
Snoop cache

AMANO, Hideharu, Keio University

hunga@am．ics．keio．ac．jp

Textbook pp.40-60

1

Cache memory

◼ A small high speed memory for storing

frequently accessed data/instructions.

◼ Essential for recent microprocessors.

◼ Basis knowledge for uni-processor’s cache is

reviewed first.

First of all, let’s review the cache memory. It is a small high speed memory for

storing frequently accessed data or instructions. It is essential for modern

computers, so most of you know of it.

2

CPU

L1 Cache

L2 Cache

L3 Cache

SRAM

Main memory

DRAM

～64KB 1-2clock

～256KB 3-10clock

2M～4MB 10-20clock

4～16GB 50-100clock

Memory Hierarchy

Locality is used.

Small high speed

Large low speed

Secondary Memory

μ-msec

TB

On-Chip cache

Transparent from Software

Managed by

Operating

System

I showed this diagram of memory hierarchy in the previous lesson. In this

diagram, there are three levels, but I simplize the structure to only a single one.

3

Controlling cache

◼ Mapping

❑ direct map

❑ n-way set associative map

❑ full-map

◼ Write policy

❑ write through

❑ write back

◼ Replace policy

❑ LRU(Least Recently Used)

Important design issues of cache are shown here.

4

Direct Map

0011 010 100

0011

… …

=

0011010

Yes：Hit

Cache Directory

(Tag Memory)

8 entries X (4bit)

Data

010

010

Cache

(64B=8blocks)

Main Memory

(1KB=128blocks)

From CPU

Simple Directory structure

Let me explain the basic structure of cache with this simple figure for very

small cache system. Here, the main memory is 1KB and cache is 64B. Cache

system is managed with small data block. Here a block is 8 bytes. That is this

cache can store 8 blocks. Of course, the size is too small but the structure itself

is the same as the practical cache. And also note that the main memory is L2

cache for the multi-core CPU. So, I will use this figure in order to save the

number of digits. There are 128 blocks in the main memory, and a block is

stored into the cache block whose least three bits are the same. Here this

0011010 block is stored into 010 of the cache memory. These three bits are

called the index. The other 4 bits are used as an identifier of the block, and

called key or tag. The cache directory or tag memory is provided to keep the

tag that is stored in the cache. This example, 0011 is stored here. When address

from CPU is given, the cache directory and the cache are referred at the same

time by the index, and if the upper 4 bits of the address matches to the key

stored in the cache memory, it means that the target block is in the cache. It is

called hit. In this case, the read out data is forwarded to the requesting CPU.

This simplest mapping is called the direct map.

5

Direct Map (Conflict Miss)

0000 010 100

0011

… …

=

0000010

No: Miss Hit

Cache Directory

(Tag Memory)

010

010

Cache

Main Memory

From CPU

Conflict Miss occurs between two blocks with

the same index

0000

If the upper 4bit address from the CPU does not match the key from the

directory, it means that the target block is not stored in the cache. This is called

cache miss. In this case, the target block must be fetched from the main

memory and stored in the cache. At the same time, the directory is rewritten

with the corresponding key. In this case, 0000. This operation is called replace.

In the direct map cache, two blocks whose index is the same cannot stored in

the cache memory. The cache miss by conflicting the index is called the

conflict miss. The miss ratio of the direct map cache is not good because of

this type miss.

6

2-way set associative Map

00110 10 100

00110

00000

… …

=

0011010

Yes: Hit

Cache Directory

(Tag Memory)

4 entries X 5bit X 2

Data

10

10

Cache

(64B=8blocks)

Main Memory

(1KB=128blocks)

From CPU

=
No

In order to improve it, two cache blocks form a set, and the index is assigned

to each set. Here, there are 4 sets, and least two digits of the block number is

used for the index. Here index is 10, and the block 0011010 is stored here. Two

cache directories are provided for each way of the cache, and referred by the

same index in parallel. The comparison is also done in parallel, and if either of

them matches, the data is forwarded to the CPU. This structure is called 2-way

set associative map. Apparently, the flexibility of storing the block is improved

compared with the direct map method.

