemented and some
of them are widely utilized in various research projects.

However, most existing systems are implemented for per-
formance evaluation of a specific type of target multiproces-
sors. Therefore if the target multiprocessor is not a similar
type of existing simulators’ targets, researchers must modify
the existing simulator or in some cases, an original simulator
must be developed from scratch. This overhead of imple-
mentation is sometimes cumbersome job for researchers.
Nevertheless, traditional simulators tend to reduce the run-
time cost rather than implementation cost.

Here, we propose an architecture independent simulation
kit for multiprocessors, called ISIS. Under different inten-
tion from traditional simulators, it aims mainly to reduce
the implementation cost for building various simulators for
various types of multiprocessors with various simulation
schemes. In ISIS, there are many parts called Units each
of which simulates a function block in multiprocessors and
constitutes a library. A specific simulator for a multipro-
cessor can be formed only by connecting Units in a library.
As well as reduction of the implementation cost, ISIS is de-
signed so as not to degrade the simulation speed compared
with traditional simulators. ISIS has been used in several
research and development projects of multiprocessors, and
Units in ISIS has been extended and brushed up.

Section 2 and Section 3 describe the design and the im-
plementation of ISIS. Section 4 assesses the performance
of ISIS and some simulator examples implemented with it.
The precedent of research with ISIS is covered in Section 5,
and Section 6 offers concluding remarks.

2. A Simulation Kit ISIS

2.1. Design Concept

Various simulation schemes are applied to multiprocessor
simulators depending on both the target machine situation
(architecture and scale) and simulation requirements (accu-
racy and simulation speed). It is a principal trade-off in
simulation requirements, that is, accuracy versus simulation
speed. Followings are common simulation schemes ordered
in high execution speed but low accuracy: probabilistic-
model simulation, trace-driven simulation[9], execution-



port portUnit

Unit
port

Unit
port

packetpacket

Figure 1. System model.

driven simulation[7], and instruction-level simulation[10].
These schemes are sometimes dynamically changed in or-
der to fit the requirement[8]. Since ISIS is designed so as
to reduce the simulator development cost for various tar-
get parallel machines, various simulation schemes must be
supported as possible.

On the other hand, simulators can be also classified by
its synchronization schemes: event-driven synchronization
and clock-driven synchronization. The former is favorable
when there are less event occurrences, while the latter is
advantageous for target machines consisting of a lot of fre-
quent working elements. Unlike the simulation schemes, we
select only the clock-driven synchronization in ISIS. Using
a common clock, a large simulator can be built with a lot
of parts each of which works a small simulator itself just by
connecting them.

Based on these considerations, we propose a simulation
development kit called ISIS, which consists of many simu-
lators of small functional blocks in multiprocessors. Each
small functional block simulator called Unit works in clock-
driven synchronization and can be easily connected through
a standard interface. Using this strategy, a simulator for any
target architectures can be developed easily to meet various
simulation requirements. In ISIS, probabilistic-model simu-
lation, trace-driven simulation, instruction-level simulation
and their combination can be used. The execution-driven
simulation scheme, which restricts the target is not included.
It can be also combined in a specific type of library in future.

2.2. System Model

As shown in Figure 1, a simulator developed by ISIS con-
sists of the functional block, the connection between blocks
and the information sent/received. They are abstracted as
Unit, Port and Packet respectively.

Unit: Unit is defined as a simulator of a function block
such as processor, memory module, router and I/O device.
It is implemented as an individual simulator, and works
communicating with other Units through Port synchronized
by a unique clock. For resolving the dependencies between
events, the clock is divided into two phase: input and out-
put. At the input phase, the information is transferred from
outside to inside all Units, while it is sent from the inside in
the output phase.

Port: Port is defined as the connection point of the com-
munication path between Units. It manages all control pro-
cesses for communication, and conceals them from internal
implementation of Units. In order to avoid extra overhead,
a quick communication method is used.

Packet: Packet represents an information transferred be-
tween Units. As all managements of the sent/received infor-
mation are done by Packet itself, internal implementation
of the Port can be done without considering actual data
processing.

2.3. Implementation Cost

In order to reduce the implementation cost, Unit should
be shared in various simulators as possible. We provide a
lot of ready-to-use Units as a library. If Unit which fits to
the purpose directly can not be found in the library, users
must implement by themselves. Even in this case, most of
required Units can be implemented with some modification
of Units in the library. Using object oriented language, ISIS
makes it easy to make the derived class from the basis Units
in the library.

