Special Course on Computer

Architectures
~GPU Programming Contest~

2017/6/16
Email: hunga@am.ics.keio.ac.|p

Graphics Processing Unit (GPU)
and CUDA

Overview of GPU (Nvidia GM204)

PCI Express 3.0 Host Interface

GPC GPC
Raster Engine Raster Engine

[]

Streaming
Multiprocessor (SM)

J9||043u0n Aloway

CUDA core

Reference: Nvidia GeForce
GTX 980 whitepaper

.
K]
2
=
€
S
Q
&
]
E
@
=

https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF

'GPU

= Feature
o Several hundred of cores
o Several thousands of threads are executed concurrently
o High memory bandwidth
o Nvidia GPU can be controlled by CUDA

= Our used GPU is GeForce GTX 970 (Maxwell)

Table: Specification of GeForce GTX 970

Streaming multiprocessor 13
(Each of them has 128 cores)

Maximum memory bandwidth | 224 GB/s

‘ CUDA program

= CUDA: Compute Unified Device Architecture
o Programming environment for Nvidia GPU

// C program

void
vector add(int *a, int *b, int *c){
int 3;
for(3 = 0; J < N; j++)
clj] = aljl + bl3l;

Transform each iteration to each thread

// CUDA program
global void

Egrnel(int *a, int *b, int *c) {

int 7j;

3 = blockDim.x +* blockIdx.x + threadIdx.x;

c[j] = alj]l + bl3l;
boe—

This function is a behavior of each thread.

void

vector add(int *a, 1int *b, int *c){
dim3 dg (N/BLOCKS, 1, 1);
dim3 db (BLOCKS, 1, 1);
kernel<<<dg, db>>>(a, b, c);

} _/\

Specify # of thread blocks and threads per thread block

‘ Flow ot CUDA program

Host (CPU)

[Dataarray }
@ Allocate GPU memory | | [T 1171 -~ []
space

o cudaMalloc ()

@ Send input data from CPU
to GPU

0 cudaMemcpy ()
@ Execute kernel on a GPU

@ Receive calculation results
from GPU

0 cudaMemcpy ()
® Free GPU memory space

o cudaFree ()

D Streaming Multiprocessor
. CUDA Core

Advanced Encryption Standard (AES)

Target: AES (1)
(Advanced Encryption Standard)

Mainstream of encryption
algorithms
o AES Specification

One of the symmetric Block
Ciphers
o Plaintext

Text size: 128 bits (16 Bytes)
o Secret key

Key size: 128 bits

Extends eleven 128-bit round keys
through a key-schedule algorithm

o 10 repetitive round processes

1 byte

1 byte

(
Plaintext Round key 0
AddRoundKey G——=@ o
rouidzl (\)
SubBytes
I
ShiftRows round++
|
MixColumns Round key 1-9
|
AddRoundKey K——=@

i

Yes

SubBytes

ShiftRows

Round key 10

AddRoundKey

=0

Cip

hertext

mailto:http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Input (16 byteAs)

S0.0{S0,1/So0.AS0.3) 1 byte
! I ar et. A : S 2 S1,0[S1,1|S1,2/S1,3

g ° L S2,0/52,1/S2,2/S2,3
S3,0/53,1/S3,2/S3,3

(Advanced Encryption Standard) ~ |

. So0 So,1|So,2 So3 o Ao,0/A0,1A0,2[Ao,3
Each round process is the 1[5, prrg—| Table substiuion [— L JEk Ta.
. . S$2,0/52,1/S2,2/S2,3 A2,0|A2,1|A2,2(A2,3
fl g u re to th e rl g ht S3,0/53,1S3.2[S3,3 Az 0|A3,1|A32/A33
o Fundamental calculation unit: 1 byte s
E a.C h ro u n d : fo u r typ eS Of Ao,0[A0,1|A0,2/A0,3 Rotate Left shift Ao,o|Ao,1 Ao 2Ao3
- Az1,0|A1,1|A12[As, for each row A1,1|A12/A1,3AL0)
transformation P Es Pl
Asz0|Az1|A32/A33 Az 3|Asz0/A31|A3,2
o SubBytes [ShiftRows |
Substitution transformation per
byte Ao,0[{ Ag 10.2/A0,3 Bo.o|B, 1 B0,2Bo.3
. Avilia, PuaAso Matrix multiplication |__|B1d[B, ,P12B13
(| S h IftROWS Az2li A, sP20|/A21 for each column B<2,:r B,.B22B23
. . Az 3l A3,0A3’1 Az B, B3 133,2 Bss
Rotation of left shift per row LG
o MixColumns
v utput (16 Bytes)
Multiplication and addition with BooBo./Boz{Bos Ko Ko|KozlKos 5045015045’
constant matrix value per column = EEEEEEEY @ M = it
p B2,0|B21{B2,2|B23 Kz,o K2,1 Kz,z K2,3 S'2.05'2.18'2,25'2.3
0 Ad d RO u nd Key Ba,0|B3,1|B32|B33 Ks,o K3,l Ks,z K3,3 S'34S'345'34S 3 4
IAddRoundKey| 1