7

2-way set associative Map

00000 10 100

00110

00000

… …

=

0011010

Yes: Hit

Cache Directory

(Tag Memory)

4 entries X 5bit X 2

10

Cache

(64B=8 blocks)

Main Memory

(1KB=128 blocks)

From CPU

=

10

0000010

Data

No

Conflict Miss is reduced

The case that causes the conflict can be saved because they can be stored in

the different ways like this. Similarly, 4-way, 8-way and more can be defined.

But here I will omit the explanation.

8

Write Through （Hit）

0011

… …

0011010

Cache Directory

(Tag Memory)

8 entries X (4bit)

Hit
Cache

(64B=8 blocks)

Main Memory

(1KB=128 blocks)

Write Data

The main memory is updated

From CPU

0011 010 100

For the read operation, when cache is hit, the data are forwarded to the CPU. If

miss happens, the main memory is accessed and the fetched block is filled into

the cache. However, for the write operation, there are two policies. One is

write through. In this policy, when write request hits, the written data are

forwarded to the main memory directly.

9

Write Through （Miss：Write non-allocate(Direct write))

0011

… …

0011010

Cache Directory

(Tag Memory)

8 entries X (4bit)

Miss
Cache

(64B=8 blocks)

Main Memory

(1KB=128 blocks)

Write Data

Only main memory is updated

From CPU

0000 010 100

0000010

There are two policies when write request miss-hits. Write non-allocate or

direct write bypasses the cache and the data are directly written into the main

memory. This policy is easy to be implemented, but the hit ratio is slightly

degraded.

10

0011

… …

0011010

Cache Directory

(Tag Memory)

8 entries X (4bit)

Miss
Cache

(64B=8 blocks)

Main Memory

(1KB=128 blocks)

Write Data

From CPU

0000 010 100

0000010

0000

Write Through （Miss：Write allocate(Fetch-on- write))

Write allocated or fetch-on-write fetches the block like read-miss happens.

11

0011

… …

0011010

Cache Directory

(Tag Memory)

8 entries X (4bit)

Miss
Cache

(64B=8 blocks)

Main Memory

(1KB=128 blocks)

Write Data

From CPU

0000 010 100

0000010

0000

Write Through （Miss：Write allocate(Fetch-on- write))

After the replacement, the data are written just like the case of write hits.

Because of the locality of access, the replaced block may be accessed soon.

So, the hit ratio is slightly better than that of write-non-allocate policy.

12

Write Back （Hit）

0011

… …

0011010

Cache Directory

(Tag Memory)

8 entries X (4bit+1bit)

Hit
Cache

(64B=8 blocks)

Main Memory

(1KB=128 blocks)

Write Data

From CPU

0011 010 100

1

Dirty

0

Another policy is write back. In this policy, the write data are written into only

cache, but the main memory are not updated. In this case, the content of cache

is different from the main memory. In order to show it, the dirty bit is provided

to every directory entry and when first write hits, the bit turns on.

13

Write Back （Replace）

… …

0011010

Cache Directory

(Tag Memory)

8 entries X (4bit+1bit)

Miss
Cache

(64B=8 blocks)

Main Memory

(1KB=128 blocks)

From CPU

0000 010 100

0000010

Write

Back

0011 1

Dirty

When the dirty cache block becomes the target of replacement, it must be

written back.

14

Write Back （Replace）

… …

0011010

Cache Directory

(Tag Memory)

8 entries X (4bit+1bit)

Cache

(64B=8 blocks)

Main Memory

(1KB=128 blocks)

From CPU

0000 010 100

0000010

0011
Clean

00000

Replace

After the write-back, the new cache is filled, at that time the dirty bit of the

cache entry is reset to show the cache is clean, that is the content of the cache

block is the same as the main memory.

15

Shared memory connected to the bus

◼ Cache is required

❑ Shared cache

◼ Often difficult to implement even in on-chip

multiprocessors

❑ Private cache

◼ Consistency problem → Snoop cache

OK. Now, let me explain about the cache for multi-core system.