2.4. Runtime Cost

A runtime cost of a simulator is depending on the perfor-
mances of each Unit and additional overheads for combining
Units. In ISIS, the latter overhead is reduced as possible by
tuning up the code of Packet and Port.

Furthermore another important issue which reduce the
runtime cost in some cases is portability of simulator. When
a target is simulated under various parameters, a lot of com-
puters can work in parallel. For such a parameter survey,
ISIS is designed to work in various platforms as possible.

3. Implementation

In this section, implementation of the system model and
basic components: Unit, Packet and Port are described. We
also introduce outlines of actual function block simulators
implemented with the basic components in ISIS.

3.1. Description Language

In order to satisfy both the programming paradigm for
large-scale design and execution speed, ANSI C++ is select-
ed as an implementation language of ISIS. Units, Ports and
Packets described in Section 2.2 are defined as classes, and
they are supported to users as parts of the class library.

In order to reduce the implementation cost of each class,
common characteristics between some classes are abstracted
as base classes, thus they form class hierarchies. Units,
Ports and Packets are the most fundamental constituent of



ISIS Library
User’s Source

Top Module

inheri−
tance

Compile & Link

Simulator Binary

Link

Figure 2. Structure of ISIS library.

class packet {
public:

virtual packet∗ new packet() const = 0;
};

Figure 3. Definition of packet class.

simulators and each of them integrates an individual class
hierarchy. A simulator designer picks up desired class from
the library, and uses it directly or makes a derived class
if needed. Using inheritance facility, it is easy to make a
derived class in most cases.

Figure 2 shows the structure of the library. The de-
signed simulator is transformed to executable binary pro-
gram through compiling and linking.

3.2. Implementation of Basic Components

Here, implementation of three basic classes Unit, Port
and Packet are described. Another class Device is also
introduce to reduce the implementation cost of Unit.

3.2.1. Packet

packet class is defined as a base class of Packet and the
definition is shown in Figure 3. It is an abstract class, and
has only a pure virtual member function new_packet to
duplicate itself. Signal sets of buses or each packet passed
through routers are defined as derived class of packet.
High degree of flexibility is obtained for derived classes
since it does not define any substance of physical packets.

3.2.2. Port

port class is defined as the base class of Portand the def-
inition is shown in Figure 4. For example, I/O port of buses
or links between router chips are defined as derived classes

class port {
public:

void put(packet∗);
packet∗ get();
void connect(port&);
void disconnect();
bool have packet() const;

};

Figure 4. Definition of port class.

class unit {
public:

virtual void clock in() = 0;
virtual void clock out() = 0;
virtual void reset() = 0;

};

Figure 5. Definition of unit class.

of port. It has some member functions — such as to con-
nect/disconnect to each other (connect, disconnect),
send/receive packets (put, get) and communication con-
trol (have_packet: checking packet existing). A virtual
connection path, which can store only one packet, is cleat-
ed automatically when some ports are connected with each
other. In order to improve the execution speed, packets are
not copied in sending/receiving mechanism, but pointers for
packets are copied.

Although parallel simulation is not possible to the cur-
rent ISIS, the parallelization of the simulator can be easily
extended if the internal communication control of port is
modified for parallel execution.

3.2.3. Unit

unit class is defined as the base class of Unit and the
definition is shown in Figure 5. It is an abstract class and has
only three pure virtual member functions — state transitions
at input/output phase (clock_in, clock_out) and state
initialization (reset). Function blocks such as processors
or memory modules are defined as derived classes of unit.

3.2.4. Device

Device is a class representing a small and simple element
to support an implementation of a large scale Units like
complicated processors.

The functional blocks without state transition are repre-
sented with Devices. Buffers used in cache, register files
and instruction buffers are also classified into this class. By
using defined Devices, a large scale Unit can be implement-
ed with comparatively less cost. Now, almost 20 Devices



To Caches To R3010To Bus

Integer−Core

r0

r31

PC
HI
LO

Instruction Buffer

IF
RD
EX

MM
WB

Memory
Access
Unit

Bus I/F
CP0

Stall
Buffer

Write
Buffer

Figure 6. Structure of R3000 simulator.

are defined in the library. Unlike other classes in ISIS, class
hierarchy is not formed for Devices.

3.3. Function Block Simulators

In the library, it is necessary to provide a large assortment
of “useful parts” as well as the system model for reducing
the implementation cost. Examples of “parts” which have
been already implemented are introduced as followings.

