
ISIS: MULTIPROCESSOR SIMULATOR LIBRARY

MASAKI WAKABAYASHI∗ KEISUKE INOUE∗

HIDEHARU AMANO∗

∗Department of Computer Science, Keio University
3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522 Japan.

{masaki,keisuke,hunga}@am.ics.keio.ac.jp

Abstract

In this paper, architecture independent software sim-
ulation kit for multiprocessors called ISIS is proposed
and designed. It includes various small simulators of
a hardware device. All functions are implemented in
C++ language, and the extension of them is also easy.

Execution speed of a sample simulator was mea-
sured. Execution time of the simulator with four R3000
processors is 22,000 times of the real hardware (target
system is assumed to work with 500MHz system clock).
It is reasonable speed to evaluate a real multiprocessor.

KEYWORDS
“multiprocessor”, “software simulation”, “performance
evaluation”, “architecture independent”, “library”

1 INTRODUCTION

Not only structure of a modern multiprocessor but al-
so data structure and control flow of most parallel ap-
plications become complicated. For researchers and
designers who need to evaluate such complicated mul-
tiprocessor systems, a software simulation is one of the
most effective method, since there is no limitation on
current device technology nor hardware configuration.

A lot of software simulators have been developed
and used[1, 2, 3]. However, when the target system
is modified, the simulator must be modified for it. It
is sometimes a painful job for researchers to modify
such a simulator, especially when the target system is
a novel research machine.

In this paper, architecture independent simulation
kit for multiprocessors called ISIS is proposed. It in-
cludes various functions which can be useful to develop
simulators, such as a processor, bus, memory, cache,
and some I/O device. Further, this library support-
s various types of simulation method — instruction
level simulation, trace-driven simulation, and proba-
bilistic simulation. All functions are encapsulated into
a unit, which represents each function block in a real
hardware. All units can be connected with each other
using packet and port which support connection and
communication among units. Using ISIS, researcher-
s can build simulators for their original target archi-
tectures only by describing their peculiar part of the
architecture and connecting them with common units
in ISIS. Furthermore, since all units, packets and ports
are implemented using inheritance of C++ language,

the extension of these functions is also easy.
ISIS has been used in real research projects[4]. In-

struction level simulators which used in the research on
a structure of cache system for a single-chip multipro-
cessor was developed based on ISIS. The target system
includes R3000 processors and a cache system — snoop
cache or shared cache. In this case, the researcher must
only implement a new snoop cache controller, shared
cache controller and bus bridge.

2 DESIGN

There are three major requirements for ISIS. First,
high degree of flexibility is required, that is, ISIS should
be independent from both architecture and simulation
method. Second, ISIS must reduce code size written
by users as possible. Third, simulators developed with
ISIS must run with a reasonable execution speed.

2.1 SYSTEM MODELING

In order to be independent from both architecture and
simulation method, ISIS takes a library structure, which
includes a lot of small simulators called unit — such
as a processing unit, cache, memory and I/O device.
To build a simulator of the specific multiprocessor, re-
searchers only connect required units each other in the
structure of the target machine. Even if the original
function block which is not prepared in ISIS exists in
the target machine, researchers can build the simulator
by adding a new unit and connecting it. Furthermore,
by encapsulating each unit independently, we can re-
duce costs of implementation and extension.

To make sure of connectivity among various units,
packet and port are introduced.

Packet is an entity of information across a signal
line or a network — such as a memory access request on
bus, and a flit between interconnection network router-
s. Port is an input/output terminal of connection a-
mong units. Figure 1 shows a sample of system mod-
eling using unit, packet and port. Each unit has some
ports for connecting each other.

2.2 REDUCING CODE SIZE

In order to reduce the code size written by users, ISIS
must provide an easy way to implement new units by

port portUnit

Unit
port

Unit
port

packetpacket

Figure 1: SYSTEM MODELING

users. For this requirement, units in ISIS are imple-
mented using a concept of inheritance. If different two
units have some common functions, their relationship
is written by inheritance. A user can easily extend a
unit in ISIS with inheritance for his own intention.

2.3 EXECUTION SPEED

For reasonable execution speed of simulators, we care-
fully selected the implementation language of ISIS. S-
ince a software simulation of multiprocessor usually
takes a long time, it is mostly implemented with the
language which can generate faster code such as C lan-
guage.

3 IMPLEMENTATION

Considering requirements mentioned before: encapsu-
lation of units, the function of inheritance, and a gen-
eration of fast simulator code, we select C++ as an
implementation language of ISIS. Unit, packet and port
are implemented as class, and their relationship is writ-
ten by class inheritance. That is, ISIS is implemented
as a class library.

3.1 UNIT, PACKET, PORT

synchronous_unit class is defined as the base class of
units. All the classes of a unit in a multiprocessor are
implemented as a derived class of it. synchronous_unit
class is an abstract class, which presents state transi-
tion functions and reset functions to its derived class-
es. All these functions are virtual functions, so its real
processing is implemented in derived classes.

packet_base class is defined as the base class of
packets. All classes of packet are implemented as a
derived class of it.

port_base class is defined as the base class of ports.
This class provides connect/disconnect functions and
send/receive packet functions. When some ports are
connected to each other, the connection path is created
automatically. A connection path can pass only one
packet at a time.