16

17

Shared Cache

◼ 1 port shared cache

❑ Severe access conflict

◼ 4-port shared cache

❑ A large multi-port

memory is hard to

implement

PE

Bus Interface

Shared Cache

PE PE PE

Main Memory
Shared cache is often used for L2

cache of on-chip multiprocessors

A simple idea is to share the cache with multi cores. Of course, it causes the

severe access conflict at the cache. If multi-port memory is used, the conflict is

reduced. However, a large multi-port memory is hard to be implemented, and

the multi-port function is only available for read requests. Thus, shared cache

is used for a L2 cache.

Ｐｒｉｖａｔｅ（Snoop） Cache

PU

Snoop

Cache

PU

Snoop

Cache

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

(L2 Cache)

A large bandwidth shared bus

Each PU provides its own private cache

Another idea is private cache. Each processing unit or core has its own cache.

It has a benefit of high speed data access and also reducing the shared bus.

However, it causes the cache coherence problem or cache consistency

problem.

18

Bus as a broadcast media

◼ A single module can send (write) data to the

media

◼ All modules can receive (read) the same data

→ Broadcasting Tree

Crossbar + Bus

Network on Chip (NoC)

◼ Here, I show as a shape of classic bus but

remember that it is just a logical image.

Here, I will show a bus as a simple wire images. However, note that it is just a

logical image. It can be actually implemented as logic gates inside the chip.

19

Cache coherence problem

PU PUPU PU

Main Memory

(L2 Cache)

A large bandwidth shared bus

The same block is cached in two cache modules

AA

When a PU reads the block, the main memory or L2 cache is accessed and the

block A is read out. Another PU can copy the same block A in its own cache. If

only read operations are executed, there is no problem.

20

Cache coherence (consistency) problem

PU PUPU PU

Main Memory

(L2 Cache)

A large bandwidth shared bus

Data in each cache is not the same

AA A’

However, what happens a PU writes data, the block is updated, but another PU

who has the same copy cannot know of that. As a result, the content of two

caches becomes different or inconsistent.

21

Coherence vs. Consistency

◼ Coherence and consistency are

complementary：

◼ Coherence defines the behavior of reads and

writes to the same memory location, while

◼ Consistency defines the behavior of reads

and writes with respect to accesses to other

memory location.

Hennessy & Patterson “Computer Architecture

the 5th edition” pp.353

The words coherence and consistency are complement. That is coherence

defines the behavior or reads and writes to the same memory location, while

consistency is for other memory location. Since the cache block may include

both, I think both are OK to use.

22

Cache Consistency Protocol

◼ Each cache keeps consistency by

monitoring (snooping) bus transactions.

Write Through：Every written data updates the shared memory.

Write Back:

Invalidate

Update

(Broadcast)

Basis（Synapse)

Ilinois

Berkeley

Firefly

Dragon

Frequent access of bus will degrade performance

For keep consistency a certain protocol is needed. There are various types of

protocols. I will introduce representative ones.

23

Glossary 1

◼ Shared Cache:共有キャッシュ
◼ Private Cache:占有キャッシュ
◼ Snoop Cache:スヌープキャッシュ、バスを監視することによって内容の一致
を取るキャッシュ。今回のメインテーマ、ちなみにSnoopは「こそこそかぎまわ
る」という意味で、チャーリーブラウンに出てくる犬の名前と語源は(多分）同じ。

◼ Coherent（Consistency) Problem:マルチプロセッサで各PEがキャッシュを
持つ場合にその内容の一致が取れなくなる問題。一致を取る機構を持つ場
合、Coherent Cacheと呼ぶ。ConherenceとConsistencyの違いは同じアド
レスに対するものか違うアドレスに対するものか。

◼ Direct map:ダイレクトマップ、キャッシュのマッピング方式の一つ
◼ n-way set associative:セットアソシアティブ、同じくマッピング方式
◼ Write through, Write back:ライトスルー、ライトバック、書き込みポリシーの
名前。Write throughは二つに分かれ、Direct Writeは直接主記憶を書き込
む方法、Fetch on Writeは、一度取ってきてから書き換える方法

◼ Dirty/Clean:ここでは主記憶と内容が一致しない/すること。
◼ この辺のキャッシュの用語はうまく翻訳できないので、カタカナで呼ばれてい
るため、よくわかると思う。

24

Ｗｒｉｔｅ Ｔｈｒｏｕｇｈ Ｃａｃｈｅ
（Invalidation type：Data read out）

PU PUPU PU

Main Memory

(L2 Cache)

A large bandwidth shared bus

Ｉ：Invalidated

Ｖ：Valid

Ｖ

Ｒｅａｄ

Ｖ

Ｒｅａｄ

The idea of the snoop cache came from the write through cache. I am going to

explain the invalidation type first. Assume that two PUs read the cache block,

two copies are made.