3.3.1. Processor

MIPS R3000 processor simulator shown in Figure 6 is im-
plemented as an example of existence processors.

It is almost complete clock-level simulator, and can sim-
ulate five-stage instruction pipeline, register file, primary
caches, write buffer and bus interface exactly in clock-level.
The clock-level simulator of a floating point operation co-
processor R3010 is also implemented.

3.3.2. Bus

Bus is a shared connection path between Ports, and can con-
nect a lot of Units including processors or memory modules.
We use derived classes from port class and packet class
for the bus implementation. Bus packet class includes the
information of an address line, a data line and a control
line of an actual target bus. Bus port class has functions of
sending/receiving packets and ownership control.

3.3.3. Cache

Since structure of the cache is highly depending on the
processor connecting to it, ISIS does not support any specific
cache units as its internal structure. Instead, ISIS supports
many useful “parts of cache” as Devices: the model for a
tag memory, data memory, bus interfaces and others.

Arbitoration Unit

S
w

itc
hi

ng
 E

le
m

en
t

Virtual
Channel
Input
Unit

Virtual
Channel
Output
Unit

Control
Interface

Figure 7. Structure of router.

3.3.4. Memory

The memory module simulator consists of two parts: the
buffer part which keeps the whole data and its controller.

The buffer part manages page-based allocation mecha-
nism. It does not allocate total memory size required in
the simulator’s code at the beginning of simulation, but allo-
cates actually accessed by executed application dynamically.
Thus no redundant resource is spent for the simulation even
if the target machine requires more size of memory.

The controller part manages the data depending on the
requirement of the bus. The detail of read/write access delay
can be set here. The bus transaction including burst transfer
and split transaction are also provided.

3.3.5. Router

This unit is defined as a clock-level simulator of a router
which is an essential element of an interconnection network
for multiprocessors. Figure 7 shows the structure of the
router simulator.

All of following elements can be modified to support
various target machines: input/output bandwidth, latency,
number of virtual channel and buffer size. Both wormhole
and virtual-cut-through routing are supported. In the router,
virtual channel buffer, a crossbar and its arbiter are provided,
and managed by the controller. Two important functions
are not defined in base router class for leaving the simulator
designers’ choice: a routing algorithm function and an inner
control function. As there are many sample functions of both
algorithms in ISIS, usually designers are only required to
select desired functions from them. Procedural description
is also available.

3.3.6. Network Interface

This unit is defined as a clock-level simulator of a network
interface. Bus used in the node processor and communica-



Table 1. Supported architecture and OS.

Architecture OS
HP PA-RISC HP-UX 10.10
Sun Sparc SunOS 4.1.4

Solaris7
PC/AT compatibles FreeBSD 3.5.1

Linux 2.2.17
Solaris8

SGI Origin IRIX 6.4

tion between router are managed in it.
Since it is designed to support a distributed shared mem-

ory, ISIS can support an instruction-level simulation of NU-
MA.

3.3.7. I/O Device

I/O unit is defined for emulation of I/O functions in appli-
cations: file input/output, time management and so on. An
instruction-level simulator developed with ISIS can execute
a program including I/O operations with it. When an ap-
plication issues a request packet to this unit, it issues the
request to the operating system on the host machine.

3.4. Platforms and Applications

As mentioned in Section 3.1, we select ANSI C++ as an
description language of ISIS. To support as many platforms
as possible, no library is used except C++ standard libraries.
Table 1 shows both the architectures and operating systems
supported by current ISIS. Furthermore it works well with
any other platforms if it has C++ compiler.

ISIS completely supports ANSI C, ANSI C++, AN-
SI FORTRAN 77 and FORTRAN 90 for applications on
instruction-level simulators. GNU gcc and newlib are
used for supporting environment of applications.

4. Performance

In this section, we present results of followings: required
runtime memory, execution speed of a small simulator and
the total performance of both instruction-level multiproces-
sor simulators and probabilistic-model one. Breakdown of
source code size are also shown.

Here, simulation is executed on a PC/AT compatibles
equipped with one 600MHz Pentium-III and 512MBytes
main memory. Solaris8 is used as an operating system.

4.1. Required Memory

Table 2. Required memory size.