XOR with a round key per byte

To the next round

Stage 1 of each round process: SubBytes

= A non-linear byte substitution

o Operates independently on each byte of the given 16
bytes input using a substitution table (S-box)
= Refer the page 15-16 of the AES specification in detalil

1 - SubBytes

Round 1

mmﬂnu‘mwmwmmnwmn—-c*

10

byte substitution table

‘ Stage 2 ot each round process: ShiftRows

= A transformation that the bytes in the last three

rows of the given 16 bytes are cyclically shifted
over different numbers of bytes (offsets).

o Refer the iaie 17 of the AES sEecification In detalil

Round 1

rotate over 2 bytes

Stage 3 ot each round process: MixColumns
A transformation that operates on the given 16 bytes
column-by-column, treating each column as a four-term
polynomial over GF(28) as follows:
a(x)={03}x3 + {01}x? + {01}x + {02}
o Refer the page 17-18 of the AES specification

o http://www.angelfire.com/biz7/atleast/mix columns.pdf
might help to understand MixColumns...

02 03 01 01| |94| |04
01 02 03 01| _|bf| |66
e0|b8|1le| 197 01 02 03| |5d| |81

ba|41]27
03 01 01 02
52[11|98| & d39] e

The four numbers of one column
ae f 1 e 5 are modulo multiplied in Rijndael's
Galois Field by a given matrix.

12

http://www.angelfire.com/biz7/atleast/mix_columns.pdf

‘ Stage 4 of each round process: AddRoundKey

= A transformation that a round key is added to the
given 16 bytes by a simple bitwise XOR
operation.

4 - AddRoundKey

Round 1

Round key

(produced as Round key 1
during the Key Schedule -
see slide 19)

13

Notice: Key Schedule

Key schedule can be ignored to understand in
this contest

o Concentrate on optimization of randomization
algorithm of AES

Wi-4 Wi-1 Wi

88|23 |2a

54|a3|6c

2c| 39|76

bl|39|05

50 02

38 00

D =D
e5 00

Rcon(8)

For more understanding Al

Please see the following flash movie

o Rijndael cipher ~128-bit version encryption~

“Rijndael” is another name of AES
http://poincare.matf.bg.ac.rs/~ezivkovm/nastava/rijndael_animacija.swf

Several encryption modes available

o However, this contest deals with the simplest mode: single key affects all

the plaintext data, as described below

Plain
text O
E 128 bits
\ 4
q;',_@ AES encryption

Cipher
text O

128 bits

Plain
text 1
v

\4

AES encryption

=S encryption

Plain
text 2
v

A 4

\ 4

Cipher
text 1

AES encryption

\ 4
Cipher
text 2

http://poincare.matf.bg.ac.rs/~ezivkovm/nastava/rijndael_animacija.swf

GPGPU Contest

AES calculation flow using GPU

AES calculation tlow using GPU

o 128-bit plaintexts can be encrypted in parallel on GPU.

(MDRound key genera

Host (CPU)

=

ion ‘

|

Plain
text O

Plain
text 1

Plain
text 2

128 bits

~

i}zzj‘l

Device (GPU)

@2Send

A4

Cipher

text O

Cipher
text 1

Cipher
text 2

128 bits

N Plain
> textO

Plain
text 1

L W

) @Receive

N

@ Parallel encryption

L,

Cipher
text O

Cipher
text 1

Cipher
text 2

17

‘ Contest program

= Example

$ ~/cuda/contestl8/aes -> Sorry. Please
download from the website

S make

$./aes

parameter in calculation.