25

Ｗｒｉｔｅ Ｔｈｒｏｕｇｈ Ｃａｃｈｅ
（Invalidate type：Data write into）

PU PUPU PU

Main Memory

(L2 Cache)

A large bandwidth shared bus

Ｉ：Invalidate

Ｖ：Valid

Ｖ

Ｗｒｉｔｅ

Monitoring (Snooping)

Ｖ→ I

When a PU writes the data, it is transferred to the main memory since it is a

write through cache. At that time, the address and the information which

shows the request is write are transferred through the bus. Since the

information on the bus can be monitored by other cache, all cache modules

check its address and whether it is matched any block in the cache. If it

matches, the cache turns its block to invalidate or I. For this purpose, like the

dirty bit, all entries need the flag which shows the valid or not. This

monitoring operation is called snoop, since the cache monitors everything

secretly.

26

Ｗｒｉｔｅ Ｔｈｒｏｕｇｈ Ｃａｃｈｅ
（Invalidate type Write-non-allocate)

PU PUPU PU

Main Memory

A large bandwidth shared bus

Ｉ：Invalidated

Ｖ：Valid

The target cache block is not existing in the cache

V→ I

Ｗｒｉｔｅ

Monitoring (Snooping)

When write miss happens, the data are sent to the main memory directly in the

write-non-allocate type cache. But each cache snoops it and invalidates the

block similarly to the case of write hit.

27

PU PUPU PU

Main Memory

A large bandwidth shared bus

Ｉ：Invalidated

Ｖ：Valid

Ｗｒｉｔｅ

Cache block is not existing in the target cache

Ｖ

Ｗｒｉｔｅ Ｔｈｒｏｕｇｈ Ｃａｃｈｅ
（Invalidate type Write-allocate)

Write allocate type cache can work in the same manner. If write miss happens.

28

PU PUPU PU

Main Memory

A large bandwidth shared bus

Ｉ：Invalidated

Ｖ：Valid

Ｗｒｉｔｅ

Ｖ

First, Fetch

Fetch and write

Ｖ

Ｗｒｉｔｅ Ｔｈｒｏｕｇｈ Ｃａｃｈｅ
（Invalidate type Write-allocate)

The block is fetched from the main memory, and the data are written on it.

29

PU PUPU PU

Main Memory

A large bandwidth shared bus

Ｉ：Invalidated

Ｖ：Valid

Ｗｒｉｔｅ

Monitoring (Snoop)

ＩＶ

Fetch and write

Ｖ→

Ｗｒｉｔｅ Ｔｈｒｏｕｇｈ Ｃａｃｈｅ
（Invalidate type Write-allocate)

Other copies are invalidated by snooping the data.

30

Ｗｒｉｔｅ Ｔｈｒｏｕｇｈ Ｃａｃｈｅ
（Update type）

PU PUPU PU

Main Memory

A large bandwidth shared bus

Ｉ：Invalidated

Ｖ：Valid

Ｖ

Ｗｒｉｔｅ

V

Monitoring (Snoop)

Data is

updated

Instead of invalidating the block, the data can be written into the cache as well

as main memory. The copies are updated, and the contents can be kept the

same as the main memory. This case, the block was not invalidate. This

concept is called the update style.

31

The structure of Snoop cache

Cache Memory

Entity

Directory

Directory

The same

Directory

(Dual Port)

CPU

Shared bus

Directory can be

accessed

simultaneously from

both sides.

The bus transaction

can be checked

without caring the

access from CPU.

For snooping the shared bus, the directory is needed for shared bus as well as

for the CPU. The contents must be the same. Dual port memory is sometimes

used, but twin memory modules which synchronized only writing is easier.

32

Quiz

◼ Following accesses are done sequentially into the

same cache block of Write through Write non-

allocate protocol. How the state of each cache

block is changed ?