Unit Memory (bytes)
R3000 processor 1,052
R3010 coprocessor 1,936
Memory controller 140
I/O unit and etc. 464
Router 244
Network I/F 1,052
Uniprocessor 3,668

Table 3. Speed of the uniprocessor simulator.

loop copy
Total steps 2,002,590 2,002,641
Total exec. time[sec] 6.34 5.37
Exec. time per step[µsec] 3.166 2.681
Number of steps per second 315,866 372,931

Table 2 shows runtime memory size in bytes required
by elementary units. The “uniprocessor” at the bottom of
Table 2 shows the simulator for an almost minimal scale
computer consisting of a R3000 processor, a R3010 copro-
cessor, a memory module and an I/O unit without a router
nor a network interface.

Table 2 shows that each unit requires small memory
size and it means that ISIS has highly scalability at this
point. Note that extra memory blocks are required to sim-
ulate caches or memory modules used in a target machine.
However, as mentioned in Section 3.3.4, only the memory
blocks are actually spent that are required by an executed
application on simulators. A small extra memory for created
Packets is also required at runtime.

4.2. Speed of the Minimal Simulator

We measured total simulation time of the instruction-
level simulator for the uniprocessor described in Section 4.1.
For reality, the target machine provides additional 16Kbytes
primary instruction cache and 4Kbytes primary data cache.

Two simple applications are executed on the target: loop
executes an empty loop with 1,000,000 iterations. copy
executes memory-to-memory copy of 1Mbytes data. The
results are shown in Table 3. Note that a simulation step is
corresponding to the processor clock cycle.

Since frequent memory access accompanies a lot of pro-
cessor wait, copy is executed faster than loop. This re-
sult shows that an instruction-level simulator can execute
310,000 to 380,000 steps of the target uniprocessor per sec-
ond. As a clock-level simulator, this speed is enough useful.



Table 4. Workloads for instruction-level simu-
lation.

Program Problem size
BARNES 512 bodies
FFT 65,536 complex doubles
LU 256 × 256 matrix
OCEAN 66 × 66 grid
RADIX 2,097,152 keys

0

100

200

300

400

1 16 32 48 64

E
xe

cu
tio

n 
tim

e 
pe

r 
cl

oc
k 

[u
s]

Number of Processors

BARNES
FFT
LU

OCEAN
RADIX

Figure 8. Performance of the instruction-level
simulator.

4.3. Performance of an Instruction-level Simulator

Here a small scale multiprocessor is chosen as a target,
and instruction-level simulation scheme is applied. The
target multiprocessor provides several processors (MIPS
R3000) connected with an ideal shared memory. Appli-
cations shown in Table 4 from SPLASH2 programs[11] are
used as workloads. The number of processors is changed
from 1 to 64.

Figure 8 shows simulation time corresponding 1 clock of
the target machine. According to Figure 8, the execution
time per step is approximately in proportion to the number
of processors, and not much depending on applications. It
shows that a simulator for a system with 4 processors can
execute 40,000 to 70,000 steps per second. Thus ISIS can
generate a high speed simulator sufficient to evaluate the
target machine in real researches.

Table 5. Parameters of probabilistic-model
simulation.

Routing method virtual-cut-through
Bandwidth of channel 1 flit/clock
Packet length 6 flit
Traffic pattern uniform random
Packet rate 1%
Routing deterministic routing
Total steps 100,000

0

10

20

30

40

50

60

70

16 1024 2048 3072 4096

E
xe

cu
tio

n 
tim

e 
pe

r 
cl

oc
k 

[m
s]

Number of Processors

2D torus
Hypercube

MIN

Figure 9. Performance of probabilistic-model
simulators.

4.4. Performance of Probabilistic-model Simulators

Next target machines are large scale multiprocessors, and
probabilistic-model simulation scheme is applied. Two di-
mensional torus, hypercube or MIN (Multistage Intercon-
nection Network) are used as a network connecting node
processors. The node number of the multiprocessors is
changed from 16 to 4,096. Rest of parameters are shown in
Table 5.

Figure 9 shows that required execution time to process
1 clock of the target machines. Regardless of connection
topologies, only about 7 to 15 microsecond is required for an
execution of a step of the target machine with 1,024 nodes.
Since the routing algorithm is changed with the network
topology, the results are slightly different depending on the
network size.



Table 6. Breakdown of source codes.