- At your submission, please set the FILESIZE

h to “16*128*13*16*512”

initiali267

size =

You can use printf function to

Verify the results...

- Execute AES encryption on both CPU and GPU

- If the error is happen on your AES algorithm on GPU,
a verification error will be displayed.

eliminate bugs 1n your kernel.
This thread ID is 0.

-

Verification finished... Overal.

size: 32 bytes

|Verification error detecte Pos

Elapsed time
- If your AES design is correct, then the elapsed time on

GPU program will be obtained as follows.
Verification finished... Overall data size:
218103808 byte OK

cpu 0x69, gpu 0x0

Elapsed time on CPU: 0.015360 [msec]

Elapsed time on GPU: 0.773120 [msec]
Acceleration rate : 0.019868 times faster than
the CPU

Contest

Minimum requirements

o Accelerating AES by using GPU

Modify only gpu_calc.cu basically
Set FILESIZE parameter in calcuration.n to 16*128*13*16*512

Not have to execute all parts on GPU
Initialization and verification supported by toolkit

Advance
o Optimization to achieve higher performance

How to start

Login server
o Address: comparc{01/02}.am.ics.keio.ac.jp
o $ ssh user name@server_address -XY

o Your account has been available. If you have not
received an account strip, please send mail to
shimura@am.ics.keio.ac.jp

There are useful sample codes in cuda
directory.

o Refer to the directories such as
~/cuda/cuda samples Or ~/cuda/samplel

mailto:hunga@am.ics.keio.ac.jp

Toolkit

gpu_calc.cu
o AES program for GPU
o Not implemented (please modify this file)

cpu_calc.cpp
o AES program without GPU
o Refer to modify gpu_aes.cu

calculation.h
o Parameters and prototypes for AES codes

toolkit[.c/.h], timer][.c/.N]
a Initialization, verification, timer, and so on.

main.cpp
o Call functions

Makefile
o To build this toolkit files

Toolkit (data sets)

Plaintext are prepared as randomized data in
main.cpp as follows

srand ((unsigned) time (NULL)) ;
for(int 1 = 0; 1 < FILESIZE; i++) {

plaintext[i] = rand() & Oxff;
}

Tips for writing faster code

How to optimize program

a

Q

a

Use Shared Memory and Constant memory
Coalesced memory access

Avoid conditional branch such as if statement, as much as
possible

More sophisticated encryption algorithm would be better
performance

More information about CUDA architecture

Q

Q

Q

CUDA Toolkit Documentation
CUDA C Best Practices Guide

Aoki et al, “IZLHTOCUDAT OS5
#t, 2009

>4 (In Japanese)”, T%

11

mailto:http://docs.nvidia.com/cuda/#axzz4hFBL592G
mailto:http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#axzz4hFBL592G

Sample code

Vector addition program

o Kernel execution without time measurement
$ cd samplel
$ nvcc samplel.cu samplel kernel.cu
$./a.out

o Kernel execution with time measurement

In the same directory above
0 $ nvce samplel time.cu samplel kernel time.cu

Points

o Memory allocation on a GPU
cudaMalloc (), cudaFree()

o Data transfer between CPU and GPU
cudaMemcpy ()

o Format of GPU kernel function

Caution!

Download aes.tar from the website. Don’t use
the one in your account.

The number of thread must be exactly the
same as FILESIZE/16.

The maximum number of grid is 65535 for
each direction.

The maximum number of threads Iin a block Is
512.

For a beginner as a programmer

Try OpenMP programming contest instead.

Optimize the code of dft with OpenMp parallel
execution.

Download and take a look at dft.tar.
make dft
You can executable code without optimization.

Insert the pragma in the openmp part in
main.cpp.

Try it by changing the number of threads.

Announcement

If you have not an account, mail to:
hunga4l25@gmail.com
o Don’t mistake the mail address.

o Your name and which machine did you use (comparcO1 or 02)
should be included in the mail.

Deadline: 8/4 (Mon) 24:00
o Your name should be included in the mail.

Make the directory “contest” in your home directory of
comparcO01l or comparc02, and copy the follows.
o Source code and simple report (Text, PDF, etc)

Please check the website. Additional information will be
on it.

If you have any question about the contest, please
contact to shimura@am.ics.keio.ac.|p

mailto:hunga4125@gmail.com
mailto:hunga@am.ics.keio.ac.jp