❑ PU A: Read

❑ PU B: Read

❑ PU A: Write

❑ PU B: Read

❑ PU B: Write

❑ PU A: Write

Let’s try a simple quiz.

33

Answer

◼ A B

◼ － ー
❑ PU A: Read V －

❑ PU B: Read V V

❑ PU A: Write V I

❑ PU B: Read V V

❑ PU B: Write I V

❑ PU A: Write I V

Let’s try a simple quiz.

34

The Problem of Write Through Cache

◼ In uniprocessors, the performance of the

write through cache with well designed write

buffers is comparable to that of write back

cache.

◼ However, in bus connected multiprocessors,

the write through cache has a problem of bus

congestion.

The early snoop cache uses the write through cache and several commercial

machines were successful. However, in bus connected multiprocessors, the

write through cache has a problem of bus congestion, and the performance

improvement of a CPU become great, the write through cache became

unpractical.

35

Basic Protocol

PU PUPU PU

Main Memory

A large bandwidth shared bus

States attached to each block

C：Clean (Consistent

to shared memory)

D: Dirty

I：Invalidate

C C

Read Read

The implementation to the write back cache is relatively difficult. Here, I show

the simplest protocol. Each directory entry has 2 bits; valid/invalid and

clean/dirty. A block has three states Clean, Dirty or Invalidate. When two PUs

read the data, these blocks become Clean.

36

Basic Protocol（A PU writes the data）

PU PUPU PU

Main Memory

A large bandwidth shared bus

I

Invalidation signal

C→ C→

Write

D

Invalidation signal: address only transaction

The problem is when a PU writes the data. As common write back cache, the

state changes from Clean to Dirty. In order to notice other PUs, the

invalidation signal is transferred on the shared bus. It includes only address

and invalidation request. By snooping the address, each cache changes its state

from Clean to Invalidated like this. Once the state becomes Dirty, of course, no

transactions on the shared bus are needed. The block marked Dirty can be read

and write freely as common write back cache does.

37

Basic Protocol (A PU reads out)

PU PUPU PU

Main Memory

A large bandwidth shared bus

Read

DI

Read request

Snoop

The problem happens when the cache marked dirty is accessed by the other

PU. When this PU reads the data, since it is invalidated, a miss occurs. It sends

the read request to the main memory, but there is a dirty cache.

38

Basic Protocol (A PU reads out)

PU PUPU PU

Main Memory

A large bandwidth shared bus

C CD→

Read

This cache snoops the shared bus and recognizes the read request. At that time,

this cache stops main memory answering the request and

instead it, the cache sends the block on the bus and write back is done. After

that, the block is transferred to the requesting cache. The write back and filling

requesting cache can be done in the multi-casting manner if the bus protocol

allows. After this operation, both cache blocks become Clean.

39

Basic Protocol (A PU writes into again)

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

D

W

I

Write request

Snoop

What happens the PU causes the write miss. As the case of read miss, the

request goes to the main memory same, since the write back cache uses the

write allocate policy.

40

Basic Protocol (A PU writes into again)

PU PUPU PU

Main Memory

A large bandwidth shared bus

ID D→

W

The cache providing the Dirty block responds as well and writes the block

back to the main memory, then it is forwarded to the requesting cache. After

writing data into the block, it directly turns into Dirty state. On the other hand,

after sending the block, the supplier’s state becomes Invalidated directly.

41

I

C

D

read

Replace

write hit Invalidate

write miss Replace

read miss Replace

read miss Write back

& Replace

write miss

Write back

& Replace

write

Replace

CPU request

I

C

D

write

miss

for the

block

Invalidate

read

miss

for the

block

Bus snoop request

State Transition Diagram of the Basic Protocol

The cache protocol can be described by the state transition diagrams. Two

diagrams must be provided. One is from CPU request and the other is from the

shared bus.

42

Illinois’s Protocol(MESI)

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

States for each block

CE：Clean Exclusive

CS：Clean Sharable

DE：Dirty Exclusive

I：Invalidate

CE

The first PU reads

The basic protocol can be improved. One idea is providing exclusive state by

adding an extra bit to each directory entry. It is set when there is no other copy

in the system. Dirty cache is always exclusive. So, four states; clean exclusive,

clean sharable, dirty exclusive and invalidated are used. When the first PU

reads the block it becomes Clean Exclusive. It can be detected there is no

notice from other caches snooping the shared bus.