UNI MULTI 2D HC
System model 2,710 2,710 2,467 2,467
Device 1,914 1,914 637 637
Processor 10,683 10,683 - -
Memory cntl. 543 543 - -
I/O and etc. 1,460 1,460 - -
Network I/F - - 2,183 2,183
Router - - 906 906
PUs manage. - 617 - -
Private code 203 756 233 172
Priv./Share. 1.16% 3.98% 3.63% 2.70%

4.5. Implementation Cost

Amount of source codes are counted to evaluate how
ISIS can contribute to reduce the cost of simulator imple-
mentation. Three types of simulators in this section: an
instruction-level uniprocessor simulator “UNI” described in
Section 4.2, an instruction-level multiprocessor simulator
“MULTI” in Section 4.3, and probabilistic-model multipro-
cessor simulators “2D”/“HC” in Section 4.4. 2D shows a
machine with two dimensional torus while HC shows one
with the hypercube interconnection.

Table 6 shows the amount of source code of each part in
lines. “System model” means the code of the basic parts of
ISIS, e.g. the base classes of Unit, Packet and Port. “Private
code” means the written code only for the distinct simulator.

98.84% of the source code of UNI are shared with MUL-
TI. This comes from that they are both instruction-level
simulator which uses the same parts.

On the other hand, 2D and HC share few codes with UNI
and MULTI except what concerns system model, since they
are probabilistic-model simulator. However, 96.37% of the
source code of 2D are shared with HC, since their structure
is almost same except their connection topologies.

These results show that small codes are only required to
described by the user, and a large part of code can be shared
with other simulators.

5. Researches with ISIS

ISIS has been developed since 1996 and utilized in several
research projects. In this section, some of experiences are
introduced.

5.1. pSAS Cache

Inoue et al. investigated trade-off between shared and
snoop cache for on-chip multiprocessors[6], and proposed a
new cache mechanism called pSAS(Pseudo Set Associative

On−chip Shared bus

External Bus

Main
Memory

Back Door Path

PE PE PE PE

Bus
Interface

Snoop
Cache

Snoop
Cache

Snoop
Cache

Snoop
Cache

Figure 10. Structure of pSAS cache.

and Shared) cache. In this cache, by using the snoop cache
modules attached to other processors in the same chip as
extra ways of its own cache, it combines both advantages
of snoop and shared cache. Simulation results show that
the performance is improved 10% in average and 16% at
maximum than a traditional snoop cache mechanism.

Figure 10 shows the structure of pSAS cache. An extra
data path called BDP (Back Door Path) is added to use other
cache modules as extra cache sets. In order to save the
required hardware, the bandwidth of BDP is assumed to be
a word. Access to other cache modules via the BDP takes a
few additional clocks, which are much less than latency to
access the outside memory. In the case of access conflicting
between the access via the BDP and local access, local
cache access has a higher priority than access from other
processors. A tag memory must have multiple ports and
enable to access the cache entry both from the local and the
BDP without conflict.

Through the evaluation of pSAS cache, the behavior of
processors, caches, buses, and memory module outside the
chip are important. Thus, it must be simulated in the clock
level with practical parallel application benchmarks. On the
other hand, the size of the target system is rather small, since
it is assumed to be implemented on a single chip. Therefore,
an instruction-level simulator is built with ISIS library.

Figure 10 shows the pSAS and corresponding simulator
structure. All the Units are included in ISIS library except
the cache controllers and the bus interfaces. Derived classes
from port class and packet class are used in order to
implement the shared bus. Other simulators for common
multiprocessor with snoop cache is also implemented for
performance comparison.

Almost four months are spent, since the simulator devel-
opment started until ISIS had not achieved stable working.
4,000 lines code is required in the simulator for represent-
ing the target architecture, and about 22,000 lines had been



already included in ISIS.

5.2. Shared vs. Snoop

Kisuki et al. in Keio University compared the perfor-
mance of the snoop cache architecture with that of the shared
cache architecture on an on-chip multiprocessor[6]. It is re-
alized that a snoop cache has higher performance in consid-
eration of access delay for shared memory, according to the
quantitative evaluation with some SPLASH2 programs on
the instruction-level simulators of both architecture. These
two simulators are implemented with ISIS and this research
results became the basis of above pSAS cache.

5.3. Interconnection Network Simulator

ISIS had been used for the evaluation of interconnec-
tion network used in a massively parallel computer JUMP-
1[3] which was developed with cooperation of seven U-
niversities. In this case, probabilistic-model simulation
was used and a network congestion with 1,024 nodes were
evaluated[4]. In this project, an instruction-level simula-
tor was also implemented for precise level simulation of a
system with 16 processors.