3.2 PROCESSOR CLASS

As a base class of all processors, processor class is
defined. A processor is also one of a unit, and so
processor class is a derived class of synchronous_unit
class. It has various virtual functions — accessing to

its register file, halt detection, bus access status report,
and so on.

As a real processor simulator, r3000 class which
simulates MIPS R3000 processor is implemented in I-
SIS. To simulate a clock level behavior, it includes reg-
ister table, 5 stage instruction pipeline, bus controller,
instruction/data primary cache, write buffer, system
control co-processor, and etc. All these function blocks
simulate accurately R3000 processor in pipeline clock
level. Using this unit, it is easy to construct the in-
struction level simulator of a multiprocessor with R3000
processors.

3.3 HOW TO WRITE A SIMULATOR

To implement a simulator for a target machine, follow-
ing steps are required for users: (1) write a top module
using ISIS classes, (2) if new devices are needed, use in-
heritance from a provided class, (3) compile them, (4)
link all with ISIS library. And, the desired simulator
will be created (See figure 2).

ISIS Library
User’s Source

Top Module

inheri−
tance

Compile & Link

Simulator Binary

Link

Figure 2: HOW TO USE ISIS

3.4 SAMPLE SIMULATORS

To generate an access trace data, an instruction level
multiprocessor simulator called “tracemaker” is pro-
vided by ISIS. The structure of it is shown in Figure

PE PE PE

N−port
Shared Memory

PE: Processing Element

R3010
R3000

Cache

Local
Mem.

File
I/O

Memory
Controller

Timer

Figure 3: BLOCK DIAGRAM OF TRACEMAKER

3. Each processing element has an R3000 processor,
local memory, I/O device, and etc. Its shared memory
is “ideal memory” — N-port memory, and it has no

access latency. It is impossible to build a real hard-
ware in this architecture, but it is useful to generate
memory access trace file.

4 EVALUATION

First, the execution speed of a simulator using ISIS
is measured by simulating the above described trace-
maker. The system clock frequency is assumed to be
500MHz, and the processor number is set from 1 to
64. As workloads, some SPLASH2 programs shown
in table 1 were used. The simulation host machine
is the IBM PC/AT compatible, which has Pentium-II
300MHz and 64MB memory. RedHat Linux-5.2 is used
as an operating system.

application problem size

BARNES 512 bodies
FFT 65536 complex doubles
LU 256 × 256 matrix
OCEAN 66 × 66 grid
RADIX 2097152 keys

Table 1: WORKLOAD

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64
number of processors

to
ta

l s
te

ps
 [x

10
^6

st
ep

s]

barnes
fft
lu
ocean
radix

Figure 4: TOTAL STEPS

Figure 4 shows total execution steps. This results
shows that these workloads have enough parallelism for
estimating performance of a multiprocessor.

Figure 5 shows total execution time. For a single
processor system, half hour to two hours were spent.
For simulating a system with 64 processors, three hours
to eight hours were required. This result demonstrates
that the performance evaluation of medium scale mul-
tiprocessors will finish in several hours. For a system
with 4 processors, execution speed of the simulator is
about 22,000 times as the real hardware.

�

�������

���������

���������

���������

���������

	��������

� �
 � ���	�����

���������������������� ���!�!"����!

$
%& '
('
) *
#+ $
,#
+ - '
.0/ '
)1

2"3�465"7�8
9 9 :
; <
=�> 7�3�5
403"?�@ A

Figure 5: TOTAL TIME

5 CONCLUSION

An architecture independent software simulation kit
for multiprocessors called ISIS is proposed and de-
signed. ISIS consists of three elements: unit, packet
and port, and they are implemented as C++ classes.

An execution speed of a sample simulator was mea-
sured, and it is confirmed that an instruction level sim-
ulator using ISIS has reasonable speed to simulate a
medium scale multiprocessor.

Now, we are developing some simulators and li-
braries for new architectures — on-chip multiproces-
sor, and a large scale NUMA/NORA architecture con-
nected with various interconnection networks.

References

[1] Richard L. Sites, Anant Agarwal, Multiprocessor
Cache Analysis Using ATUM, Proceedings of 15th
International Symposium on Computer Architec-
ture, 1988, pp.186–195.

[2] Helen Davis, Stephen R. Goldschmidt, John Hen-
nessy, Multiprocessor Simulation and Tracing Us-
ing Tango, Proceedings of International Confer-
ence on Parallel Processing, 1991, pp.II-99-II-107.

[3] Mendel Rosenblum, Stephen A. Herrod, Emmett
Witchel, Anoop Gupta, Complete Computer Sys-
tem Simulation: The SimOS Approach, IEEE
Parallel and Distributed Technology, Fall 1995.

[4] Toru Kisuki, Masaki Wakabayashi, Junji Ya-
mamoto, Keisuke Inoue, Hideharu Amano, Shared
vs. Snoop: Evaluation of Cache Structure for
Single-chip Multiprocessors, Euro-Par ’97.

[5] Steven Cameron Woo, Moriyoshi Ohara, E-
van Torrie, Jaswinder Pal Singh, Anoop Gupta,
The SPLASH-2 Programs: Characterization and
Methodological Considerations, Proceedings of the
22nd International Symposium on Computer Ar-
chitecture, June 1995, pp 24–36.