43

Illinois’s Protocol

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

States for each block

CE：Clean Exclusive

CS：Clean Sharable

DE：Dirty Exclusive

I：Invalidate

CE

→CS
CS

SnoopSnoop

The second PU reads

If other cache reads the same block, the cache with CE block responds, and

both cache blocks turn to the Clean Sharable. In this case, the operation of this

protocol is the same as the basic protocol.

44

Illinois’s Protocol (The role of CE)

PU PU

Snoop

Cache

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

CE：Clean Exclusive

CS：Clean Sharable

DE：Dirty Exclusive

I：Invalidate

→DE

W

CE

CE is changed into DE without using the bus

When the PU writes the data into the block with the CE, it changes its state

into Dirty Exclusive without sending the invalidation signal on the bus. This is

only the benefit of introducing the exclusive state. Some people think that the

performance improvement by introducing the CE is not so large. However,

because the shared data between PUs is actually not so large, most of

invalidation signals in the basic protocol are in vain. So, this protocol called

MESI or Illinois protocol is popularly used.

45

Berkeley’s protocol (MOSI)

Ownership→responsibility of write back

OS:Owned Sharable OE:Owned Exclusive

US:Unowned Sharable I：Invalidated

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

US

R

46

Berkeley’s protocol (MOSI protocol)

Ownership→responsibility of write back

OS:Owned Sharable OE:Owned Exclusive

US:Unowned Sharable I：Invalidated

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

US US

R

Another idea is introducing the concept of ownership. Dirty or clean is decided

whether the content of block is the same as that of the main memory or not.

But, by using the concept of ownership, the cache can behave instead of the

main memory. Here, four states, owned sharable, owned exclusive, unowned

sharable and invalidated. The default owner is the main memory, when a PU

reads the data the copy becomes unowned sharable.

47

Berkeley’s protocol (A PU writes into)

PU

US

PU

US

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

W

→OE →I

Invalidation is done like the basic protocol

snoop

When a PU writes the data, the block with unowned sharable sends the

invalidation signals, and the all US blocks are invalidated. At that time, the

block turns Owned Exclusive, that is, the PU becames the owner.

48

Berkeley’s protocol

PU

OE

PU

I

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

R

The block with US is

not required to be

written back

A PU reads a block owned

by the other PU

snoop

When a PU occurs the read miss, the cache issues the request to the owner not

for the main memory. This case, the owner, the cache with OE responds.

49

Berkeley’s protocol

PU

OE

PU

I

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

R

→OS

The block with US is

not required to be

written back

Inter-cache transfer occurs!

In this case, the block with US is not consistent with the shared memory.

→ US

In this case, the block is transferred to the requesting cache without write-back

to the main memory. This method has two benefits: First, since the write back

only occurs when the owner is replaced, redundant write back can be reduced.

Second, the cache-to-cache data transfer can be done with much more speed

than data transfer between the main memory or upper level cache. After the

block transfer, the owner becomes owned sharable, and the requesting cache

becomes US. Note that, this US block is consistent to the owner, not the main

memory. This is called MOSI protocol or Berkeley protocol.

50

Firefly protocol (MES)

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

→CS

CE：Clean Exclusive CS:Clean Sharable

DE:Dirty Exclusive

CE
CS

I： Invalidate is not used!

RR

First read: CE

Second read: CS

The usage of CE is the same

as that in Illinois.

We can use update style protocol instead of the invalidation. This MES

protocol only uses CE, CS, and DE. The protocol is almost the same as that of

Illinois or MESI protocol. That is, the first reading cache block becomes CE

but by the access from the next PUs, they all turn to CS.

51

Firefly protocol (Writes into the CS

block)

PU

CS

PU

CS

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

W

All caches and shared memory are updated → Like update type

Write Through Cache

But the next step is quite different. When a PU writes the data, it is transferred

both to main memory and other copies. Since the other cache block copy is

updated, the state keeps CS. It means that once the state becomes CS, the

writing data are always transferred through the shared bus.