5.4. Other activities with ISIS

Some other projects with ISIS are now in progress: a sim-
ulator of a novel interconnection network called Recursive
Diagonal Torus[12] is now under development with ISIS.
Unlike other interconnection network simulators, it is not a
probabilistic-model but an instruction-level simulator which
can evaluate detail communication congestion with practi-
cal parallel applications. Another instruction-level simu-
lator of MAPLE[2] is also now developing for a custom
processor for the multi-grain parallelization multiprocessor
ASCA[5].

6. Conclusion

A multiprocessor simulator generation kit called ISIS is
proposed, designed and evaluated.

Some multiprocessor simulators with ISIS are imple-
mented and their total simulation time are measured: for
an instruction-level simulator of a small scale multiproces-
sor up to 64 processors, and for a probabilistic-model sim-
ulator of the large scale multiprocessor with 4,096 nodes.
According to the result, the instruction-level simulator with
4 processors can process 40,000 to 70,000 steps per sec-
ond, and the probabilistic-model simulator which has 1,024
nodes can process 60 to 130 steps per second. These sim-
ulation speed are comparable to the traditional dedicated
simulators. Most of source codes can be shared, and private
code sizes are about 4% at the most. Therefore it proves that

ISIS reduces the implementation cost without increasing the
runtime cost.

ISIS is published as a free software since October, 2000.
Please See the url: http://www.am.ics.keio.ac.jp/isis/ .

References

[1] H. Davis, S. R. Goldschmidt, and J. Hennessy. Multipro-
cessor Simulation and Tracing Using Tango. Proceedings of
International Conference on Parallel Processing, II:99–107,
1991.

[2] T. Fujiwara, K. Sakamoto, T. Kawaguchi, K. Iwai, and H. A-
mano. A CUSTOM PROCESSOR FOR THE MULTIPRO-
CESSOR SYSTEM ASCA. In Proceedings of 16th IASTED
International Conference Applied Informatics – AI’98, pages
258–261, Mar 1998.

[3] T. H. Massively Parallel Processing System JUMP-1. IOS
Press, ISBN 90-5199-262-9, 1996.

[4] H. Inoue, K. ichiro Anjo, J. Ymamamoto, J. Tanabe, M. Wak-
abayashi, M. Sato, H. Amano, and K. Hiraki. The Prelimi-
nary Evaluation of MBP-light with two protocol policies for
a Massively Parallel Processor JUMP-1. In Proceedings of
Symposium on Frontiers of Massively Parallel Computation,
pages 268–275, 1999.

[5] K. Iwai, T. Morimura, T. Fujiwara, K. Sakamoto,
T. Kawaguchi, K. Kimura, H. Amano, and K. Hironori. In-
terconnection network of ASCA: a multiprocessor for multi-
grain parallel processing. In Proceedings of 16th IASTED
International Conference Applied Informatics – AI’98, pages
262–264, Mar 1998.

[6] T. Kisuki, M. Wakabayashi, J. Yamamoto, K. Inoue, and
H. Amano. Shared vs. Snoop: Evaluation of Cache Structure
for Single-chip Multiprocessors. In Proceedings of the 3rd
International Europian Conference on Parallel Processing –
Euro-Par’97, pages 793–797, Feb 1997.

[7] A.-T. Nguyen, M. Michael, A. Sharma, and J. Torrellas.
The Augmint multiprocessor simulation toolkit for Intel x86
architectures. In Proceedings of International Conference
on Computer Design: VLSI in Computers and Processors,
pages 486–490, Oct 1996.

[8] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
Complete Computer System Simulation: The SimOS Ap-
proach. IEEE Parallel and Distributed Technology: Systems
& Applications, 3(4):34–43, Winter 1995.

[9] R. L. Sites and A. Agarwal. Multiprocessor Cache Analysis
Using ATUM. In Proceedings of 15th International Sympo-
sium on Computer Architecture, pages 186–195, 1988.

[10] E. Witchel and M. Rosenblum. Embra: Fast and Flexible
Machine Simulation. volume 24, pages 68–79, May 1996.

[11] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-

ological Considerations. In Proceedings of the 22nd Interna-
tional Symposium on Computer Architecture, pages 24–36,
Jun 1995.

[12] Y. Yang and H. Amano. Message Transfer Algorithms on
the Recursive Diagonal Torus. IEICE Transaction on Infor-
mation and Systems, E79-D(2):107–116, Feb 1996.