52

Firefly protocol (The role of CE)

PU PU

Snoop

Cache

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

→DE

W

Like Illinoi’s, writing CE does not require bus transactions

CE

However, when a PU writes the data into CE block, it turns into DE without

sending invalidation signal. And for DE blocks, the connecting CPU can

read/write freely. It is called MES protocol or Firefly protocol named after

DEC’s workstation.

53

Dragon protocol (MOES)

Ownership→Resposibility of write back

OS:Owned Sharable OE:Owned Exclusive

US:Unowned Sharable UE:Unowned Exclusive

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

UE

R

Another update style protocol uses both the concept of exclusive/shared and

ownership. Thus, four states OS, OE, US, and UE are used.

When the first PU reads the data, the block state becomes UE.

54

Dragon protocol

Ownership→Resposibility of write back

OS:Owned Sharable OE:Owned Exclusive

US:Unowned Sharable UE:Unowned Exclusive

PU PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

→US

UE
US

R

snoop

If the second PU reads the same cache block, both blocks become US.

55

Dragon protocol

PU

US

PU

US

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

→OS

W

Only corresponding cache block is updated.

The block with US is not required to be written back.

update

When a PU writes the block with US, the data are directly transferred through

the shared bus and the cache copy is updated. Thus, although the owner state

becomes OS, the state of copies stays in US. It is like the behavior of Firefly

protocol.

56

Dragon protocol

PU

OE

PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

A PU reads a block owned by the other PU.

R

Miss hit

On the other hand, when the PU miss-hits the block, it requires the block to the

owner like Berkeley protocol.

57

Dragon protocol

PU

OE

PUPU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

Direct inter-cache data transfer like Berkeley’s protocol

R

→OS → US

In this case, the cache block is transferred from the owner directly. In this case,

the owner becomes OS while the requesting cache block becomes US.

58

Dragon protocol (The role of the UE)

PU

UE

PU

Snoop

Cache

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

→OE

W

No bus transaction is needed like CE is Illinois’

Like Illinois protocol, the writing request to US block changes its state into OE

without using any bus transaction.

59

MOESI Protocol class

Owned Exclusive

O：
Owned

M:

Modified E：
Exclusive

Valid

S：Sharable

I：
Invalid

The cache coherence protocol can be classified by the states attached to each

cache block. First, the block is classified into valid or invalid. For the valid

block, if there is no other copy, it is exclusive. Also, if it is an owner, the state

is owned. Thus, a block is in one of five states OE, OS, UE, US, and I. In

order to simple representation, OE is called M for modified, OS is O for

owned, UE is E for exclusive, US is S for sharable, and I for invalidate. Since

the protocol is represented with five letters MOESI, it is called the MOESI

protocol class.

60

MOESI protocol class

◼ Basic：MSI

◼ Illinois：MESI

◼ Berkeley:MOSI

◼ Firefly：MES

◼ Dragon:MOES

Theoretically well defined model.

Detail of cache is not characterized in the model.

The protocols introduced before were summarized in this slide.

61

Invalidate ｖｓ．Update

◼ The drawback of Invalidate protocol
❑ Frequent data writing to shared data makes bus

congestion → ping-pong effect

◼ The drawback of Update protocol
❑ Once a block shared, every writing data must use

shared bus.

◼ Improvement
❑ Competitive Snooping

❑ Variable Protocol Cache

Let’s compare the invalidate protocol versus update protocol. The drawback of

invalidate protocol is the bus congestion caused by the frequent data writing to

the shared data.

62

Ping-pong effect（A PU writes into）

PU

C

PU

C

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

Ｗ

→D→ I

Invalidation

Assume that these two PUs share the same cache block and frequently write

and read data. When this PU writes the data, it invalidates the copy with

invalidation signal.

63

Ping-pong effect

（The other reads out）

PU

I

PU

D

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

R
→C →C

When PU attached to the invalidated cache reads the data, the cache block is

written back to the main memory and transferred to the requesting cache.

64

Ping-pong effect

（The other writes again）

PU

C

PU

C

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

Ｗ

→D → I

Invalidation

Then this time, assume that this PU writes the data, this block is invalidated.

65

Ping-pong effect（A PU reads again）

PU

D

PU

I

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

R
→C→C

A cache block goes and returns iteratively

→Ping-pong effect

Then, if the PU reads the data, this time the data block is transferred the

opposite direction. That is, by the frequent reads/writes by two PUs for the

same block, a cache block goes and returns iteratively. This phenomenon is

called the ping-pong effect.

66

The drawback of update protocol

（Firefly protocol）

PU

CS

PU

CS

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

W

Once a block becomes CS, a block is sent even if B the

block is not used any more.

False Sharing causes unnecessary bus transaction.

B

On the other hand, in the update protocol, once the state becomes CS, all

writing data are transferred through the bus, if the update target cache is

replaced. That is, the performance is the same as that of write through cache.

There are several proposals to solve these problems, there is no definitive

method. In the current multi-core, the MESI or MOESI protocols are used

now.

67

Glossary 2

◼ Invalidation:無効化、Update:更新

◼ Consistency Protocol: キャッシュの一致性を維持するための取り決
め

◼ Illinois, Berkeley, Dragon, Firefly:プロトコルの名前。Illinoisと
Berkeleyは提案した大学名、Dragon,FireflyはそれぞれXeroxとDEC
のマシン名

◼ Exclusive：排他的、つまり他にコピーが存在しないこと

◼ Modify:変更したこと

◼ Owner：オーナ、所持者だが実は主記憶との一致に責任を持つ責任
者である。Ownershipは所有権

◼ Competitive:競合的、この場合は二つの方法を切り替える意に使っ
ている。

◼ Injection:注入、つまり取ってくるというよりは押し込んでしまう意

68

Summary

◼ Snoop Cache is the most successful technique for

parallel architectures.

◼ In order to use multiple buses, a single block for

sending control signals is used.

◼ Sophisticated techniques do not improve the

performance so much.

◼ Variable structures can be considerable for on-chip

multiprocessors.

◼ Recently, snoop protocols using NoC(Network-on-

chip) are researched.

This slide shows the summary of today’s lesson.

69

Exercise

◼ Following accesses are done sequentially
into the same cache block of Illinois
protocol and Firefly protocol. How the state
of each cache block is changed ?

❑ PU A: Read

❑ PU B: Read

❑ PU A: Write

❑ PU B: Read

❑ PU B: Write

❑ PU A: Write

70

71

MPCore (ARM+NEC)

CPU

interface

Timer

Wdog

CPU

interface

Timer

Wdog

CPU

interface

Timer

Wdog

CPU

interface

Timer

Wdog

CPU/VFP

L1 Memory

CPU/VFP

L1 Memory

CPU/VFP

L1 Memory

CPU/VFP

L1 Memory

Interrupt Distributor

Snoop Control Unit (SCU) Coherence

Control Bus

Duplicated

L1 Tag

…

IRQ IRQ IRQ IRQ

Private

FIQ blocks

Private

Peripheral

Bus

L2 Cache

Private

AXI R/W

64bit Bus

It uses MESI Protocol

４つのコアを搭載可能、共有データのキャッシングはスヌープで
管理する

Competitive Snooping

PU

CS

PU

CS

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

W

Update n times, and then invalidates

→I

The performance is degraded in some cases.

72

Write Once (Goodman Protocol）

PU

C

PU

C

PU

Snoop

Cache

PU

Snoop

Cache

Main Memory

A large bandwidth shared bus

Ｗ

→D→ I

Invalidation

→CE

Main memory is updated with invalidation.

Only the first written data is transferred to the main memory.

73

Read Broadcast（Berkeley)

PU

US

PU

US

PU

Snoop

Cache

PU

US

Main Memory

A large bandwidth shared bus

W

→OE

Invalidation is the same as the basic protocol.

→I →I

74

Read Broadcast

PU

OE

PU

I

PU

Snoop

Cache

PU

I

Main Memory

A large bandwidth shared bus

Read data is broadcast to other invalidated cache.

R

→OS →US →US

75

Cache injection

PU

I

PU

I

PU

Snoop

Cache

PU

I

Main Memory

A large bandwidth shared bus

The same block is injected.

R

→US →US →US

76

